自动检测第五章复习题word版本
- 格式:doc
- 大小:234.00 KB
- 文档页数:9
八年级数学第五章相交线与平行线单元测试卷同步检测(Word 版 含答案)一、选择题1.把一把直尺和一块三角板ABC 含30度,60度,按如图所示摆放,直尺一边与三角板的两直角边分别交于点D 和E ,另一边与三角板的两直角边分别交于点F 和A ,∠CED=50°,则∠CFA 的大小为( )A .40︒B .50︒C .60︒D .70︒2.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个3.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒4.如图,面积为12cm 2的△ABC 沿BC 方向平移到△DEF 的位置,平移的距离是边BC 长的2倍,则图中四边形ACED 的面积为( )A .24cm 2B .36cm 2C .48cm 2D .无法确定 5.如图,在△ABC 中,AB=AC ,CD∥AB,点E 在BC 的延长线上.若∠A=30°,则∠DCE 的大小为( )A.30° B.52.5° C.75° D.85°6.下列图中的“笑脸”,由如图平移得到的是()A .B .C .D .7.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为()A.1个B.2个C.3个D.4个8.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C,求证:AB∥CD证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB9.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相垂直10.能说明命题“若a>b,则3a>2b“为假命题的反例为()A.a=3,b=2 B.a=﹣2,b=﹣3 C.a=2,b=3 D.a=﹣3,b=﹣2 11.如图,下列条件中,不能判断AD∥BC的是()A.∠FBC=∠DAB B.∠ADC+∠BCD=180°C.∠BAC=∠ACE D.∠DAC=∠BCA12.下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离 B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短二、填空题13.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.14.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .15.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.16.如图,已知,∠ABG 为锐角,AH ∥BG ,点C 从点B (C 不与B 重合)出发,沿射线BG 的方向移动,CD ∥AB 交直线AH 于点D ,CE ⊥CD 交AB 于点E ,CF ⊥AD ,垂足为F (F 不与A 重合),若∠ECF =n°,则∠BAF 的度数为_____度.(用n 来表示)17.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________18.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.19.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.20.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题21.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.22.问题情境(1)如图1,已知AB ∥CD ,∠PBA =125°,∠PCD =155°,求∠BPC 的度数.佩佩同学的思路:过点P 作PG ∥AB ,进而PG ∥CD ,由平行线的性质来求∠BPC ,求得∠BPC =问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB =90°,DF ∥CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记∠PED =∠α,∠PAC =∠β.①如图2,当点P 在C ,D 两点之间运动时,请直接写出∠APE 与∠α,∠β之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,∠APE 与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若∠PED ,∠PAC 的角平分线EN ,AN 相交于点N ,请直接写出∠ANE 与∠α,∠β之间的数量关系.23.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.24.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.25.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 26.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由27.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.28.(问题提出)(1)如图①,已知 AB ∥CD ,求证 :∠1+∠MEN+∠2=360°(推广应用)(2)如图②,已知 AB ∥ CD ,求∠1+∠2+∠3+∠4+∠5 +∠6的度数为___________. 如图③,已知 AB ∥CD ,求∠1+∠2+∠3+∠4+∠5 +∠6+…+∠n 的度数为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据∠CED=50°,DE ∥AF ,即可得到∠CAF=50°,即可得出∠CFA 的大小.【详解】解:∵DE ∥AF ,∠CED=50°,∴∠CAF=∠CED=50°,∴∠CFA=90°-50°=40°,故选:A .【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.2.B解析:B【详解】解:34∠∠=//AB CD ∴,①正确;12∠=∠//AD BC ∴,②不正确;5B ∠=∠//AB CD ∴,③正确;//AD BE5D ∴∠=∠B D ∠=∠5B ∴∠=∠//AB CD ∴,④正确;综上所述,①、③、④正确,故选B.3.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.4.B解析:B【解析】试题分析:由题意可知根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm2.考点:平移的性质.5.C解析:C【解析】试题分析:根据等腰三角形的性质:等边对等角,可得∠B=∠ACB,然后根据三角形的内角和可求得∠B=75°,然后根据平行线的性质可得∠B=∠DCE=75°.故选:C.点睛:此题主要考查了等腰三角形的性质,解题关键是利用等腰三角形的性质求得两底角的值,然后根据平行线的性质可求解问题.6.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都是由旋转得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.8.C解析:C【分析】延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC 是解题的关键.9.B解析:B【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.【详解】解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选B.【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.10.B解析:B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a=﹣2,b=﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a>b时,3a=2b,∴命题“若a>b,则3a>2b”为假命题,故选:B.【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】解:A.∵∠FBC=∠DAB,∴AD∥BC,故A正确,本选项不符合题意;B.∵∠ADC+∠BCD=180°,∴AD∥BC,故B正确,本选项不符合题意;C.∵∠BAC=∠ACE,∴AB∥CD,故C不正确,本选项符合题意;D.∵∠DAC=∠BCA,∴AD∥BC,故D正确,本选项不符合题意;故选:C.【点睛】本题考查平行线的判定,解题的关键是准确识图,运用判定得出正确的平行关系.12.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.二、填空题13.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.14.9【分析】根据平移的特点,可直接得出AC 、DE 、AD 的长,利用EC=BC -BE 可得出EC 的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm ,AC=2cm ,将△ABC 沿BC 方向平解析:9【分析】根据平移的特点,可直接得出AC 、DE 、AD 的长,利用EC=BC -BE 可得出EC 的长,进而得出阴影部分周长.【详解】∵AB =3cm ,BC =4cm ,AC =2cm ,将△ABC 沿BC 方向平移a cm∴DE=AB=3cm ,BE=a cm∴EC=BC -BE=(4-a )cm∴阴影部分周长=2+3+(4-a )+a =9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC -BE .15.【分析】先过E 作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE 和∠DCE 的平分线交点为E1,解析:2n【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC;同理可得∠BE2C=∠ABE2+∠DCE212=∠ABE112+∠DCE112=∠CE1B14=∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C18=∠BEC;…据此得到规律∠E n12n=∠BEC,最后求得∠BEC的度数.【详解】如图1,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图2.∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE212=∠ABE112+∠DCE112=∠CE1B14=∠BEC;∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE312=∠ABE212+∠DCE212=∠CE2B18=∠BEC;…以此类推,∠E n12n=∠BEC,∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.16.n或180﹣n【分析】分两种情况讨论:当点在线段上;点在延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵解析:n或180﹣n【分析】分两种情况讨论:当点M在线段BC上;点C在BM延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=180°﹣∠B=180°﹣n°,过A作AM⊥BC于M,如图2,当点C在线段BM上时,点F在DA延长线上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=∠B=n°,综上所述,∠BAF的度数为n°或180°﹣n°,故答案为:n或180﹣n.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.17.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3(x°+y°),∴∠AFC=34∠AEC , 即:4∠AFC=3∠AEC ,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.18.30°【分析】先由AB//CD 得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键. 19.30°先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=∠EOC=解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.20.15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC∥DE,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a∥b,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.三、解答题21.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.22.(1)80°;(2)①∠APE =∠α+∠β;②∠APE =∠β﹣∠α,理由见解析;(3)∠ANE =12(∠α+∠β) 【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ ﹣∠EPQ =∠β﹣∠α;(3)过P和N分别作FD的平行线,依据平行线的性质以及角平分线的定义,即可得到∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).【详解】解:(1)如图1,过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°﹣125°﹣155°=80°,故答案为:80°;(2)①如图2,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;理由如下:作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ+∠EPQ=∠β+∠α;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β﹣∠α;理由如下:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)如图4,∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).理由如下:作NQ ∥DF ,∵DF ∥CG ,∴NQ ∥CG ,∴∠DEN =∠QNE ,∠CAN =∠QNA ,∵EN 平分∠DEP ,AN 平分∠CAP ,∴∠DEN =12∠α,∠CAN =12∠β, ∴∠QNE =12∠α,∠QNA =12∠β, ∴∠ANE =∠QNE +∠QNA =12∠α+12∠β=12(∠α+∠β); 【点睛】 本题主要考查了平行线的判定和性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.23.见解析【解析】分析:(1)求出∠ADE +∠FEB =180°,根据平行线的判定推出即可;(2)根据角平分线定义得出∠BAD =∠CAD ,推出HD ∥AC ,根据平行线的性质得出∠H =∠CGH ,∠CAD =∠CGH ,推出∠BAD =∠F 即可.详解:(1)AD ∥EF .理由如下:∵∠BDA +∠CEG =180°,∠ADB +∠ADE =180°,∠FEB +∠CEF =180°∴∠ADE +∠FEB =180°,∴AD ∥EF ;(2)∠F =∠H ,理由是:∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵∠EDH =∠C ,∴HD ∥AC ,∴∠H =∠CGH .∵AD ∥EF ,∴∠CAD =∠CGH ,∴∠BAD =∠F ,∴∠H =∠F .点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较好的题目,难度适中.24.(1)证明见解析;(2)45IGJ ∠=︒.【分析】(1)根据平行线的性质可得180DEF BFE ∠+∠=︒,再利用角平分线的定义即可得证; (2)过点G 作//GK AB ,则////AB GK CD ,根据平行线的性质可得DEG EGK ∠=∠,KGF GFB ∠=∠,再结合(1)的结论易得90EGK KGF ∠+∠=︒,利用角平分线的定义及垂线的定义即可求解.【详解】(1)证明:∵//AB CD ,∴180DEF BFE ∠+∠=︒.∵EG 平分DEF ∠,FG 平分BFE ∠,∴22DEF GEF DEG ∠=∠=∠,22BFE EFG GFB ∠=∠=∠,∴22180GEF EFG ∠+∠=︒,∴90EFG GEF ∠+∠=︒.(2)解:过点G 作//GK AB .∵//AB CD ,∴////AB GK CD ,∴DEG EGK ∠=∠,KGF GFB ∠=∠.由(1)得90DEG GFB ∠+∠=︒,∴90EGK KGF ∠+∠=︒.∵GH AB ⊥,∴GH KG ⊥,即90KGH KGF HGF ∠=∠+∠=︒,∴EGK HGF ∠=∠.∵GJ 平分EGH ∠,∴EGJ HGJ ∠=∠.又KGJ EGJ EGK ∠=∠-∠,FGJ HGJ HGF ∠=∠-∠,∴KGJ FGJ ∠=∠,∴2KGF FGJ ∠=∠.∵GI 平分HGF ∠,∴2HGF FGI ∠=∠,∴2290FGJ FGI ∠+∠=︒,即45FGJ FGI ∠+∠=︒,∴45IGJ FGJ FGI ∠=∠+∠=︒.【点睛】本题考查平行线的性质、角平分线的定义等内容,掌握平行线的性质是解题的关键.25.(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠;(3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G ∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//AD l ∠则5D ∠=.6y ∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.26.(1)∠APB=∠PAC +∠PBD ,不会变化;(2)∠PBD=∠PAC+∠APB 或∠PAC=∠PBD+∠APB,理由见解析.【分析】(1)当P 点在C 、D 之间运动时,首先过点P 作PE ∥l 1,由l 1∥l 2,可得PE ∥l 2∥l 1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD ,即∠APB 、∠PAC 、∠PBD 之间的关系不发生变化;(2)当点P 在C 、D 两点的外侧运动时,由直线l 1∥l 2,根据两直线平行,同位角相等以及三角形外角的性质,即可求得∠PAC ,∠APB ,∠PBD 之间的关系.【详解】(1)如图①,当P 点在C 、D 之间运动时,∠APB=∠PAC+∠PBD .理由如下:过点P 作PE ∥l 1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.如图③,理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.【点睛】本题主要考查平行线的性质与三角形外角的性质.解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.27.(1)D(k+2,2);(2)k=2;(3)∠BPD=12∠BCD+12∠A,理由详见解析【分析】(1)由平移的性质可得出答案;(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=12∠ABC,∠PDC=12∠ADC,即可得出结论.【详解】解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA =∠EPB ,∵线段AB 平移至线段CD ,∴AB ∥CD ,∴PE ∥CD ,∠ADC =∠A ,∠ABC =∠BCD ,∴∠EPD =∠PDC ,∴∠BPD =∠PBA +∠PDC ,∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠PBA =12∠ABC ,∠PDC =12∠ADC , ∴∠BPD =12∠ABC +12∠ADC =12∠BCD +12∠A . 【点睛】本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.28.(1)见解析,(2)900,180(1).n ︒︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出即可;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,根据平行线的判定得出EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,根据平行线的性质得出即可;如图③,利用(1)(2)②发现规律,直接得到答案.【详解】证明:(1)证明:过点E 作EF ∥CD ,∵AB ∥CD , ∴EF ∥AB ,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN =360°;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,∵CD ∥AB , ∴EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,如图③,由∠1+∠2+∠MEN 3601802=︒=︒⨯,∠1+∠2+∠3+∠4+∠5+∠69001805=︒=︒⨯,可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 180(1)n =︒-,故答案为:900°,180(1)n ︒-;【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键.。
