第3章蛋白质分子设计
- 格式:ppt
- 大小:1.27 MB
- 文档页数:48
第4节蛋白质工程的原理和应用课后篇巩固提升基础巩固1.(2020·辽宁营口二中高二期末)下列有关基因工程与蛋白质工程的叙述,正确的是()A.蛋白质工程与基因工程的目的都是获得人类需要的蛋白质,所以二者没有区别B.基因工程是蛋白质工程的关键技术C.通过蛋白质工程改造后的蛋白质仍然是天然的蛋白质D.蛋白质工程是在蛋白质分子水平上直接改造蛋白质的答案B解析基因工程原则上只能生产自然界中已有的蛋白质,而蛋白质工程可以生产自然界中没有的新的蛋白质,两者存在区别,A项错误;蛋白质工程本质上是通过基因修饰或基因合成来完成对蛋白质分子的改造,是在基因工程的基础上发展出的第二代基因工程,B项正确;蛋白质工程改造后的蛋白质可能是自然界中没有的新的蛋白质,C项错误;蛋白质工程本质上是改造基因,不是直接改造蛋白质分子,D 项错误。
2.(2020·山东省实验中学高二期中)凝乳酶是奶酪生产中的关键酶。
通过蛋白质工程生产高效凝乳酶,不需要的步骤是()A.蛋白质的结构设计B.蛋白质的结构和功能分析C.凝乳酶基因的定向改造D.将定向改造的凝乳酶导入受体细胞答案D解析蛋白质的结构设计属于蛋白质工程的步骤,A项正确;蛋白质的结构和功能分析属于蛋白质工程的步骤,B项正确;蛋白质工程通过改造或合成基因来实现对蛋白质的改造,C项正确;需要将定向改造的凝乳酶基因导入受体细胞,而不是将定向改造的凝乳酶导入受体细胞,D项错误。
3.(2020·山东济南外国语学校高二期中)下图为蛋白质工程的流程图,下列说法正确的是()A.利用蛋白质工程制造出的蛋白质都是自然界本来就有的B.蛋白质工程是一项完全摆脱基因工程技术的全新的生物工程技术C.过程a、b分别是转录、翻译D.蛋白质工程不可能构建出一种新的基因答案C解析基因工程原则上只能生产自然界已经存在的蛋白质,蛋白质工程可以生产自然界中不存在的蛋白质,A项错误;蛋白质工程是在基因工程的基础上延伸出来的第二代基因工程,B项错误;据图可知,过程a、b分别是转录、翻译,C项正确;蛋白质工程中可根据预期蛋白质的结构构建出一种全新的基因,D项错误。
试述蛋白质分子设计的概念和它的基本内容1. 哎呀呀,你知道蛋白质分子设计吗?这就好像是我们给蛋白质这个“小宝贝”来个大变身!比如说,就像给一个普通的玩具熊精心打扮,让它变得超级特别!它的概念呢,就是人为地对蛋白质的结构和功能进行改造和设计呀,是不是很神奇?基本内容包括对蛋白质的氨基酸序列进行改造,就像是给玩具熊换一件更酷的衣服一样。
2. 嘿,蛋白质分子设计,这可不是一般的酷哦!它就像是个魔法棒,可以让蛋白质变得不一样!举个例子,就像我们打造一个独一无二的机器人,给它各种厉害的功能。
它的基本内容呢,有对蛋白质的活性中心进行修饰,这相当于给这个神奇的“机器”关键部位进行优化升级啊。
3. 哇塞,蛋白质分子设计呀,是超级有趣的事情呢!好比是我们给一只普通的小狗训练出各种高难度技能!它的概念呢,简单说就是有目的地去改变蛋白质哦。
基本内容还包括构建全新的蛋白质结构,这感觉就像凭空创造出一只全新的、超级厉害的宠物一样令人兴奋。
4. 来呀,了解一下蛋白质分子设计嘛!你想想,这不就是给蛋白质来个大改造嘛,像给一辆普通汽车改装成超级赛车!而它的基本内容里,优化蛋白质的稳定性,就如同让赛车在高速行驶中更稳定、更可靠,多棒啊!5. 哎呀呀,蛋白质分子设计呀,可有意思啦!可以把它想象成我们给一个普通的房子进行大改造,变得超级豪华!它的概念当然就是有计划地对蛋白质进行改变啦。
