离心泵常用调节方式
- 格式:doc
- 大小:58.00 KB
- 文档页数:2
化工原理-第二章-流体输送设备一、选择题1、离心泵开动以前必须充满液体是为了防止发生()。
AA. 气缚现象;B. 汽蚀现象;C. 汽化现象;D. 气浮现象。
2、离心泵最常用的调节方法是()。
BA. 改变吸入管路中阀门开度;B. 改变压出管路中阀门的开度;C. 安置回流支路,改变循环量的大小;D. 车削离心泵的叶轮。
3、离心泵的扬程,是指单位重量流体经过泵后获得的()。
BA. 包括内能在内的总能量;B. 机械能;C. 压能;D. 位能(即实际的升扬高度)。
4、离心泵的扬程是()。
DA. 实际的升扬高度;B. 泵的吸液高度;C. 液体出泵和进泵的压差换算成液柱高度D. 单位重量液体出泵和进泵的机械能差值。
5、某同学进行离心泵特性曲线测定实验,启动泵后,出水管不出水,泵进口处真空计指示真空度很高,他对故障原因作出了正确判断,排除了故障,你认为以下可能的原因中,哪一个是真正的原因()。
CA. 水温太高;B. 真空计坏了;C. 吸入管路堵塞;D. 排出管路堵塞。
6、为避免发生气蚀现象,应使离心泵内的最低压力()输送温度下液体的饱和蒸汽压。
AA. 大于;B. 小于;C. 等于。
7、流量调节,离心泵常用(),往复泵常用()。
A;CA. 出口阀B. 进口阀C. 旁路阀8、欲送润滑油到高压压缩机的气缸中,应采用()。
输送大流量,低粘度的液体应采用()。
C;AA. 离心泵;B. 往复泵;C. 齿轮泵。
9、1m3气体经风机所获得能量,称为()。
AA. 全风压;B. 静风压;C. 扬程。
10、往复泵在启动之前,必须将出口阀()。
AA. 打开;B. 关闭;C. 半开。
11、用离心泵从河中抽水,当河面水位下降时,泵提供的流量减少了,其原因是()。
CA. 发生了气缚现象;B. 泵特性曲线变了;C. 管路特性曲线变了。
12、离心泵启动前____ ,是为了防止气缚现象发生。
DA 灌水;B 放气;C 灌油;D 灌泵。
13、离心泵装置中____ 的滤网可以阻拦液体中的固体颗粒被吸入而堵塞管道和泵壳。
离心泵是一种常见的流体输送设备,广泛应用于工业生产和民用领域。
在使用离心泵时,往往需要对其流量进行调节,以满足不同的工艺要求或使用场合。
流量调节的方法有很多种,每种方法都有其特点和适用范围。
本文将简要介绍离心泵流量调节的方法及各自特点。
一、调节叶片角度离心泵的叶轮是在泵内旋转,它的叶片角度的改变可以改变泵的性能,从而达到调节流量的目的。
这种方法通过调节叶轮的转速和叶片的角度来改变流道的截面积,从而改变流体通过泵的流量。
这种方法的特点是调节范围大,可以在一定范围内实现较大的流量调节,但是调节复杂,需要专业的技术人员进行操作。
二、改变泵的入口和出口阀门的开度通过改变泵的入口和出口阀门的开度来调节流量。
当阀门开度越大,流量越大,反之,阀门开度越小,流量越小。
这种方法的特点是调节简单,操作方便,但是调节范围较小,且对阀门的严密性要求较高,如果阀门密封不严,会影响泵的工作效率。
三、改变泵的转速通过改变泵的电机转速来调节泵的流量。
当转速增大时,流量增大,反之,流量减小。
这种方法的特点是调节范围大,操作方便,但是需要有专业的设备来实现转速调节,且不同泵的转速范围不同,有些泵转速调节范围较小。
四、安装变频器控制器通过安装变频器控制器来实现调节泵的流量。
变频器控制器可以精细调节泵的转速,从而实现流量的精确控制。
这种方法的特点是调节精度高,范围大,可实现连续无级调节,但是安装成本较高,需要有专业的技术人员进行操作。
五、改变泵的叶轮直径通过更换不同直径的叶轮来实现流量的调节。
更换大直径的叶轮可以增大泵的流量,更换小直径的叶轮可以减小泵的流量。
这种方法的特点是操作简单,不需要专业的技术人员进行操作,但是更换叶轮需要停机维护,对生产有一定的影响。
总结起来,离心泵的流量调节方法有很多种,每种方法都有其特点和适用范围。
在实际应用中,选择合适的调节方法需综合考虑系统的要求、设备的性能和经济成本等因素,综合分析,选择最合适的流量调节方法才能更好地满足工业生产和民用需求。
离心泵常用的调节方法离心泵是工业生产中常用的流体输送设备,广泛应用于石油、化工、电力、冶金等领域。
为了保证离心泵的工作效率和稳定性,需要进行适当的调节。
常用的调节方法主要包括流量调节、转速调节、进口压力调节和出口阀门调节等。
接下来将详细介绍这几种调节方法。
1.流量调节:流量调节是离心泵最常见的调节方法。