八年级上册数学第五章相交线与平行线单元试卷检测题(WORD 版含答案)一、选择题1.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45°2.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个3.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°4.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒5.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100°6.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个7.如图,BD 是△ABC 的角平分线,DE ∥BC ,DE 交AB 于E ,若AB =BC ,则下列结论中错误的是( )A .BD ⊥ACB .∠A =∠EDAC .2AD =BC D .BE =ED8.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )A .纵坐标不变,横坐标减2B .纵坐标不变,横坐标先除以2,再均减2C .纵坐标不变,横坐标除以2D .纵坐标不变,横坐标先减2,再均除以29.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定10.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个 11.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线12.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A.34°B.36°C.38°D.68°二、填空题13.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a <4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.14.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.15.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM 的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.16.已知:如图放置的长方形ABCD和等腰直角三角形EFG中,∠F=90°,FE=FG=4cm,AB=2cm,AD=4cm,且点F,G,D,C在同一直线上,点G和点D 重合.现将△EFG沿射线FC向右平移,当点F和点C重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm2,则△EFG 向右平移了____cm.17.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.18.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔19.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).20.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.三、解答题21.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.22.如图①,已知AB ∥CD ,一条直线分别交AB 、CD 于点E 、F ,∠EFB =∠B ,FH ⊥FB ,点Q 在BF 上,连接QH .(1)已知∠EFD =70°,求∠B 的度数;(2)求证: FH 平分∠GFD .(3)在(1)的条件下,若∠FQH =30°,将△FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请直接写出当α为多少度时,QH 与△EBF 的某一边平行?23.()1如图1,//,40,130AB CD AEP PFD ∠=︒∠=︒.求EPF ∠的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P 作//,PM AB140AEP ∴∠=∠=︒( )//,AB CD (已知)//,PM CD ∴( )2180PFD ∴∠+∠=.( )130,PFD ∠=︒218013050∴∠=︒-︒=.12405090∴∠+∠=︒+︒=.即90EPF ∠=.()2如图2,//,AB CD 点P 在,AB CD 外,问,,PEA PFC P ∠∠∠之间有何数量关系.请说明理由;()3如图3所示,在()2的条件下,已知,P a PEA ∠=∠的平分线和PFC ∠的平分线交于点,G 用含有a 的式子表示G ∠的度数是 ____.(直接写出答案,不需要写出过程)24.如图,已知:点A C 、、B 不在同一条直线,ADBE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.25.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数.26.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.27.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD . 拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .28.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过C 作CM ∥直线l 1,求出CM ∥直线l 1∥直线l 2,根据平行线的性质得出∠1=∠MCB =25°,∠2=∠ACM ,即可求出答案.【详解】过C 作CM ∥直线l 1,∵直线l 1∥l 2,∴CM ∥直线l 1∥直线l 2,∵∠ACB =60°,∠1=25°,∴∠1=∠MCB =25°,∴∠2=∠ACM =∠ACB -∠MCB =60°-25°=35°,故选:B .【点睛】本题考查了平行线的性质,能正确作出辅助线是解此题的关键.2.B解析:B【详解】解:34∠∠=//AB CD ∴,①正确;12∠=∠//AD BC ∴,②不正确;5B ∠=∠//AB CD ∴,③正确;//AD BE5D ∴∠=∠B D ∠=∠5B ∴∠=∠//AB CD ∴,④正确;综上所述,①、③、④正确,故选B .3.C解析:C【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.5.B解析:B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.6.A解析:A【解析】试题分析:根据题意可知:①的逆命题是两直线平行,内错角相等,是真命题,是逆定理;②的逆命题是有两个角相等的三角形是等腰三角形,是真命题,是逆定理;③的逆命题是相等的两个角是对顶角,是假命题,不是逆定理;④的逆命题是有两个锐角互余的三角形是直角三角形,是真命题,是逆定理.只有一个不是逆定理.故选:A7.C解析:C【解析】试题分析:BD是△ABC的角平分线, AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA,∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。
第五章相交线与平行线单元试卷检测题(WORD 版含答案)(1)一、选择题1.下列说法中,正确的有( )①等腰三角形的两腰相等; ②等腰三角形底边上的中线与底边上的高相等; ③等腰三角形的两底角相等; ④等腰三角形两底角的平分线相等.A .1个B .2个C .3个D .4个2.如图,已知直线a ∥b ,∠1=100°,则∠2等于( )A .80°B .60°C .100°D .70°3.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°4.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③5.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A .540°B .180°nC .180°(n-1)D .180°(n+1)6.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于( )A .70°B .45°C .110°D .135° 7.下列命题中,假命题的个数为( ) (1)“是任意实数,”是必然事件; (2)抛物线的对称轴是直线;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为; (4)某件事情发生的概率是1,则它一定发生;(5)某彩票的中奖率为10%,则买100张彩票一定有1张会中奖;(6)函数与轴必有两个交点.A .2B .3C .4D .58.下列说法不正确的是( ) A .过任意一点可作已知直线的一条平行线 B .在同一平面内两条不相交的直线是平行线 C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直 D .直线外一点与直线上各点连接的所有线段中,垂线段最短9.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A .(1)(2)B .(3)(4)C .(2)(3)D .(1)(4)10.已知,//AB CD ,且2CD AB ,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .611.如图,下列不能判定DF ∥AC 的条件是( )A.∠A=∠BDF B.∠2=∠4C.∠1=∠3 D.∠A+∠ADF=180°12.如图,在△ABC中,点D,E分别为边AB,AC上的点,画射线ED.下列说法错误的是()A.∠B与∠2是同旁内角B.∠A与∠1是同位角C.∠3与∠A是同旁内角D.∠3与∠4是内错角二、填空题13.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).14.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.15.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.16.两个角的两边分别平行,一个角是50°,那么另一个角是__________.17.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.18.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.19.