抽样知识讲解
- 格式:ppt
- 大小:4.73 MB
- 文档页数:61
食品抽样知识点归纳总结抽样是指从总体中选取一部分样本,通过对样本的研究和分析来推断总体的特征和情况的一种统计方法。
在食品领域中,抽样是非常重要的,因为食品是与人们的生命和健康直接相关的,抽样的质量直接影响到食品质量和安全问题的判断和控制。
二、抽样的目的1. 获取总体情况的估计值。
通过对样本的研究和分析来推断总体的特征和情况。
2. 降低调查的成本。
通过合理的抽样方法可以减少实际调查的工作量和成本。
3. 保证抽样结果的可信度。
通过科学合理的抽样方法来确保抽样结果的可信度和准确性。
三、抽样的方法1. 简单随机抽样:从总体中任意地抽取若干个不重复的样本,每个样本被选中的概率相等。
2. 系统抽样:按照一定的规律从总体中选取样本,如每隔几个单位选取一个样本。
3. 分层抽样:将总体分为若干层,然后在每一层中进行简单随机抽样。
4. 整群抽样:将总体分为若干个群体,然后随机抽取若干个群体作为样本。
5. 多阶段抽样:先进行分组抽样,然后在每组内进行简单随机抽样。
四、食品抽样的特点1. 食品抽样的样本数量要足够大,以保证抽样结果的可信度和准确性。
2. 食品抽样的方法要科学合理,考虑到食品的特性和生产流程。
3. 食品抽样的过程要严格控制,避免因为操作不当导致抽样结果的失真。
4. 食品抽样要充分考虑食品的多样性和变异性,选取合适的抽样方法和抽样比例。
5. 食品抽样要考虑到食品质量和安全问题,及时发现和解决潜在的问题。
五、食品抽样的应用1. 食品生产过程中的抽样检验。
对原料、半成品和成品进行抽样检验,保证食品质量和安全。
2. 食品流通环节的抽样检验。
对市场上销售的食品进行抽样检验,发现和解决食品安全问题。
3. 食品法规的执行和监督。
对食品法规的执行情况进行抽样检验,保证政策的执行和食品市场的秩序。
六、食品抽样的挑战和解决方法1. 食品抽样的样本数量问题。
解决方法:根据食品特性和生产流程合理确定抽样数量。
2. 食品抽样的方法选择问题。
抽样计划简介Sampling Plan抽样计划定义1:是指从母本中抽取一小部分样本进行研究,然后得出关于总体结论的过程。
定义2:是指每一批中所需检验的产品单位数,(样本大小或一连串的样本大小),以及决定该批允收率的准则(允收数及拒收数)。
案列1从批量为10000的一批产品中抽取两件样品,样本不合格品率可能出现三种结果:0%,50%,100%。
1.两件都合格样本不合格品率是0%;2.其中有一件不合格,样本不合格品率为50%;3.两件都不合格样本不合格品率是100%;但如果对10000件产品进行全检,发现实际的总体不合格品率是2.2%,其值不是上述三个值中的任何一个值。
综上所述:样本不合格品率与总体不合格品率不一定相等。
总体不合格品率与样本不合格品率是两个不同的概念,在数值上不能混为一谈。
思考:样本不合格品率与总体不合格品率差异如此大,这种抽样方案可信吗?案列2从批量为10000的一批产品中抽取200件样品(按MIL-STD-105E计数抽样检查表),其中有4件是不合格品,其抽样不合格品率是2%对10000件产品进行全检,实际的总体不合格品率仍是2.2%,这时发现这两个不合格品率非常接近。
综上所述:合理的抽样方案是让样本不合格品率尽可能的接近总体不合格品率。
思考:抽样多少样本是合理的?一、抽样计划基本概念:母本检验依照约定的方法,测验、样品所规定的质量特性,然后将其结果与原定质量标准比较,以判定产品是否合格。
就是被检查或者被采取措施的对象,通常用批量(LOT)表示,其符号以「N 」表示样本检验方法被规定的各种执行方法。
依检验项目的不同,可分为官感检查(如目测)、物理性测定、化学性分析、生物性试验、放射性测定、超音波探测、光学分析、仪器分析等从批产品中选取出来的一部分产品。