基本内容中的改变蛋白质的折叠方式,就像是重新设计房子的布局一样重要呢。
6. 嘿嘿,蛋白质分子设计,这简直太让人着迷啦!就如同我们把一个平凡的角色打造成超级英雄!它的概念就是主动地去塑造蛋白质,而其基本内容里的融合不同蛋白质的功能域,不就像给超级英雄赋予各种无敌的能力一样嘛!总之,蛋白质分子设计太神奇、太有意义啦,可以让我们创造出各种我们想要的蛋白质来帮助我们解决好多问题呢!。
蛋白质分子的结构教学设计引言蛋白质是生物体内基本的生物大分子之一。
在生物化学和生物学教学中,了解蛋白质分子的结构对于理解其功能和作用至关重要。
本文档描述了一种针对蛋白质分子结构的教学设计,旨在帮助学生深入了解蛋白质分子的组成和三维结构。
教学目标- 了解蛋白质的组成,包括氨基酸的基本结构和连接方式;- 掌握蛋白质分子的一级、二级和三级结构的概念;- 理解蛋白质分子的结构与功能之间的关系;- 能够使用一些基本的工具和方法解析蛋白质分子的结构。
教学内容和方法1. 蛋白质的组成和氨基酸(约占教学时间的20%)蛋白质的组成和氨基酸(约占教学时间的20%)- 介绍蛋白质的组成,包括氨基酸是构成蛋白质的基本单位;- 解释氨基酸的结构和分类,重点介绍20种常见氨基酸的特点;- 通过示意图和示例展示氨基酸的连接方式和多肽链的形成过程。
2. 蛋白质的一级和二级结构(约占教学时间的30%)蛋白质的一级和二级结构(约占教学时间的30%)- 讲解蛋白质的一级结构,即氨基酸序列的排列方式;- 介绍蛋白质的二级结构,包括α-螺旋、β-折叠和无规卷曲;- 使用实例和模型展示不同类型的二级结构。
3. 蛋白质的三级结构(约占教学时间的40%)蛋白质的三级结构(约占教学时间的40%)- 说明蛋白质的三级结构,即通过氨基酸间的各种相互作用而形成的立体结构;- 突出蛋白质的折叠和空间构象,以及与功能的相关性;- 引入X射线晶体学和核磁共振等方法解析蛋白质的三维结构。
4. 蛋白质结构与功能(约占教学时间的10%)蛋白质结构与功能(约占教学时间的10%)- 强调蛋白质结构与功能之间的紧密关系;- 举例说明蛋白质的不同结构对其功能的影响;- 解释蛋白质结构变化与疾病发生的关联。
教学评估- 组织学生参与讨论和解析蛋白质分子的结构相关问题;- 设计小组活动,让学生通过实践运用所学知识解决蛋白质结构相关问题;- 进行小测验,测试学生对蛋白质结构知识的掌握情况。
蛋白质分子设计原理
嘿,朋友们!今天咱来聊聊超有意思的蛋白质分子设计原理!
你想想看啊,蛋白质就像是一个神奇的小机器,它有着各种各样复杂而精妙的结构。
这就好比搭积木,不同的积木块组合起来能搭出不一样的造型,蛋白质也是如此。
比如说血红蛋白吧,它就像是专门负责运输氧气的快递员,把氧气准确无误地送到身体各个地方。
那蛋白质分子设计原理呢,就是我们去掌握如何设计出这些厉害的“小机器”。
怎么设计呢?这可不是随随便便就能搞定的。
就好像你要做一道超级美味的菜,得精心挑选食材,精确掌握火候一样。
我们得了解蛋白质的各种特性,它的结构呀、功能啊等等。
然后通过各种技术手段,去改变、去优化。
你难道不觉得这很神奇吗?我们竟然可以像上帝一样,去塑造这些小小的分子!比如说设计一种新的蛋白质来治疗疾病,哇,那可真是太酷了!
咱再举个例子,胰岛素。
要是没有它,糖尿病患者可就遭罪了。
那如果我们能更好地设计出胰岛素,让它发挥更好的作用,这得给多少人带来福音啊!