如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为_____.20.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.三、解答题21.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.22.已知//AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=, 求证:90︒∠-∠=BEG DFG ;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K , FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明. (不可以直接用三角形内角和180°)23.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.25.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕B 点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB绕点A顺时针旋转一定角度交CD于H (如图4)证明:∠+∠+∠+∠=︒E C CHA A360∠+∠+∠+∠+∠+∠+∠的度(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠=数.A B C D E F G26.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.27.课题学习:平行线的“等角转化”功能.阅读理解:∠+∠+∠的度数.如图1,已知点A是BC外一点,连接AB,AC,求BAC B C(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)28.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D .点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.2.A解析:A【解析】试题分析:根据对顶角相等可得∠3=∠1=100°,再根据两直线平行,同旁内角互补可得∠2=180°﹣∠3=180°﹣100°=80°.故答案选A .考点:平行线的性质.3.C解析:C【分析】首先过点D 作DF ∥AE ,交AB 于点F ,由AE ∥BC ,可证得AE ∥DF ∥BC ,然后由两直线平行,同旁内角互补,证得∠A+∠B =180°,∠E+∠EDF =180°,∠CDF+∠C =180°,继而证得结论.【详解】过点D 作DF ∥AE ,交AB 于点F ,∵AE ∥BC ,∴AE ∥DF ∥BC ,∴∠A+∠B =180°,∠E+∠EDF =180°,∠CDF+∠C =180°,∴∠C+∠CDE+∠E =360°,故选C .【点睛】本题考查了平行线的性质,解题时掌握辅助线的作法,注意数形结合思想的应用.4.C解析:C【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④.故选C .【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.5.C解析:C【分析】根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即可求出答案.【详解】解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,∵1n //AB CB ,∴121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,3434180EB B B B F ∠+∠=︒,……∴122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,…… ∴123180(1)n n ∠+∠+∠++∠=︒⨯-;故选:C .【点睛】本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明. 6.C解析:C【分析】根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a ∥b ,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a ∥b ,∴∠3+∠6=180°,∵∠3=70°,∴∠4=∠6=110°.故答案为C .【点睛】本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.7.C解析:C试题解析:(1)“a是任意实数,|a|-5>0”是不确定事件,是假命题;(2)抛物线y=(2x+1)2的对称轴是直线x=-,是假命题;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为,是假命题;(4)某件事情发生的概率是1,则它一定发生,是真命题;(5)某彩票的中奖率为10%,则买100张彩票中奖的可能性很大,但不是一定中奖,是假命题;(6)函数y=-9(x+2014)2+与x轴必有两个交点,是真命题,则假命题的个数是4;故选C.考点:命题与定理.8.A解析:A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.9.A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.B解析:B利用平行线间的距离相等可知ABC 与ACD △的高相等,底边之比等于面积之比,设ACE △的面积为x ,建立方程即可求解.【详解】∵//AB CD∴ABC 与ACD △的高相等∵2CD AB =∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.11.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A .∠A =∠BDF ,由同位角相等,两直线平行,可判断DF ∥AC ;B .∠2=∠4,不能判断DF ∥AC ;C .∠1=∠3由内错角相等,两直线平行,可判断DF ∥AC ;D .∠A +∠ADF =180°,由同旁内角互补,两直线平行,可判断DF ∥AC ;故选:B .【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.12.B解析:B【分析】根据同位角、内错角以及同旁内角的概念解答即可.【详解】解:A .∠B 与∠2是BC 、DE 被BD 所截而成的同旁内角,故本选项正确;B .∠A 与∠1不是同位角,故本选项错误;C .∠3与∠A 是AE 、DE 被AD 所截而成的同旁内角,故本选项正确;D .∠3与∠4是内错角AD 、CE 被ED 所截而成的内错角,故本选项正确;【点睛】本题主要考查了同位角、内错角以及同旁内角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.二、填空题13..【分析】分别过点P 、I 作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=, ∵∠EPN =∠EIF ,∴3902x x ︒-+=x +2y ,∴339042b︒-a=,∴91358b a =︒-,∴81209b-︒a=,故答案为:81209b-︒a=.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质.14.70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.15.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 16.130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是解析:130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是130°或50°.故答案为:130°或50°.17.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC 内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.18.80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.19.48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.20.65利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.三、解答题21.(1)∠BPC=65°;(2)∠BPC=155°;(3)∠BPC=155°【分析】(1)如图1,过点P作PE∥MN,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA252︒∠=∠=∠=,据此进一步求解即可;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=100°,再由角平分线和平行线的性质得∠BPE=130°,1PCA CPE DCA252︒∠=∠=∠=,据此进一步求解即可;(3)如图3,过点P作PE∥MN,根据角平分线性质得出∠DBP=∠PBA=40°,由此得出∠BPE=∠DBP=40°,然后根据题意得出1PCA DCA652︒∠=∠=,由此再利用平行线性质得出∠CPE度数,据此进一步求解即可.【详解】(1)如图1,过点P作PE∥MN.∵PB平分∠DBA,∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA252︒∠=∠=∠=,∴∠BPC=40°+25°=65°;(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE ∥GH ,∴∠EPC=∠PCA=25°,∴∠BPC =130°+25°=155°;(3)如图3,过点P 作PE ∥MN .∵BP 平分∠DBA .∴∠DBP =∠PBA=40°,∵PE ∥MN ,∴∠BPE =∠DBP =40°,∵CP 平分∠DCA ,∠DCA =180°−∠DCG =130°, ∴1PCA DCA 652︒∠=∠=, ∵PE ∥MN ,MN ∥GH ,∴PE ∥GH , ∴∠CPE =180°−∠PCA =115°,∴∠BPC =40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键.22.(1)∠G=∠AEG+∠CFG ;(2)见解析;(3)FR ⊥HK ,理由见解析【分析】(1)根据平行线的判定和性质即可写出结论;(2)过点G 作//GP AB ,根据平行线的性质得角相等和互补,即可得证;(3)根据平行线的性质得角相等,即可求解.