其符号以「n 」表示。
通常用样本数标示。
抽样AQL从母本中取出一部分样本的过程称为抽样,方法上可采用抽签法、随机数法;类型可分为随机抽样、分层抽样、整群抽样、系统抽样等4类是Acceptable Quality Limit 接收质量限的缩写,即平均质量水平,它是检验的一个参数,不是标准PACSERPCRMEIPMailingB2EmallIntegration Developers二、统计抽样检验的发展历程:批量范围按不同数量区间定义了15个范围12 3检验水平3个一般检验水平(Ⅰ\Ⅱ\Ⅲ)4个特殊水平(S1\S2\S3\S4)完整的抽样计划包应含4方面内容。
抽样期末知识点汇总一.绪论(一)抽样调查抽样调查是指非全面调查的总称。
只要是从研究的对象中抽取部分单位加以调查,用来说明全体,就统称为抽样调查。
(广义)选样方法:非概率抽样&概率抽样1.非概率抽样抽样方法:目的抽样、判断抽样、任意抽样、方便抽样、配额抽样(盖洛普民意测验、自愿样本原因:(1)受客观条件限制,无法进行严格的随机抽样。
(2)为了快速获得调查结果。
(3)在调查对象不确定,或无法确定的情况下采用,例如,对某一突发(偶然)事件进行现场调查等。
(4)总体各单位间离散程度不大,且调查员具有丰富的调查经验时。
优点:成本低,而且容易完成;缺点:不能对估计的精度作出客观、准确的说明。
2.概率抽样(狭义抽样调查)按照概率统计的原理,从研究的总体中按随机原则来抽选样本,通过对样本的调查获取数据,以此来对总体的特征作出估计推断;对推断中可能出现的抽样误差可以从概率的意义上加以控制。
特点:(1)对于一个具体的调查,要求总体中的每一个单元都有一个已知的非零概率被抽中。
(2)抽取样本的方法必须是随机的。
(3)根据样本来计算估计值的方法,应符合抽样的方法确定合适的估计量。
(4)能够以一定的概率控制抽样误差的范围。
概率抽样:等概率抽样&不等概率抽样(二)抽样调查的常用概念1. 目标总体:可简称为总体,是指所要研究对象的全体,或者说是希望从中获取信息的总体,它是由研究对象中所有性质相同的个体所组成,组成总体的各个个体称作总体单元或单位。
2.抽样总体:指从中抽取样本的总体。
3.抽样框:抽样总体的具体表现。
通常抽样框是一份包含所有抽样单元的名单。
4.总体参数:总体的特征。
5. 统计量(估计量):样本观察值的函数。
6.抽样误差:由于抽样的非全面性和随机性所引起的偶然性误差。
7.非抽样误差:由随机抽样的偶然性因素以外的原因所引起的误差。
8.抽样误差表现形式:抽样实际误差、抽样标准误和抽样极限误差。
9. 抽样标准误(S ),抽样方差(V ),V=S 210.偏差:样本估计量的数学期望与总体真值间的离差,ˆˆE()-()ˆB θθθ=。
数学抽样相关知识点总结1. 抽样方法在进行抽样时,我们需要选择适合的抽样方法。
常见的抽样方法包括:- 简单随机抽样:从总体中随机地选择样本,每个样本有相等的概率被选中。
- 分层抽样:将总体按照某种特征分成几个层,然后从每个层中分别抽取样本。
- 系统抽样:从总体中随机地选择一个起始点,然后以固定的间隔选择样本。
- 整群抽样:将总体分成若干群,然后随机选择几个群作为样本。
选择合适的抽样方法取决于总体的特点和研究目的,不同的抽样方法会影响到最后推断的精确性和可靠性。
2. 抽样误差抽样误差是指由于样本选择不足或者样本选择方法不当而引入的误差。
抽样误差的大小直接影响到我们对总体特征的推断。
通常情况下,抽样误差可以通过增加样本量或改进抽样方法来减小。
在进行统计推断时,我们需要注意到由于抽样误差引入的不确定性,因此对抽样误差进行合理的估计和控制是十分重要的。
3. 抽样分布抽样分布是指在不同的抽样中,统计量的取值分布。
常见的抽样分布包括正态分布、t-分布、F-分布等。