常用的流量调节器有节流阀、调速器和变频器等。
节流阀通过调节泵的出口阀门的开度来改变泵的流量。
调速器通过调节泵的转速来改变泵的流量。
变频器通过调节电机的转速来改变泵的流量。
流量调节的关键是根据工艺要求和流体特性选择合适的调节器,同时控制器的精度和稳定性也要满足要求。
2.转速调节:转速调节是通过改变离心泵电机的转速来调节泵的流量和扬程。
常用的转速调节方法有变频调速和机械变速调节。
变频调速是通过调节电机供电频率和电压来改变电机的转速。
这种方法具有调节范围广,控制精度高的优点,但需要安装变频器,成本较高。
机械变速调节是通过改变主从电机的传动比例或者更换滑套来改变泵的转速。
这种方法适用于小型离心泵,调节范围较窄。
3.进口压力调节:进口压力调节是通过改变进口管道的供液压力来调节泵的流量和扬程。
常用的进口压力调节方法有进口阀门调节、给水泵调节和供液泵调节等。
进口阀门调节是通过调节进口阀门的开度来控制进口压力。
给水泵调节是通过改变给水泵的流量来调节进口压力。
供液泵调节是通过改变供液泵的压差来调节进口压力。
4.出口阀门调节:出口阀门调节是通过改变出口阀门的开度来调节泵的流量和扬程。
出口阀门调节一般适用于小流量、大扬程的离心泵。
通过调节出口阀门的开度,可以降低出口阻力,提高泵的流量和扬程。
注意控制出口阀门的开度,避免过大或过小引起系统压力过高或流量过小的问题。
在进行调节时1.调节过程中,应保证泵的工作点在性能曲线的合理范围内。
2.调节时应注意控制器的灵敏性和调节精度,避免控制器的过度调节或超调。
3.调节时应注意泵的工作温度和介质特性,避免因调节不当引起泵的过热或介质的变质。
离心泵流量控制方法探讨前言离心泵就是目前使用最为广泛得泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。
如何经济有效得控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量得型式,单从目前来瞧市场上有4种广泛使用得方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。
现在我们来逐一分析讨论各种方法得特点。
离心泵流量常用控制方法方法一:出口阀开度调节这种方法中泵与出口管路调节阀串联,它得实际效果如同采用了新得泵系统,泵得最大输出压头没有改变,但就是流量曲线有所衰减。
方法二:旁路阀调节这种方法中阀门与泵并联,它得实际效果如同采用了新得泵系统,泵得最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。
方法三:调整叶轮直径这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。
方法四:调速控制叶轮转速变化直接改变泵得流量曲线,曲线得特性不发生变化,转速降低时,曲线变得扁平,压头与最大流量均减小。
泵系统得整体效率出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。
叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速得50%。
能耗水平假定通过上述四种办法将泵得输出流量从60m3/h调整到50m3/h,输出为60m3/h时得功率消耗为100%(此时压头为70m),那么几种控制流量得办法对泵消耗得功率影响如何?(1) 出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。
(2) 旁路调节,旁路阀将泵得压头减小到55M,这只能通过增加泵得流量来实现,结果能耗增加了10%。
(3) 调整叶轮直径,缩小叶轮直径后泵得输出流量与压力均降低,能耗缩减到67%。
(4) 调速控制,转速降低,泵得流量与压头均减小,能耗缩减到65%。
总结下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用。
离心泵流量控制方法探讨前言离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。
如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。
现在我们来逐一分析讨论各种方法的特点。
离心泵流量常用控制方法方法一:出口阀开度调节这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。