【详解】解:(1)如图:过点G 作//GH AB ,∵//AB CD ,∴//GH CD ,∴AEG EGH ∠=∠,CFG FGH ∠=∠,EGF AEG CFG ∴∠==∠+∠AEG ∴∠、CFG ∠与G ∠之间的数量关系为G AEG CFG ∠=∠+∠.故答案为:G AEG CFG ∠=∠+∠.(2)如图,过点G 作//GP AB ,180BEG EGP ∴∠+∠=︒,180EHG HGP ∠+∠=︒,90180EHG EGP ∴∠+︒+∠=︒,90EHG EGP ∴∠+∠=︒,//AB CD ,DFG EHG ∴∠=∠,180180()1809090BEG DFG EGP EHG EGP EHG ∴∠-∠=︒-∠-∠=︒-∠+∠=︒-︒=︒.(3)FR 与HK 的位置关系为垂直.理由如下: FT 平分DFG ∠交HK 于点T ,GFT KFT ∴∠=∠,90EGF ∴∠=︒,90GFT ERT ∴∠+∠=︒,90KFT ERT ∴∠+∠=︒,ERT TEB ∠=∠,90KFT TEB ∴∠+∠=︒,//AB CD ,FKT TEB ∴∠=∠,90KFT FKT ∴∠+∠=︒,90FTK ∴∠=︒,KT FR ∴⊥,即FR HK ⊥.∴FR 与HK 的位置关系是垂直.【点睛】本题考查了平行线的判定和性质,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.23.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠【分析】(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.【详解】(1)过点F 作//FN AB ,如图:∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°∴55,905535NFG EFN ∠=︒∠=︒-︒=︒∴180145BEF EFN ∠=︒-∠=︒(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒∴35AEF EHL ∠=∠=︒又∵90EHM M ∠=∠+︒,设M x ∠=︒∴90EHM x ∠=︒+︒∴903555MHL x x ∠=︒+︒-︒=︒+︒∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:设SNP x ∠=︒ ,则NPI x ∠=︒设IPG y ∠=︒ ,则PGT y ∠=︒又∵125FGD ∠=︒∴125PGN y ∠=︒-︒∴2125PGN SNP NPG ∠+∠-︒=∠【点睛】本题考查平行线的性质综合,转化相关的角度是解题关键.24.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.25.(1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.【分析】(1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;【详解】解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,EBQ,1EBP EBQ,3BPD EBP.2132②如图4中,连接EH.180C CEB CBE,A AEH AHE,180A AEH AHE CEH CHE C,360A AEC C AHC.360(3)如图5中,设AC交BG于H.AHB A B F,∠=∠,AHB CHG在五边形HCDEG中,540CHG C D E G,A B F C D E G540【点睛】本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.26.(1)a=3,b=1;(2)当t=15秒或82.5秒时,两灯的光束互相平行;(3)∠BAC 与∠BCD的数量关系不发生变化,其大小比值为∠BCD:∠BAC=2:3.【分析】(1)利用绝对值和完全平方式的非负性即可解决问题.(2)分三种情况,利用平行线的性质列出方程即可解决.(3)将∠BAC 和∠BCD 分别用t 的代数式表示,然后在进行运算即可.【详解】(1)∵|a ﹣3b|+(a+b ﹣4)2=0.又∵|a ﹣3b|≥0,(a+b ﹣4)2≥0.∴a =3,b =1;故答案为a=3,b=1.(2)设A 灯转动t 秒,两灯的光束互相平行,①当0<t <60时,3t =(30+t )×1,解得t =15;②当60<t <120时,3t ﹣3×60+(30+t )×1=180,解得t =82.5;③当120<t <150时,3t ﹣360=t+30,解得t =195>150(不合题意)综上所述,当t =15秒或82.5秒时,两灯的光束互相平行.故答案为:t=15秒或t=82.5秒.(3)设A 灯转动时间为t 秒,∵∠CAN =180°﹣3t ,∴∠BAC =45°﹣(180°﹣3t )=3t ﹣135°,又∵PQ ∥MN ,∴∠BCA =∠CBD+∠CAN =t+180°﹣3t =180°﹣2t ,∵∠ACD =90°,∴∠BCD =90°﹣∠BCA =90°﹣(180°﹣2t )=2t ﹣90°,∴∠BCD :∠BAC =2:3.故答案为:∠BAC 与∠BCD 的数量关系不发生变化,其大小比值为∠BCD:∠BAC =2:3.【点睛】本题考查了绝对值和完全平方式的非负性、平行线的性质、解方程等知识,读懂题目的意思,掌握好平行线的性质是解题的关键.27.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数;②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n°. 【详解】(1)过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=∠DAC .EAB BAC DAC ∠+∠+∠180=︒180B BAC C ∴∠+∠+∠=︒故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;(2)如图2,过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D+∠FCD=180°, ∵CF ∥AB ,∴∠B =∠BCF ,∵BCD ∠=∠FCD+∠BCF ,∴D BCD B ∠+∠-∠=180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒;(3)①如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°, ∴∠BED =∠BEF +∠DEF =30°+35°=65°; 故答案为:65;②如图4,过点E 作EF ∥AB ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n°,∠ADC =70°∴∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35° ∵AB ∥CD ,∴AB ∥CD ∥EF , ∴∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°, ∴∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n °. 故答案为:215°−12n .【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.28.(1)详见解析;(2)118034∠+︒=∠+∠,详见解析;(3)230∠=︒【分析】(1)如下图,延长AC ,DE 相交于点G ,利用∠G 作为过渡角可证;(2)如下图,作//CP AB ,可得//CP DE ,推导得出118034∠+︒=∠+∠; (3)如下图,过Q 作1//AD l ∠,利用平行可得出70x y +=︒,再利用////QR AB DE 得到22110x y z +-=︒,从而得出z 的值.【详解】(1)延长,AC DE 相交于点G .∵//AB DE ,//AC DF∴1G ∠=∠,2G ∠=∠∴12∠=∠.(2)作//CP AB ,则//CP DE∵//CP AB ,//CP DE .∴1ACP ∠=∠,4180ECP ∠+∠=︒∴11804ACP ECP ∠+︒=∠+∠+∠即118034∠+︒=∠+∠.(3)过Q 作1//AD l ∠则5D ∠=.6y ∠=∵56110180∠+∠+︒=︒∴110180x y ++︒=︒即70x y +=︒旁证:过Q 作//QR AB ,则//QR DE .设DAQ x ∠=,APQ y ∠=,2z ∠=.则2BAQ x ∠=,2FDQ y ∠=,1z ∠=.∵////QR AB DE∴2AQR BAQ x ∠=∠=,2EDQ DQR y z ∠=∠=-.∴22110x y z +-=︒又∵70x y +=︒∴22140x y +=︒∵(2)(22)30x y x y z z +-+-==︒∴230∠=︒【点睛】本题考查角度的推导,第(3)问的解题关键是通过方程思想和整体思想,计算得出∠2的大小.。
第五章相交线与平行线单元试卷检测(基础+提高,Word 版 含解析)一、选择题1.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .42.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个 3.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°4.如图,四边形ABCD 是正方形,直线a ,b ,c 分别通过A 、D 、C 三点,且a ∥b ∥c .若a 与b 之间的距离是3,b 与c 之间的距离是6,则正方形ABCD 的面积是( )A .36B .45C .54D .645.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A .540°B .180°nC .180°(n-1)D .180°(n+1)6.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒7.如图,直线//AB CD ,点E 在CD 上,点O 、点F 在AB 上,EOF ∠的角平分线OG 交CD 于点G ,过点F 作FH OE ⊥于点H ,已知148OGD ∠=︒,则OFH ∠的度数为( )A .26ºB .32ºC .36ºD .42º8.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80° 9.下列命题中,是真命题的是( ) A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等 C .等腰直角三角形都全等D .如果a b >,那么22a b > 10.下列命题中,假命题是( )A .对顶角相等B .同角的余角相等C .面积相等的两个三角形全等D .平行于同一条直线的两直线平行 11.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°12.如图,若∠1=70°,∠2=110°,∠3=70°,则有( ).A .a ∥bB .c ∥dC .a ⊥dD .任两条都无法判定是否平行 二、填空题13.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).14.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .15.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.16.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.17.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.18.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.19.如图,AB ∥CD ,∠β=130°,则∠α=_______°.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).22.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。