蛋白质分子设计原理真的超级重要,它就像是打开新世界大门的钥匙。
我们可以利用它去创造奇迹,去解决那些看似不可能解决的问题。
所以啊,大家一定要好好了解这神奇的蛋白质分子设计原理,说不定哪天你也能成为那个创造奇迹的人呢!我的观点就是,蛋白质分子设计原理是充满无限可能和魅力的,值得我们深入探索和研究。
蛋白质分子设计[引言]蛋白质是一类非常有用的物质,在生物体的进化过程中起着非常重要的作用。
与其它化学试剂比较:(1)分子量非常大;(2)在机体内稳定;(3)专一性的优劣。
分子生物学的发展弥补了上述缺点,如定位突变、PCR使蛋白质可能工程化生产。
蛋白质设计(蛋白质的结构、功能预测)涉及多学科的交叉领域,包括材料学、化学、生物学、物理及计算机学科。
其应用范围涵盖了药物、食品工业中的酶、污水处理、疫苗、化学传感器等,设计的蛋白质也不仅仅限于20种天然氨基酸,也包括非天然氨基酸、有机/无机模块。
蛋白质设计的目的:(1)为蛋白质工程提供指导性信息;(2)探索蛋白质的折叠机理。
蛋白质设计分类:(1)基于天然蛋白质结构的分子设计;(2)蛋白质从头设计。
存在问题:与天然蛋白质比较:(1)缺乏结构独特性;(2)缺乏明显的功能优越性。
第一节基于天然蛋白质结构的分子设计一、概述蛋白质结构与功能的认识对蛋白质设计至关重要,需要多学科的配合。
蛋白质设计循环如下:1.对要求的活性进行筛选。
2.对蛋白质进行表征,如测定序列、三维结构、稳定性及催化活性。
3.专一型突变产物。
4.计算机模拟。
5.蛋白质的三维结构。
在PDB中搜索,无纪录即进行X射线、NMR方法或预测并构建三维结构模型。
6.蛋白质结构与功能的关系。
蛋白质突变体设计的三个主要步骤:1.突变位点和替换氨基酸的确定。
(1)确定对蛋白质折叠敏感的区域。
(2)功能上的重要位置。
(3)其它位置对蛋白质突变体的影响。
(4)替换或加减残基对结构特征的影响。
2.能量优化和蛋白质动力学方法预测修饰后蛋白质的结构。
3.预测结构与原始蛋白质结构比较,预测新蛋白质性质。
上述设计工作完成后,再进行蛋白质合成或突变实验,分离、纯化并对新蛋白质定性。
二、蛋白质设计原理1.内核假设。
假设蛋白质独特的折叠形式主要由蛋白质内核中的残基相互作用决定。
所谓内核指蛋白质在进化过程中的保守区域,由氢键连接的二级结构单元组成。
第三章 蛋白质1. 在生物缓冲体系中,何种氨基酸具有缓冲作用?答:组氨酸具有缓冲作用。
因为组氨酸含有咪唑基团。
而咪唑基解离常数为6.0,即解离的质子浓度与水的相近,因此组氨酸既可作为质子供体,又可作为质子受体。
在pH=7附近有明显的缓冲作用。
2. 什么是氨基酸的p K和 pI ?它们的关系如何?答:p K指解离常数的负对数,表示一半的氨基酸解离时的pH值;pI指氨基酸所带的正负电荷相等时的溶液的pH值,即等电点。
中性氨基酸:pI= (p K1 + p K2) / 2酸性氨基酸:pI= (p K1 + p K R) / 2碱性氨基酸: pI= (p K2+ p K R) / 23. 计算 0.1 mol/L 的谷氨酸溶液在等电点时主要的离子浓度。
答:因此,0.1 mol/L 的谷氨酸溶液在等电点时主要离子(即两性离子)的浓度为0.083mol/L。
4. 大多数的氨基酸,其α-羧基的p K a都在 2.0 左右,其α-氨基的p K a都在 9.0 左右。
然而,肽中的α-羧基p K a值为 3.8,α-氨基p K a值在7.8。
请解释这种差异。
答:α-氨基酸分子中带正电荷的α-氨基阻止了α-羧基负离子的质子化,即能稳定羧基负离子,因而提高了羧基的酸性。
同理,羧基负离子对质子化的氨基(NH3+)同样有稳定作用,从而降低了其酸性,提高了其碱性。