方法二:旁路阀调节这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。
方法三:调整叶轮直径这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。
方法四:调速控制叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。
泵系统的整体效率出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。
叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。
能耗水平假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何?(1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。
(2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。
(3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。
(4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。
总结下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用。
离心泵的工作点与调节(一)管路特性曲线与泵的工作点当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路的特性有关,即在输送液体的过程中,泵和管路是互相制约的。
所以,在讨论泵的工作情况前,应先了解与之相联系的管路状况。
在图2—17所示的输送系统中,若贮槽与受液槽的液面均保持恒定,液体流过管路系统时所需的压头(即要求泵提供的压头),可由图中所示的截面1—1,与2-2,间列柏努利方程式求得,即H e = (2-28)在特定的管路系统中,于一定的条件下进行操作时,上式的均为定值,即若贮槽与受液槽的截面都很大,该处流速与管路的相比可以忽略不计,则。
式2-28可简化为H e =K+H f (2-29)若输送管路的直径均一,则管路系统的压头损失可表示为(2-30) 式中 Q e —管路系统的输送量,m 3/h ;A —管路截面积,m 2。
对特定的管路,上式等号右边各量中除了和Q e 外均为定值,且也是Q e 的函数,则 可得(2-31)f Hg u g p Z +22∆+∆+∆ρg pZ ρ∆∆与K g p Z =+ρ∆∆022≈∆g u =++=∑g u d l l H e c ef 2)2ζζλ+(g A Q d l l e e c e 2)3600/()2ζζλ+(++∑λλ)(e f Q f H =将式2-31代人式2-29中可得(2-32)式2-32或式2-29即为管路特性方程。
若流体在该管路中流动已进入阻力平方区,又可视为常量,于是可令则式2-30可简化为H e = B所以,式2-29变换为 H e =K+B (2-33)由式2-33可看出,在特定的管路中输送液体时,管路所需的压头H e 随液体流量Q e 的平方而变。
若将此关系标在相应的坐标图上,即得如图2—18所示的H e —Q e 曲线。
这条曲线称为管路特性曲线,表示在特定管路系统中,于固定操作条件下,流体流经该管路时所需的压头与流量的关系。
通过离心泵与管路系统的特性曲线图分析了离心泵流量调节的几种主要方式:出口阀门调节、泵变速调节和泵的串、并联调节。
用特性曲线图分析了出口阀门调节和泵变速调节两种方式的能耗损失,并进行了对比,指出离心泵用变速调节流量比用出口阀门调节流量可以更好的节约能耗,且节能效率与流量变化大小有关。
在实际应用时应该注意变速调节的范围,才能更好的应用离心泵变速调节。
离心泵是广泛应用于化工工业系统的一种通用流体机械。
它具有性能适应范围广(包括流量、压头及对输送介质性质的适应性)、体积小、结构简单、操作容易、操作费用低等诸多优点。
通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。
离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。
目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。