第五章相交线与平行线单元试卷同步检测(Word 版 含答案)一、选择题1.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④2.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45° 3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠44.如图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( )A .110°B .115°C .125°D .130° 5.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个6.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°7.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于( )A .70°B .45°C .110°D .135°8.如图,直线l 1∥l 2∥l 3,等腰Rt △ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ ACB=90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则AB:BD 的值为()A .425B .34C .528 D .32209.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠410.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A.56°B.36°C.44°D.46°11.如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDF B.∠2=∠4C.∠1=∠3 D.∠A+∠ADF=180°12.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.26二、填空题13.如图,已知AB∥CD,点E,F分别在直线AB,CD上点P在AB,CD之间且在EF的左侧.若将射线EA沿EP折叠,射线FC沿FP折叠,折叠后的两条射线互相垂直,则 EPF的度数为 _____.14.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n的式子表示)15.若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.16.如图,AC⊥AB,AC⊥CD,垂足分别是点A、C,如果∠CDB=130°,那么直线AB与BD 的夹角是________度.17.如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)______________.18.如图,将直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,DE交BC于点G,BG=4,EF=12,△BEG的面积为4,下列结论:①DE⊥BC;②△ABC平移的距离是4;③AD=CF;④四边形GCFE的面积为20,其中正确的结论有________(只填写序号).19.如图,直线AB、CD相交于点O,OE平分∠AOC,OF⊥OE于点O,若∠AOD=70°,则∠AOF=______度.20.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).三、解答题21.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.22.(1)问题发现如图①,直线AB ∥CD ,E 是AB 与AD 之间的一点,连接BE ,CE ,可以发现∠B +∠C =∠BEC .请把下面的证明过程补充完整:证明:过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC ( )∴∠C =∠CEF .( )∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C = (等量代换)即∠B +∠C =∠BEC .(2)拓展探究如果点E 运动到图②所示的位置,其他条件不变,求证:∠B +∠C =360°﹣∠BEC . (3)解决问题如图③,AB ∥DC ,∠C =120°,∠AEC =80°,则∠A = .(之间写出结论,不用写计算过程)23.如图,已知//,60AM BN A ︒∠=,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点.C D 、()1CBD ∠=()2若点P 运动到某处时,恰有ACB ABD =∠∠,此时AB 与BD 有何位置关系?请说明理由.()3在点P 运动的过程中,APB ∠与ADB ∠之间的关系是否发生变化?若不变,请写出它们的关系并说明理由;若变化,请写出变化规律.24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)25.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.26. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P 在B ,D 两点之间运动时(P 不与B ,D 重合),求α,β和∠APC 之间满足的数量关系.(2)当点P 在B ,D 两点外侧运动时(P 不与点O 重合),直接写出α,β和∠APC 之间满足的数量关系.27.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.28.如图1,在四边形ABCD 中,A D BC ,A=C ∠∠.(1)求证:B=D ∠∠;(2)如图2,点E 在线段AD 上,点G 在线段AD 的延长线上,连接BG ,AEB=2G ∠∠,求证:BG 是EBC ∠的平分线;(3)如图3,在(2)的条件下,点E 在线段AD 的延长线上,EDC ∠的平分线DH 交BG 于点H ,若ABE=66∠︒.,求B HD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB 不平行于CD ,∴∠4+∠5≠180°故错误,故选:C .【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.2.B解析:B【分析】过C作CM∥直线l1,求出CM∥直线l1∥直线l2,根据平行线的性质得出∠1=∠MCB=25°,∠2=∠ACM,即可求出答案.【详解】过C作CM∥直线l1,∵直线l1∥l2,∴CM∥直线l1∥直线l2,∵∠ACB=60°,∠1=25°,∴∠1=∠MCB=25°,∴∠2=∠ACM=∠ACB-∠MCB=60°-25°=35°,故选:B.【点睛】本题考查了平行线的性质,能正确作出辅助线是解此题的关键.3.B解析:B【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.根据此定义即可得出答案.【详解】∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠6是内错角,故选B.【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.4.C解析:C【分析】先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两直线平行,内错角相等,即可求得∠BFD的度数.【详解】解:如图,过点E 作EM ∥AB ,过点F 作FN ∥AB ,∵AB ∥CD ,∴EM ∥AB ∥CD ∥FN ,∴∠ABE+∠BEM =180°,∠CDE+∠DEM =180°,∴∠ABE+∠BED+∠CDE =360°,∵∠BED =110°,∴∠ABE+∠CDE =250°∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠ABF =12∠ABE ,∠CDF =12∠CDE , ∴∠ABF+∠CDF =12(∠ABE+∠CDE )=125°, ∵∠DFN =∠CDF ,∠BFN =∠ABF ,∴∠BFD =∠BFN+∠DFN =∠ABF+∠CDF =125°.故选:C .【点睛】此题考查了平行线的性质与角平分线的定义,解题的关键是注意数形结合思想的应用,注意辅助线的作法.5.D解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.6.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.7.C解析:C【分析】根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a∥b,∴∠3+∠6=180°,∵∠3=70°,∴∠4=∠6=110°.故答案为C.本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.8.A解析:A 【解析】解:如图,作3BF l ⊥, 3AE l ⊥,∵090ACB ∠=,∴090BCF ACE ∠+∠=,∵090BCF CFB ∠+∠=,∴ACE CBF ∠=∠,在ACE ∆和CBF ∆中,{BFC CEACBF ACE BC AC∠=∠∠=∠=∴ACE CBF ∆≅∆,∴3,4CE BF CF AE ====,∵1l 与2l 的距离为1, 2l 与3l 的距离为3,∴1,7AG BG EF CF CE ===+=, ∴2252AB BG AG +=∵23//l l , ∴14DG AG CE AE ==, ∴1344DG CE ==, ∴325744BD BG DG =-=-=, ∴222554AB BD ==, 故选A .【点睛】本题考查了全等三角形的性质和判定,平行线分线段成比例定理等,构造全等三角形是解决本题的关键.解析:C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故选C.10.D解析:D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.11.