在肽分子中,由于两个端基(COO-和NH3+)相距较远,这种电荷间的相互作用要弱得多,因此其p K a值与α-氨基酸中氨基和羧基的p K a值存在明显差异。
5、写出五肽 Ser-Lys-Ala-Leu-His 的化学结构,计算该肽的 pI,并指出该肽在pH = 6.0 时带何种电荷。
答:6、人的促肾上腺皮质激素是一种多肽激素。
它的氨基酸序列为Ser-Tyr-Ser- Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-Asp-Ala-Gly-Glu-Asp-Gln-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe;(1)在pH=7条件下,此多肽带有何种电荷?(2)用CNBr处理此多肽,可以得到多少肽段?答:(1)经分析,当pH=7时,多肽中的Ser的游离氨基,Phe的游离羧基以及4个Glu、3个Arg、4个Lys、2个Asp的侧链基团带有电荷。
第4节 蛋白质工程的原理和应用 1.蛋白质工程 (1)基础:蛋白质分子的结构规律及其与生物功能的关系。
(2)手段:通过改造或合成基因,来改造现有蛋白质,或制造一种新的蛋白质。
(3)目的:获得满足人类生产和生活需求的蛋白质。
(4)困难:蛋白质发挥功能必须依赖正确的高级结构,而蛋白质的高级结构十分复杂。
2.蛋白质工程崛起的缘由(1)崛起缘由①基因工程的实质:将一种生物的基因转移到另一种生物体内,后者可以产生它本不能产生的蛋白质,进而表现出新的性状。
②基因工程的不足:基因工程在原则上只能生产自然界中已存在的蛋白质。
③天然蛋白质的不足:天然蛋白质的结构和功能符合特定物种生存的需要,却不一定完全符合人类生产和生活的需要。
(2)实例:提高玉米赖氨酸含量天冬氨酸激酶(第352位的苏氨酸)――→改造天冬氨酸激酶(异亮氨酸)二氢吡啶二羧酸合成酶(第104位的天冬酰胺)――→改造二氢吡啶二羧酸合成酶(异亮氨酸) 改造后玉米叶片和种子中游离赖氨酸含量分别提高5倍和2倍。
3.蛋白质工程的基本原理蛋白质工程的基本思路:预期的蛋白质功能→设计预期的蛋白质结构→推测应有的氨基酸序列→找到并改变相对应的脱氧核苷酸序列(基因)或合成新的基因→获得所需要的蛋白质。
4.蛋白质工程的应用(1)医药工业方面①科学家通过对胰岛素基因的改造,研发出速效胰岛素类似物产品。
②干扰素(半胱氨酸)――改造干扰素(丝氨酸) 体外很难保存 体外-70 ℃下可以保存半年③人-鼠嵌合抗体:降低免疫反应强度。
(2)其他工业方面利用蛋白质工程获得枯草杆菌蛋白酶的突变体,筛选出符合工业化生产需求的突变体,提高该酶的使用价值。
(3)农业方面①科学家尝试改造某些参与调控光合作用的酶,以提高植物光合作用的效率,增加粮食的产量。
②科学家利用蛋白质工程的思路设计优良微生物农药,通过改造微生物蛋白质的结构,增强微生物防治病虫害的效果。
【强化记忆】1. 蛋白质工程需直接改造基因,而不直接改造蛋白质的原因有:(1)任何一种天然蛋白质都是由基因编码的,改造了基因即对蛋白质进行了改造,而且可以遗传下去。
蛋白质工程第一章——绪论一、蛋白质工程的定义?狭义定义:蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质广义定义:蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质(简单来说:蛋白质工程就是一门改造设计蛋白质的学科)二、蛋白质工程的基本研究内容?