这些抽样分布在统计推断中有着重要的作用,可以帮助我们进行假设检验、置信区间估计等。
通过对不同的抽样分布的性质和特点的了解,我们可以更好地进行统计推断,并对不同的问题做出合理的判断。
4. 实际应用中的注意事项在实际应用中,抽样是统计研究中一个至关重要的步骤。
在进行抽样时,我们需要注意以下几个方面:- 样本的代表性:要确保选择的样本能够代表总体的特征,避免样本偏差。
- 样本的大小:要根据研究问题的复杂程度和样本特点选择合适的样本大小。
- 抽样方法的合理性:要根据总体的特点和研究目的选择合适的抽样方法,尽量减小抽样误差。
总之,抽样是统计学中一个重要的概念,它在统计推断和研究中都有着重要的应用。
通过合理地选择抽样方法、控制抽样误差、了解抽样分布等,我们可以更准确地对总体特征进行推断,并做出科学的决策。
抽样统计分析的基本知识引言在统计学中,抽样是一种常用的数据分析方法,通过从总体中选择一部分样本数据进行分析,从而得出关于总体的结论。
抽样统计分析为我们提供了一种有效的方式来推断总体特征,并进行决策或预测。
本文将介绍抽样统计分析的基本知识,包括抽样方法、样本量的确定和抽样误差的控制等内容。
一、抽样方法抽样方法是确定如何从总体中选取样本的方式。
常见的抽样方法有以下几种:1. 简单随机抽样简单随机抽样是指从总体中按照概率相等的方式选择样本,每个样本的选取是相互独立的。
简单随机抽样常用的方式有抽签、随机数表等。
简单随机抽样的优点在于样本的代表性较高,能够减小抽样误差。
然而,简单随机抽样的缺点在于实施起来可能比较复杂,且对总体的特征了解较少的情况下可能效果不佳。
2. 系统抽样系统抽样是从总体中选取样本的方法之一,通过确定一个固定的抽样间距,从总体中选取每隔固定间距的样本。
系统抽样的优点在于实施简单,抽样结果仍具有一定的代表性。
不过,需要注意的是如果总体呈现出周期性或有规律的特点,系统抽样可能引入系统误差,导致样本的代表性出现偏差。
3. 整群抽样整群抽样是将总体划分为若干个互不重叠的群体,然后从这些群体中随机选择部分群体作为样本。
整群抽样的优点在于可以减少抽样的成本,提高调查的效率。
然而,整群抽样可能引入群体间的差异性,因此在分析时需要考虑群体间的相似性程度。
4. 分层抽样分层抽样是将总体划分为互不重叠的若干个层次,然后从每个层次中分别进行抽样。
分层抽样的优点在于可以针对不同层次的特点进行分析,提高样本的代表性。
然而,在进行分层抽样时需要事先对总体的特征有一定了解,并且分层的选择要合理。
5. 整体抽样整体抽样是指直接选取总体中的全部元素作为样本。
整体抽样的优点在于样本的代表性最高,不会引入抽样误差。
然而,整体抽样的缺点在于样本量较大,造成调查成本的增加。
二、样本量的确定样本量的确定是保证抽样结果具有一定代表性的重要因素。
抽样方法知识点总结抽样方法复习知识点抽样方法知识点总结正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
抽样方法知识点总结一:简单随机抽样设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
2.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
抽样方法知识点总结二:活用随机抽样系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可得第k组抽取号码应该为9+30*(k-1)抽样方法知识点总结三:系统抽样当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
抽样方法知识点总结四:分层抽样当已知总体有差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常常将总体分为几个部分,然后按照各个部分所占比例进行抽样,这种抽样叫做分层抽样,其中所分层的各部分叫做层“抽样方法知识点总结”。