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.12.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=12(AB+EH)×BE=12(8+5)×4=26.故选D.二、填空题13.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF与∠AEM和∠CFM的关系,然后可得答案.【详解】解:如图1,过M作//MN AB,//AB CD,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.14.(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都解析:(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,根据同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,可得答案.试题解析:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有 2对,同旁内角有 2对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有 12对,内错角有 6对,同旁内角有 6对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有 n(n-1)对,同旁内角有n(n-1)对,点睛:本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.15.55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.16.50先根据平行线的判定可得,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵,,∴,∵,∴,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平解析:50【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵AC AB ⊥,AC CD ⊥,∴//AB CD ,∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.17.①③【分析】求出AB 长为定值,P 到AB 的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB 不断发生变化、∠APB 的大小不断发生变化.【详解】解:∵A、B 为定点,∴AB 长解析:①③【分析】求出AB 长为定值,P 到AB 的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB 不断发生变化、∠APB 的大小不断发生变化.解:∵A、B为定点,∴AB长为定值,∴①正确;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;当P点移动时,∠APB发生变化,∴④错误;故选A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.18.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG 的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE 的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.19.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.20.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.三、解答题21.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1BD a,(2)理由如下:如图2.过点B作//图22180∴∠+∠=︒,ABDa b,//∴,//b BD∴∠=∠DBC,1ABD ABC DBC∴∠=∠-∠=︒-∠,601∴∠+︒-∠=︒,2601180∴∠-∠=︒;21120∠=∠,(3)12图3CP a,理由如下:如图3,过点C作//AC平分BAM∠,∴∠=∠=︒,CAM BAC30BAM BAC∠=∠=︒,260a b,又//CP b∴,//BAM∠=∠=︒,160∴∠=∠=︒,30PCA CAM903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.22.(1)平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ;(2)证明见解析;(3)20°.【分析】(1)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(2)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(3)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可.【详解】(1)证明:如图①,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC (平行于同一直线的两直线平行),∴∠C =∠CEF .(两直线平行,内错角相等),∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C =∠BEF +∠CEF (等量代换)即∠B +∠C =∠BEC ,故答案为:平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ; (2)证明:如图②,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC (平行于同一直线的两直线平行),∴∠C +∠CEF =180°,∠B +∠BEF =180°,∴∠B +∠C +∠AEC =360°,∴∠B +∠C =360°﹣∠BEC ;(3)解:如图③,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC (平行于同一直线的两直线平行),∴∠C +∠CEF =180°,∠A =∠BEF ,∵∠C =120°,∠AEC =80°,∴∠CEF =180°﹣120°=60°,∴∠BEF =80°﹣60°=20°,∴∠A =∠AEF =20°.故答案为:20°.【点睛】本题考查了平行线的性质和判定的应用,能正确作出辅助线是解此题的关键,注意:①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.23.(1)60°;(2)AB BD ⊥,证明详见解析;(3)不变,2APB ADB ∠=∠,理由详见解析【分析】(1)由平行线的性质可得∠ABN =120°,即∠ABP +∠PBN =120°,再根据角平分线的定义知∠ABP =2∠CBP 、∠PBN =2∠DBP ,可得2∠CBP +2∠DBP =120°,即∠CBD =∠CBP +∠DBP =60°;(2)由AM ∥BN 得∠ACB =∠CBN ,当∠ACB =∠ABD 时有∠CBN =∠ABD ,得∠ABC +∠CBD =∠CBD +∠DBN ,即∠ABC =∠DBN ,再根据角平分线的定义可得1 4ABC CBP DBP DBN ABN ∠=∠=∠=∠=∠,最后根据∠ABN =120°可得390ABD ABC ︒∠=∠=,进而可得答案;(3)由AM ∥BN 得∠APB =∠PBN 、∠ADB =∠DBN ,根据BD 平分∠PBN 知∠PBN =2∠DBN ,从而可得∠APB =2∠ADB .【详解】解:(1)∵AM ∥BN ,∠A =60°,∴∠A +∠ABN =180°,∴∠ABN =120°;∵AM ∥BN ,∴∠ABN +∠A =180°,∴∠ABN =180°﹣60°=120°,∴∠ABP +∠PBN =120°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP +2∠DBP =120°,∴∠CBD =∠CBP +∠DBP =60°;()2AB BD ⊥理由: // AM BN,180ACB CBN A ABN ︒∴∠=∠∠+∠=ACB ABD ∠=∠CBN ABD ∴∠=∠CBN CBD ABD CBD ∴∠-∠=∠-∠,即DBN ABC ∠=∠BC BD 、分别平分ABP ∠和PBN ∠,,ABC CBP DBP DBN ∴∠=∠∠=∠1 4ABC CBP DBP DBN ABN ∴∠=∠=∠=∠=∠ 180A ABN ︒∠+∠=180 ********ABN A ︒︒︒︒∴∠=-∠=-=1304ABC ABN ︒∴∠=∠= 390ABD ABC ︒∴∠=∠=,即AB BD ⊥()3不变.且2APB ADB ∠=∠理由: // ,AM BN,APB PBN ADB DBN ∴∠=∠∠=∠ BD 平分,PBN ∠2PBN DBN ∴∠=∠2.APB ADB ∴∠=∠【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.24.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; ②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n°. 【详解】(1)过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=∠DAC .EAB BAC DAC ∠+∠+∠180=︒180B BAC C ∴∠+∠+∠=︒故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;(2)如图2,过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D+∠FCD=180°,∵CF ∥AB ,∴∠B =∠BCF ,∵BCD ∠=∠FCD+∠BCF ,∴D BCD B ∠+∠-∠=180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒;(3)①如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =60°,∠ADC =70°,∴∠ABE =12∠ABC =30°,∠CDE =12∠ADC =35°, ∴∠BED =∠BEF +∠DEF =30°+35°=65°;故答案为:65;②如图4,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°−∠ABE=180°−12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°−12n°+35°=215°−12n°.故答案为:215°−12 n.