由于各种调节方式的原理不同,除有自己的优缺点外,造成的能量损耗也不一样,为了寻求最佳、能耗最小、最节能的流量调节方式,必须全面地了解离心泵的流量调节方式与能耗之间的关系。
1 泵流量调节的主要方式1.1 改变管路特性曲线改变离心泵流量最简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。
1.2 改变离心泵特性曲线根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。
但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便[1],在生产中也很少采用。
这里仅分析改变离心泵的转速调节流量的方法。
从图1中分析,当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线Q-H与管路特性曲线He=H0+G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。
离心泵常用的调节方法离心泵是一种常见的液压机械设备,主要用于输送水和其他液体。
它的流量和扬程通常需要根据不同的工况进行调节,以提供所需的运行性能。
以下是离心泵常用的调节方法:1. 调节泵的启动速度:泵的启动速度对于离心泵的性能和运行状态影响较大。
通常情况下,启动时应尽量保持较低的启动速度,避免瞬时液流对泵体造成冲击,从而导致泵的损坏。
2. 调节泵的进口阀门开度:通过调节进口阀门的开度,可以控制泵的进口流量,从而达到调节离心泵流量的目的。
通常情况下,进口阀门的开度越大,泵的流量越大;反之,进口阀门的开度越小,泵的流量越小。
3. 调节泵的出口阀门开度:通过调节出口阀门的开度,可以控制泵的出口流量。
当出口阀门完全关闭时,泵的流量为零;当出口阀门完全开启时,泵的流量取决于系统的特性曲线以及泵的选型。
4. 调节泵的转速:通过调节泵的转速,可以控制离心泵的流量和扬程。
通常情况下,提高泵的转速可以增加流量和扬程;降低泵的转速则可以减小流量和扬程。
但是需要注意,泵的转速不能超过其额定转速,否则会造成泵的损坏。
5. 调节泵的叶轮直径:通过更换不同直径的叶轮,可以改变泵的流量和扬程。
当需要增大流量和扬程时,可以选择较大直径的叶轮;反之,选择较小直径的叶轮可以减小流量和扬程。
需要注意的是,更换叶轮时需要确保选用的叶轮与泵的特性曲线匹配。
6. 调节泵的叶轮角度:通过调节叶轮的角度,可以改变泵的流量和扬程。
增加叶轮的角度可以增大泵的流量和扬程;减小叶轮的角度则可以减小泵的流量和扬程。
调节叶轮角度需要考虑叶轮的转速和泵的额定工作状态,以免超出叶轮的安全范围。
7. 调节泵的进口压力:通过调节泵的进口压力,可以控制泵的流量和扬程。
增加进口压力可以增加泵的流量和扬程;减小进口压力则可以降低泵的流量和扬程。
但是需要注意,调节进口压力时应避免超过泵的额定工作范围,以免对泵造成损坏。
8. 调节泵的出口压力:通过调节泵的出口压力,可以控制泵的流量和扬程。
离心泵的工作点与调节(一)管路特性曲线与泵的工作点当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路的特性有关,即在输送液体的过程中,泵和管路是互相制约的。
所以,在讨论泵的工作情况前,应先了解与之相联系的管路状况。
在图2—17所示的输送系统中,若贮槽与受液槽的液面均保持恒定,液体流过管路系统时所需的压头(即要求泵提供的压头),可由图中所示的截面1—1,与2-2,间列柏努利方程式求得,即H e = (2-28)在特定的管路系统中,于一定的条件下进行操作时,上式的均为定值,即若贮槽与受液槽的截面都很大,该处流速与管路的相比可以忽略不计,则。
式2-28可简化为H e =K+H f (2-29)若输送管路的直径均一,则管路系统的压头损失可表示为(2-30) 式中 Q e —管路系统的输送量,m 3/h ;A —管路截面积,m 2。
对特定的管路,上式等号右边各量中除了和Q e 外均为定值,且也是Q e 的函数,则 可得(2-31)f Hg u g p Z +22∆+∆+∆ρg pZ ρ∆∆与K g p Z =+ρ∆∆022≈∆g u =++=∑g u d l l H e c ef 2)2ζζλ+(g A Q d l l e e c e 2)3600/()2ζζλ+(++∑λλ)(e f Q f H =将式2-31代人式2-29中可得(2-32)式2-32或式2-29即为管路特性方程。