抽样设计知识点总结一、抽样的定义抽样是指从总体中选取一部分个体作为样本进行研究的过程。
总体是指研究对象的全体,而样本是从总体中选取的部分个体。
在实际的研究中,很难对整个总体进行研究,因此需要通过抽样的方法来选取代表性的样本,从而对总体进行推断。
二、抽样的类型1. 无偏抽样:无偏抽样是指在进行抽样时,每个个体被选取为样本的概率是相等的。
常见的无偏抽样方法有简单随机抽样、分层抽样、整群抽样等。
2. 有偏抽样:有偏抽样是指在进行抽样时,每个个体被选取为样本的概率是不相等的。
有偏抽样在实际的研究中很少使用,因为这种抽样方法可能会导致样本的代表性受到影响,从而影响到研究结果的可靠性。
三、抽样误差抽样误差是指由于抽样方法不恰当或者由于抽取样本所造成的误差。
抽样误差的大小直接影响到研究结果的可信度,因此在进行抽样设计时,需要注意尽量减小抽样误差。
常见的抽样误差有抽样偏差、非抽样误差等。
四、抽样设计的步骤1. 确定研究目的:在进行抽样设计时,首先需要明确研究的目的和问题,以便确定所需的样本类型和抽样方法。
2. 确定研究总体:确定研究总体的范围和特征,以便在抽样时准确地选取代表性样本。
3. 选择抽样方法:根据研究目的和研究总体的特点,选择合适的抽样方法,如简单随机抽样、分层抽样、整群抽样等。
4. 确定样本量:确定所需的样本量是抽样设计的关键步骤,样本量的大小直接影响到研究结果的可靠性。
5. 进行抽样实施:在确定了抽样方法和样本量后,就需要进行实际的抽样实施,从而得到代表性的样本。
6. 分析抽样结果:对抽样所得的样本进行分析,以评估样本的代表性和有效性,从而为研究结果的推断提供依据。
五、抽样设计的注意事项1. 样本的代表性:抽样设计的最终目的是获取代表性的样本,以此推断整个总体的特征。
因此在进行抽样设计时,需要注意保证样本的代表性。
2. 样本的可靠性:样本的可靠性是指样本所反映的总体特征与总体本身实际特征之间的一致性。
抽样知识点总结一、抽样的基本概念1.1 总体和样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
总体是研究的对象,样本是研究的实际观察单位。
1.2 抽样误差抽样误差是指由于抽样方法所导致的样本与总体之间的偏差。
抽样误差分为随机误差和系统误差两种,随机误差是由抽样本身的不确定性所引起,系统误差是由于抽样方法的偏差或者样本数据的不准确性所引起。
1.3 抽样分布抽样分布是一组样本统计量的概率分布,它反映了在不同样本情况下的统计量的变动情况。
1.4 抽样方法常见的抽样方法包括简单随机抽样、分层抽样、整群抽样、系统抽样、多阶段抽样等。
不同的抽样方法适用于不同的研究问题和数据特点。
二、抽样的基本原则2.1 代表性原则样本应当具有代表性,即能够准确地反映总体的特征和变动情况。
2.2 随机性原则抽样过程应当具有一定的随机性,以消除个体之间的偏好或者主观意愿。
2.3 独立性原则各个样本之间应当是相互独立的,互不影响,以确保样本数据的独立性和可靠性。
2.4 信息量原则样本应当具有足够的信息量,即能够为研究问题提供充足的数据支持。
三、抽样的实施步骤3.1 确定研究目标首先需要确定研究问题,明确所需的样本特征和数据信息。
3.2 制定抽样方案根据研究目标和总体特征,选择合适的抽样方法,并确定抽样的规模和抽样的程序。
3.3 抽取样本按照抽样方案进行抽样,获取符合要求的样本数据。
3.4 数据分析与推断对抽样数据进行分析和推断,从而得出关于总体特征和规律的结论。
3.5 结果解释与应用根据抽样研究的结论和推断结果,进行结果的解释和应用,为决策和实践提供支持和参考。
四、抽样的应用4.1 统计调查抽样是统计调查中常用的一种数据收集方法,可以节省人力物力,减小成本,提高工作效率。