研究内容总体可分为四大部分:(1)蛋白质的基础知识——结构、理化性质、生物功能、功能与结构的关系(2)蛋白质的物质准备——表达、纯化(3)蛋白质的研究方法——结构解析、分析鉴定、蛋白质组学研究(4)蛋白质的改造应用——设计改变、功能应用、蛋白质生物信息学或者可分为三大部分:(1)蛋白质结构分析——基础(关系学)(2)结构、功能的设计和预测——基础的应用与验证(实验科学)(3)创造和/或改造蛋白质——新蛋白质——终目标(工程学)三、蛋白质工程的应用(1)蛋白质工程应用蛋白质多肽药物、新型疫苗、工业用酶……(2)蛋白质工程意义1)在医药、工业、农业、环保等方面应用前景广泛2)对揭示生命现象的本质和生命活动的规律具有重要意义3)是蛋白质结构形成和功能表达的关系研究中不可替代的手段(3)蛋白质工程的支持技术定点突变等遗传操作技术;蛋白质结构解析技术;生物信息学分析技术;蛋白质的设计、表达、生产技术第二章——蛋白质结构与功能一、蛋白质的生物学功能调节功能、防御/攻击、支架作用、信息传递、运动功能、转运功能、储存功能、催化功能、结构成分二、蛋白质基本化学组件(1)氨基酸(amino)1)氨基酸种类:二十种天然氨基酸、稀有氨基酸、非天然蛋白质氨基酸2)氨基酸的化学组成与结构:①均含有C 、H 、O 、N 、S,以一定比例存在。
有些含有微量的金属元素(如铁、锌、钼、镍等)②易被酸、碱和蛋白酶催化水解为胨、肽。
共同的化学结构(除脯氨酸)3)氨基酸的性质极性氨基酸:Ser、Thr、Cys、Asn、Gln、His、Tyr——二硫键疏水氨基酸:Ala、Val、Leu、Ile、Phe、Pro、Met、Trp——疏水内核荷电氨基酸:Arg、Lys、His(+);Asp、Glu(-)——PI,蛋白分离谱特性、紫外线吸收特性——检测(3)肽单位、多肽链1)肽键定义:由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。
第三章第4节蛋白质工程的原理和应用课前自主探究一.蛋白质工程的概念理解①基础:蛋白质分子的及其与的关系。
②手段:改造或合成。
③结果:对现有蛋白质进行或制造出。
二、蛋白质工程崛起的缘由1.基因工程的实质和不足:(1)实质:将一种生物的基因转移到,后者可以产生它本不能产生的,进而表现出。
(2)基因工程存在的不足:原则上只能生产自然界的蛋白质。
2.蛋白质工程的崛起:(1)理论和技术条件:、晶体学以及计算机技术的迅猛发展。
(2)天然蛋白质存在不足:天然蛋白质的符合特定物种生存的需要,却不一定完全符合的需要。
(3)实例:玉米中赖氨酸的含量比较低,将赖氨酸合成过程中两种酶的替换,就可以使玉米叶片和种子中游离赖氨酸的含量分别提高5倍和2倍。
三、蛋白质工程的基本原理1.目标:根据人们对功能的特定需求,对蛋白质的结构进行设计改造。
2.方法:或。
3.流程:从预期的蛋白质功能出发→设计预期的→推测应有的序列→找到并改变相对应的序列(基因)或合成新的→获得所需要的蛋白质。
四、蛋白质工程的应用1.在医药工业方面的应用(1)研发速效胰岛素类似物:科学家通过改造使B28位脯氨酸替换为天冬氨酸或者将它与B29位的赖氨酸交换位置,从而有效抑制了,研发出速效胰岛素类似物。
(2)提高干扰素的保存期:将干扰素分子上的一个变成,提高了干扰素的保存时间。
(3)改造抗体:将小鼠单克隆抗体上“嫁接”到人的抗体上,降低了诱发人体免疫反应的强度。
2.在其他工业和农业方面的应用(1)改进酶的性能或开发新的工业用酶:利用蛋白质工程获得蛋白酶的多种。
(2)改造某些重要的酶:利用蛋白质工程改造参与的酶,以提高植物光合作用的效率。
易错易混辨析(1)蛋白质工程的目的是改造或合成人类需要的蛋白质。
()(2)蛋白质工程以蛋白质分子的结构规律及其与生物功能的关系为基础。
()(3)基因工程在分子水平对基因进行操作,蛋白质工程在分子水平对蛋白质进行操作。
()(4)蛋白质工程可以改造酶,提高酶的热稳定性。