若流体在该管路中流动已进入阻力平方区,又可视为常量,于是可令则式2-30可简化为H e = B所以,式2-29变换为 H e =K+B (2-33)由式2-33可看出,在特定的管路中输送液体时,管路所需的压头H e 随液体流量Q e 的平方而变。
若将此关系标在相应的坐标图上,即得如图2—18所示的H e —Q e 曲线。
这条曲线称为管路特性曲线,表示在特定管路系统中,于固定操作条件下,流体流经该管路时所需的压头与流量的关系。
离心泵常用的调节方法离心泵是一种常见的工业设备,用于输送液体或液固混合物。
在离心泵的工作过程中,需要对其进行调节,以确保其正常运行和达到所需的流量和压力。
下面将介绍离心泵常用的调节方法。
1. 调节转速:离心泵的流量和压力与转速有关。
通过调节电机的转速,可以实现对离心泵流量和压力的调节。
一般来说,提高转速可以增加流量和压力,降低转速则可以降低流量和压力。
在实际操作中,需要根据具体情况选择合适的转速。
2. 调节叶轮直径:离心泵的叶轮直径也会影响其流量和压力。
增大叶轮直径可以增加流量和压力,减小叶轮直径则可以降低流量和压力。
通常情况下,调节叶轮直径需要更换叶轮或进行切割。
3. 调节叶片角度:离心泵的叶片角度也是影响流量和压力的重要因素。
通过调节叶片角度,可以实现对离心泵流量和压力的调节。
增大叶片角度可以增加流量和压力,减小叶片角度则可以降低流量和压力。
在进行叶片角度调节时,需要注意保持叶片的均匀性。
4. 调节进出口阀门开度:离心泵进出口阀门的开度也会影响其流量和压力。
通过调节进出口阀门的开度,可以实现对离心泵流量和压力的调节。
增大进口阀门的开度可以增加流量和压力,减小进口阀门的开度则可以降低流量和压力。
在进行阀门开度调节时,需要注意避免过大或过小造成的不正常工作。
5. 调节液位高度:离心泵的液位高度也会影响其流量和压力。
通过调节液位高度,可以实现对离心泵流量和压力的调节。
增大液位高度可以增加流量和压力,减小液位高度则可以降低流量和压力。
在进行液位高度调节时,需要注意保持稳定和均匀。
6. 调节进口压力:离心泵的进口压力也会影响其流量和压力。
通过调节进口压力,可以实现对离心泵流量和压力的调节。
增大进口压力可以增加流量和压力,减小进口压力则可以降低流量和压力。
在进行进口压力调节时,需要注意避免超过设备承受范围。
离心泵常用的调节方法包括调节转速、调节叶轮直径、调节叶片角度、调节进出口阀门开度、调节液位高度和调节进口压力。
第四讲 离心泵的工作点及流量调节【学习要求】1.理解管路特性曲线的概念。
2.掌握离心泵的工作点。
3.掌握离心泵流量调节的方法。
【预习内容】1.离心泵的主要性能参数有 、 、 和 。
2.离心泵的特性曲线一般都是在一定 和常压下以 为介质作实验测得的。
泵的特性曲线包括 曲线、 曲线和 曲线。
3.离心泵的铭牌上的性能参数都是在 时测得的参数。
4.离心泵启动时应 ,使启动电流减少,以保护电机。
5.影响离心泵特性的因素有 、 、 、 。
6.以1N 流体为衡算基准的伯努利方程为 ,其中压头损失H f 的计算公式为 。
【学习内容】一、管路特性曲线离心泵总是安装在特定的管路中运行的,泵在实际工作中的流量和压头等不仅取决于离心泵的特性,而且还与管路特性有关。
两者必须统一,并使泵在高效下运行,完成流体输送任务。
管路特性可用 和 来表达,表示管路中流量与压头的关系。
1.管路特性方程 He = K + Bq ve 22.管路特性曲线二、离心泵的工作点离心泵的 性能曲线与其所在管路系统的 特性曲线的交点称为离心泵的工作点。
三、离心泵的流量调节离心泵的流量调节的实质就是 。
(1) 改变Δz + Δp /ρg1.改变管路特性曲线(2)改变调节阀门的开启程度图2-2 管路特性曲线 图2-3 离心泵工作点(1)改变泵的转数2.改变泵的特性曲线(2)改变叶轮直径【典型例题】例 1 如图所示的管路系统,用离心泵从贮槽向密闭高位槽输送清水,两槽液面恒定。
两侧液面间垂直距离为15m,管径为φ102×4mm,管长(包括流动系统所有局部阻力的当量长度)为120m,密闭高位槽内表压强为9.81×104Pa,流动在阻力平方区,摩擦系数为0.015,流量为40m3/h。
试求:(1)管路的特性方程式;(2)泵的升扬高度与扬程(压头)。
例2 某离心泵的特性曲线可用以下方程表示:H = 25 – 2.0 q v2 (式中H的单位为m,q v单位为m3/min)。