4.2 市场调查在市场营销中,抽样可以帮助企业更加准确地了解消费者的需求和偏好,指导产品开发和促销策略。
4.3 健康调查抽样在健康调查中发挥着重要作用,可以了解社会群体的健康状况和问题,为政府和企业提供决策支持。
审计抽样知识点总结一、审计抽样的概念和目的审计抽样是指审计员根据一定的方法,从整体中抽取一部分数据或者事项,进行详细的审计工作,以代表性地评价整体情况。
审计抽样的目的主要是为了降低审计工作的时间和成本,同时也可以在一定程度上保证审计的客观性和准确性。
二、审计抽样的特点1. 抽样是随机选择一部分数据进行审计,所以对于被审计对象来说是无法预测的,保证了审计的客观性和公正性。
2. 抽样可以大大减少审计工作的时间和成本,提高审计效率。
3. 抽样也带来了一定的风险,因为只是抽取了一部分数据进行审计,可能会忽略了一些重要的问题。
三、审计抽样的基本原则1. 代表性原则:抽样要求被选取的样本要有足够的代表性,能够代表整体的情况。
2. 客观性原则:抽样过程应当客观公正,不受个人主观意识和偏见的影响。
3. 抽样精度原则:抽样应当以达到一定的置信度和精度为目标,使得抽样结果具有合理的可靠性。
4. 选择随机性原则:抽样应当是以随机抽取的原则进行,不受主观意识的干扰。
四、审计抽样的方法1. 随机抽样:根据一定的随机抽取原则,从整体中抽取一定数量的样本进行审计。
2. 分层抽样:根据被审计对象的不同特点,将其分成不同的层次,然后在每个层次中随机抽取一定数量的样本。
3. 整群抽样:直接对整体进行抽样,不需要对被审计对象进行分类。
五、审计抽样的步骤1. 确定抽样目标:明确需要抽样的具体内容和范围,确定抽样的目的和依据。
2. 制定抽样计划:根据抽样目标和依据,制定抽样方案和抽样的方法。
3. 抽样实施:按照抽样计划进行实际的抽样工作。
4. 样本检验:对抽取的样本进行详细的检验和分析。
5. 结果评价:根据抽样结果进行整体的评价和分析,得出结论和建议。
六、审计抽样的风险1. 代表性不足:由于抽样的不确定性,可能导致选取的样本不足以代表整体情况。
2. 抽样误差:由于抽样的随机性,可能导致部分样本的差异被放大,产生误差。
3. 抽样偏差:由于抽样的非随机性,可能导致样本的选择不够客观,产生偏差。
抽样技术知识点总结一、引言抽样是统计学的重要内容之一,它是指从总体中选取出一部分个体,通过对这部分个体的观察和研究来推断总体的性质和规律的一种统计方法。
抽样技术的合理性和科学性对于统计结果的准确性和可靠性具有重要的保障作用。
抽样技术的研究涉及概率论、数理统计等领域,是统计学中的一个重要分支。
二、抽样技术的基本概念1. 总体和样本总体是指研究对象的全体,样本是指从总体中抽取出来的一部分个体。
抽样研究的目的是通过对样本进行观察和研究,得出关于总体的统计推断。
2. 抽样误差抽样误差是指由于抽样方法的随机性和样本容量的有限性而导致的估计值与总体参数之间的差异。
减小抽样误差是抽样研究的一个重要目标。
3. 抽样框架抽样框架是指总体中每一个个体在抽样过程中都有明确的身份和位置的集合,这是进行抽样的前提条件之一。
4. 抽样概率抽样概率是指进行抽样的每一个个体被选中的概率。
抽样概率对于抽样结果的合理性和可靠性具有重要的影响。
三、抽样方法1. 简单随机抽样简单随机抽样是指从总体中按完全随机的原则抽取出相同容量的样本的方法。
简单随机抽样是抽样方法中最基本的一种方法,它具有抽样误差小、可比较性强的特点。
2. 分层抽样分层抽样是指将总体按照某种特征分成若干层,然后从每一层中分别抽取样本的方法。
分层抽样能够有效地减小抽样误差,提高估计的准确性。
3. 整群抽样整群抽样是指将总体按照某种特征分成若干群,然后选择其中的若干群作为样本的方法。
整群抽样能够简化抽样过程,提高抽样效率。
4. 系统抽样系统抽样是指按照一定规则从总体中选择个体的方法。
系统抽样能够简化抽样过程,减小抽样误差。
5. 整群分层抽样整群分层抽样是指将总体按照某种特征首先分成若干群,然后再从每一群中按照某种分层方法抽取样本的方法。
整群分层抽样是一种比较复杂的抽样方法,但具有较高的抽样精度。
6. 多阶段抽样多阶段抽样是指在抽样过程中采用多个抽样阶段的方法。
多阶段抽样能够逐步缩小抽样范围,提高抽样效率。
抽样设计知识点总结抽样设计是研究中常用的一种调查方法,在统计学和市场研究领域有着广泛的应用。
本文将总结抽样设计的基本概念、常见的抽样方法以及其优缺点,以帮助读者全面了解抽样设计的知识点。
以下是对抽样设计的详细总结:一、抽样设计的基本概念抽样设计是指在研究中通过对样本的选择和观察来对总体进行推断的过程。
其目的是通过从总体中抽取一部分个体进行观察和研究,从而推断出总体的特征和性质。
二、简单随机抽样简单随机抽样是指从总体中以等概率的方式随机选择样本的方法。
在简单随机抽样中,每个个体被选择为样本的概率是相等的,且相互之间是独立的。
简单随机抽样具有理论上的可行性和可重复性,但是在总体分布不均匀或者样本容量较大时,可能存在样本代表性不足的问题。
三、分层抽样分层抽样是将总体按照某些特征进行划分,然后在每个层次中进行独立的抽样。
分层抽样可以提高样本的代表性,并减小样本误差。
在分层抽样中,要根据总体的特征和目标确定划分的层次和样本容量,以确保每个层次都能充分代表总体。
四、整群抽样整群抽样是将总体按照某些特征划分为若干个互不重叠的群组,然后从选定的群组中进行全员抽样或随机抽样。
整群抽样能够简化抽样过程,减少抽样误差。
但是要注意群内的个体异质性,以保证样本的代表性。
五、多阶段抽样多阶段抽样又称为层级抽样,是将总体按照多个层次进行分层抽样的方法。
每个层次的样本数量和抽样方式可以根据实际情况进行调整,以提高样本的效率和代表性。
多阶段抽样常用于大规模调查和复杂样本选择的研究中。
六、配额抽样配额抽样是根据总体中各类别的比例,按照某些特征设定的配额进行抽样的方法。
配额抽样通常比较适用于面对有限数量的个体,且可以根据特定需求确定配额比例。
但是配额抽样不能保证每个个体被选择为样本的概率是相等的,可能导致样本的偏倚。
七、系统抽样系统抽样是按照某种规则从总体中依次选择样本的方法。
在系统抽样中,可以根据需要选择第一个样本的位置,然后按照固定的间隔选择后续的样本。
抽样检的基础必学知识点
抽样检的基础知识点包括以下内容:
1. 抽样方法:在进行抽样检时,需要选择适当的抽样方法,常见的抽
样方法有简单随机抽样、系统抽样、分层抽样、整群抽样等。
2. 抽样误差:抽样误差是指抽样所引入的估计误差,其大小通常取决
于样本容量的大小和抽样方法的选择。
抽样误差越小,样本代表性越好,估计结果越可靠。
3. 样本容量:样本容量是指进行抽样检的样本数量,通常样本容量越大,估计结果越可靠。
样本容量的确定需要考虑抽样误差允许范围、
资源和时间等因素。
4. 抽样分布:抽样分布是指某一统计量在大量独立抽样情况下的分布。
常见的抽样分布有正态分布、t分布、卡方分布等。
根据不同的情况选择适当的抽样分布进行参数估计和假设检验。
5. 抽样误差的控制:为了减小抽样误差,可以采取增加样本容量、改
进抽样方法、增加抽样次数等方法进行控制。
合理选择抽样方法和样
本容量可以有效控制抽样误差。
以上是抽样检的基础必学知识点,通过学习这些知识点可以帮助我们
正确进行抽样检,得到可靠的估计结果。
培训教材抽样查验基本知识一、抽样查验的由来二次世界大战期间,美国军方采买军械时.在查验人员极度缺少的状况下,为保证其大量购入军械的质量,特意组织一批优异数理统计专家、依照数学统计理论,成立厂一套产品抽样查验模式。
知足战时的需要。