离心泵工作点的三种调节方式离心泵是一种常见的水泵,广泛应用于工业、农业、城市供水、消防等领域。
离心泵的性能参数直接影响其运行效率和使用寿命,因此,离心泵的工作点调节非常重要。
下面我们将介绍离心泵的工作点调节方式。
一、调节叶轮直径离心泵的叶轮是影响泵的性能的关键部件。
叶轮直径大小的变化,直接影响泵的扬程和流量。
(1)调整叶轮直径,增加叶轮直径可以增加泵的扬程和阻力,减小叶轮直径可以增加泵的流量和容积。
(2)当泵工作点偏离设计工作点时,可适当调整叶轮直径,以使泵的性能重新回到设计要求。
(3)调整叶轮直径需要先计算出泵的设计要求,测量当前泵的工作点,然后通过叶轮校调来满足泵的性能要求。
二、调节叶轮角度离心泵的叶轮角度是指进出口倾角,也是泵的性能的重要参数之一。
适当调整叶轮角度可以使离心泵的性能更优越,提高泵的工作效率。
(1)调节叶轮角度可以改变泵的流量和扬程,进口倾角变大可以减小泵的扬程和流量,反之亦然。
为了使泵迅速适应变动的工况,需要采用多级泵或变频调速方式。
(2)在调整叶轮角度时,需要依据泵的性能曲线和实际运行情况,选择合适的叶轮角度,使泵的工作点满足工程需求。
三、调节出口门阀离心泵的出口门阀是控制泵的流量和扬程的最佳方式。
通过调整出口门阀的开度,可以实现对泵的流量和扬程的精准调节。
(1)调节出口门阀可以改变泵的扬程和流量,关小门阀可以减小泵的流量和扬程,反之,开大门阀可以增加泵的流量和扬程。
(2)在调整出口门阀时,需要依据实际工况,选择合适的开度,使泵的工作点满足工程需求。
总之,离心泵的工作点调节是实现泵的高效运行及长期稳定运行的重要保证,需要根据具体情况选择合适的调节方式,并定期进行检查和维护。
在进行离心泵的工作点调节时,需要考虑到多个因素,如流量、扬程、功率、效率等,才能确保泵的稳定运行。
下面将详细介绍离心泵的工作点调节的注意事项和应用场景。
一、注意事项1. 进行离心泵工作点调节前,需要先了解泵的性能曲线和各个性能参数的范围。
离心泵常用调节方式
离心泵在水利、化工等行业应用十分广泛,对其工况点的选择和能耗的分析也日益受到重视。
所谓工况点,是指水泵装置在某瞬时的实际出水量、扬程、轴功率、效率以及吸上真空高度等,它表示了水泵的工作能力。
通常,离心泵的流量、压头可能会与管路系统不一致,或由于生产任务、工艺要求发生变化,需要对水泵的流量进行调节,其实质是改变离心泵的工况点。
除了工程设计阶段离心泵选型的正确与否以外,离心泵实际使用中工况点的选择也将直接影响到用户的能耗和成本费用。
因此,如何合理地改变离心泵的工况点就显得尤为重要。
离心泵的工作原理是把电动机高速旋转的机械能转化为被提升液体的动能和势能,是一个能量传递和转化的过程。
根据这一特点可知,离心泵的工况点是建立在水泵和管道系统能量供求关系的平衡上的,只要两者之一的情况发生变化,其工况点就会转移。
工况点的改变由两方面引起:一.管道系统特性曲线改变,如阀门节流;二.水泵本身的特性曲线改变,如变频调速、切削叶轮、水泵串联或并联。
下面就这几种方式进行分析和比较:
一、阀门节流
改变离心泵流量最简单的方法就是调节水泵出口阀门的开度,而水泵转速保持不变(一般为额定转速),其实质是改变管路特性曲线的位置来改变泵的工况点。
水泵特性曲线Q-H与管路特性曲线Q-∑h的交点为阀门全开时水泵的极限工况点。
关小阀门时,管道局部阻力增加,水泵工况点向左移,相应流量减少。
阀门全关时,相当于阻力无限大,流量为零,此时管路特性曲线与纵坐标重合。
由此可见,以关小阀门来控制流量时,水泵本身的供水能力不变,扬程特性不变,管阻特性将随阀门开度的改变而改变。
这种方法操作简便、流量连续,可以在某一最大流量与零之间随意调节,且无需额外投资,适用场合很广。
但节流调节是以消耗离心泵的多余能量(图中阴影部分)来维持一定的供给量,离心泵的效率也将随之下降,经济上不太合理。
二、变频调速
工况点偏离高效区是水泵需要调速的基本条件。
当水泵的转速改变时,阀门开度保持不变(通常为最大开度),管路系统特性不变,而供水能力和扬程特性随之改变。
在所需流量小于额定流量的情况下,变频调速时的扬程比阀门节流小,所以变频调速所需的供水功率也比阀门节流小。
很显然,与阀门节流相比,变频调速的节能效果很突出,离心泵的工作效率更高。
另外,采用变频调速后,不仅有利于降低离心泵发生汽蚀的可能性,而且还可以通过对升速/降速时间的预置来延长开机/停机过程,使动态转矩大为减小,从而在很大程度上消除了极具破坏性的水锤效应,大大延长了水泵和管道系统的寿命。