二、抽样查验的定义抽样查验是按早先确立的抽样方案,从交验批中抽取规定数目的样品构成一个样本,经过对样本的查验推测批合格或批不合格。
抽样查验比较d≤ Ac批合格N n d批产品样本不合格品数Acd≥ Re合格判断数,批不合格Re 不合格判断数三、基本观点及用语1.集体与样本。
集体就是供给被做为检查 ( 或检查 ) 的对象.或许称采纳举措的对象。
也常称为批,集体 ( 批 ) 大小常以N 表示,亦称批量 N。
工序间、成品、出入库查验以及购入构验等常常组以整批的形式交托查验的。
不管是一件件的产品、仍是散装料,一般都要构成批,尔后提交查验,有些情况,中间产品因为条件的限制不一样意构成批此后再提交给下一道工序进行查验、但可采纳连续抽样查验( 如每小时抽取 1 台产品进行查验的抽样方式。
样本就是指我们从集体中( 或批中 ) ,抽取的部分个体。
抽取的样本数目常以n 表示。
2.批的构成。
构成一个批的单位产品的生产条件应尽可能相同,即是应该由原、辅料相同,牛产职工改动不大生产期间大概相同样生产条件下生产的单位产品构成批。
此时.批的特征值只有随机颠簸.不会有较大的差异。
这样做.主假如为了抽取样品的方便及抽样品更拥有代表性.进而使抽样查验更加有效,假如有凭证表示,不一样的机器设施、不一样的操作者或不一样批次的原资料等条件的变化对产质量量有显然的影响时,应该尽可能以同一机器设施、同一操作者或同—批次的原资料所生产的产品构成批,构成批的上述各样条件,往常极少能够同时知足。
假如想使它们都获得知足,常常需要把批分得比较小.这样质量一致并且简单追忆。
但这样做,会使查验工作量大大增添.反而不可以达到抽样查验应有的经济效益、所以,除了产品质量时好时坏,颠簸较大.一定采纳较小的批以保证批的合理外,当产品质量较稳准时〔比方生产过程处于统计控制状态〕,采纳大量量是经济的、自然,在使用大量量时,应该考虑到库房场所限制以及不合格批的返工等可能造成的困难。
抽样检验知识梳理什么是抽样?1、样本:从总体中抽取的,用以测试、判断总体质量的一部分基本单位。
2、抽样:从总体取出一部分个体的过程称为抽样。
3、批量:一批产品包含的基本单位数量称批量,以N表示。
4、样本大小:样本中包含的基本单位数量称为样本大小,以n表示。
5、抽样计划:一个抽样计划是指每一批中所需检验的产品单位数,(样本大小或一连串的样本大小),以及决定该批允收率的准则(允收数及拒收数)6、抽样时机:样本可在批内所有各单位全部组装完成后抽取,或在批组装时抽取,在这种情况下,批的大小须在任何样本单位抽取前决定,如果样本单位是在批组装时抽取,如果在该批完成前即已达到拒收数,则已完成的此部分产品,应予拒收,不良产品的原因须先查明,并采取矫正措施,在此之后才可开始新的批。
当使用双次或多次抽样时,每一样本应从整个批中抽取。
1、单次抽样计划:检验的样本单位数,应等于抽样计划中所定的样本大小,如样本中发现的不良品个数小于或等于允收数时,则认为可以允收该批。
如不良品的个数大于或等于拒收数时,则拒收该批。
2、双次抽样计划:检验的样本单位数,应等于抽样计划中所确定的第一次样本大小。
如第一次样本中发现的不良品个数小于或等于第一次的允收数时,则认为可以允收该批,如第一次样本中发现的不良品个数大于或等于第一次的拒收数时,则拒收该批。
如第一次样本中发现的不良品个数是介于第一次允收数与拒收数之间,则应检验同样大小的第二次样本。
第一次及第二次样本中发现的不良品个数,应加以累计。
如累计的不良品个数等于或小于第二次允收数时,则认为可以允收该批。
如累计的不良品个数等于或大于第二次允收数时,则应拒收该批。
3、多次抽样计划:多次抽样的计划的程序与双次抽样计划所规定的相类似,最多可以七次抽样。
如何使用抽样计划?1、单次抽样计划:检验的样本单位数,应等于抽样计划中所定的样本大小,如样本中发现的不良品个数小于或等于允收数时,则认为可以允收该批。