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.25.(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析【分析】(1)利用∠CAF=∠BAF-∠BAC求出∠CAF度数,求∠EMC度数转化到∠MCH度数;(2)过点C作CH∥GF,得到CH∥DE,∠CAF与∠EMC转化到∠ACH和∠MCH中,从而发现∠CAF、∠EMC与∠ACB的数量关系.【详解】(1)过点C作CH∥GF,则有CH∥DE,所以∠CAF=∠HCA,∠EMC=∠MCH,∵∠BAF=90°,∴∠CAF=90°-60°=30°.∠MCH=90°-∠HCA=60°,∴∠EMC=60°.故答案为30°,60°.(2)∠CAF+∠EMC=90°,理由如下:过点C作CH∥GF,则∠CAF=∠ACH.∵DE∥GF,CH∥GF,∴CH∥DE.∴∠EMC=∠HCM.∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.【点睛】考查了平行线的判定和性质,解题关键是熟记并灵活运用其性质和判定.26.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.27.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【分析】(1)根据题意过点A作平行线AD//MN,证出三条直线互相平行并由平行得出与ACM∠和ABP∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN∠=∠;(3)根据题意设MCA ACE ECD x∠=∠=∠=,由(1)列出关系式2702 CFB x ∠=︒-和11352CGB x∠=︒-,解出方程进而得出结论.【详解】证明:(1)过点A作平行线AD//MN,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.28.(1)见解析;(2)见解析;(3)57BHD ∠=︒.【解析】【分析】(1)由AD BC ∥可得180A B ∠+∠=︒,进而可证180C B ∠+∠=︒,从而AB CD ∥,180A D +=︒∠∠,根据等角的补角相等可证B D ∠=∠;(2)由AD BC ∥,可得CBG G ∠=∠,又2AEB G ∠=∠,可证EBG G ∠=∠,从而EBG CBG ∠=∠,可证BG 是EBC ∠的角平分线;(3)设GDH HDC α∠=∠=,EBG CBG β∠=∠=,由AB CD ∥,可得6622180βα︒++=︒,即57αβ+=︒.过点H 作HP AB ,可证CD HP ,所以DHP HDC α∠=∠=,180DHP BHD ABE GBE ∠+∠+∠∠=︒+,即66180BHD αβ+∠+︒+=︒,进而可求出57BHD ∠=︒. 【详解】解:(1)证明:∵AD BC ∥,∴180A B ∠+∠=︒,∵A C ∠=∠,∴180C B ∠+∠=︒,∴AB CD ∥,∴180A D +=︒∠∠,∴B D ∠=∠;(2)∵AD BC ∥,∴CBG G ∠=∠,∵2AEB G ∠=∠,∴2CBE G ∠=∠,∴2EBG CBG G ∠+∠=∠,∴EBG G ∠=∠,∴EBG CBG ∠=∠,∴BG 是EBC ∠的角平分线;(3)∵DH 是GDC ∠的平分线,∴GDH HDC ∠=∠,设GDH HDC α∠=∠=,∵AD BC ∥,∴2BCD GDC α∠=∠=.设EBG CBG β∠=∠=,∵AB CD ∥,∴180ABC BCD ∠+∠=︒,∴180ABE EBC BCD ∠+∠+∠=︒,∵66ABE ∠=︒,∴6622180βα︒++=︒,∴57αβ+=︒.过点H 作HP AB ,∴180PHB ABH ∠+∠=︒,∵AB CD ∥,∴CD HP ,∴DHP HDC α∠=∠=,∴180DHP BHD ABE GBE ∠+∠+∠∠=︒+,即 66180BHD αβ+∠+︒+=︒, ∴57BHD ∠=︒.【点睛】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。
八年级数学上册第五章相交线与平行线单元试卷检测题(Word 版 含答案)一、选择题1.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为( ).A .100︒B .80︒C .75︒D .50︒2.如图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( )A .110°B .115°C .125°D .130°3.如图,下列条件不能判定AB ∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠=4.如图,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 、F ,FG 平分∠EFD ,EG ⊥FG 于点G ,若∠CFN =110°,则∠BEG =( )5.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )A .1个B .2个C .3个D .4个6.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个7.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D .8.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°9.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( )A .35°B .45°C .55°D .125° 10.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )11.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 212.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个二、填空题13.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.14.如图,直线MN∥PQ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .∠ABM 的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD⊥PQ 交PQ 于点D ,作AF⊥AB 交PQ 于点F ,AE 平分∠DAF 交PQ 于点E ,若∠CAE=45°,∠ACB=∠DAE,则∠ACD 的度数是_____.15.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.16.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.17.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.18.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.19.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).22.如图,已知//,60AM BN A ︒∠=,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点.C D 、()1CBD ∠=()2若点P 运动到某处时,恰有ACB ABD =∠∠,此时AB 与BD 有何位置关系?请说明理由.()3在点P 运动的过程中,APB ∠与ADB ∠之间的关系是否发生变化?若不变,请写出它们的关系并说明理由;若变化,请写出变化规律.23.如图1所示,AB ∥CD ,E 为直线CD 下方一点,BF 平分∠ABE .(1)求证:∠ABE +∠C ﹣∠E =180°.(2)如图2,EG 平分∠BEC ,过点B 作BH ∥GE ,求∠FBH 与∠C 之间的数量关系. (3)如图3,CN 平分∠ECD ,若BF 的反向延长线和CN 的反向延长线交于点M ,且∠E +∠M =130°,请直接写出∠E 的度数.24.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 25.[感知发现]:如图,是一个“猪手”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE ,我们发现:∠E=∠B+∠D证明如下:过E 点作EF ∥AB .∴∠B=∠1(两直线平行,内错角相等.)又AB ∥CD(已知)∴CD ∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.) ∴∠2=∠D(两直线平行,内错角相等.)∴∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE .试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD 按如图的虚线剪下,使∠1=120o ,∠FEQ=90°. 请直接写出∠2的度数.26.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。
绪论1.自动检测系统原理图系统框图: 用于表达一种系统各部分和各环节之间旳关系, 用来描述系统旳输入输出、中间处理等基本功能和执行逻辑过程旳概念模式。
2、自动检测系统旳构成: 传感器、信号调理电路、显示屏, 数据处理装置、执行机构构成。
(这里会出填空题)3、传感器: 只一种能将被测旳非电量变换成电量旳器件。
4、自动磨削测控系统第一章原理阐明: 传感器迅速检测出工件旳直径参数, 计算机首先对直径参数做一系列旳运算、比较、判断等操作, 然后将有关参数送到显示屏显示出来, 另首先发出控制信号, 控制研磨盘旳径向位移, 指导工件加工到规定规定为止。
第二章检测技术旳基本概念1、测量: 借助专门旳技术和仪表设备, 采用一定旳措施获得某一客观事物定量数据资料旳实践过程。
测量措施旳分类: 静态测量、动态测量直接测量、间接测量接触式测量、非接触式测量2、偏位式测量, 零位式测量, 微差式测量3、测量误差旳表达措施: 绝对误差和相对误差(示值相对误差、引用误差)4、测量误差旳分类: 粗大误差、系统误差、随机误差、静态误差、动态误差。
5、传感器旳构成: 由敏感元件、传感元件、测量转换电路构成、6、测量转换电路旳作用: 将传感元件输出旳电参量转换成易于处理旳电压、电流或频率量。
传感器旳静态特性:敏捷度: 指传感器在稳态下输出变化值与输入变化值之比。
辨别力: 指传感器能检测出被测信号旳最小变化量。
非线性度:线性度又称非线性误差, 指传感器实际特性曲线与拟合直线之间旳最大偏差与传感器满量程范围内旳输出之比例。
迟滞误差: 传感器旳正向特性与反向特性旳不一致程度。
稳定性、电磁兼容性、可靠性第二章电阻传感器1.应变效应: 导体或半导体材料在外界力旳作用下, 会产生机械变形、其电阻值也将伴随发生变化。
2、压阻效应:单晶硅材料在受到应力作用后, 电阻率发生明显变化。
3、投入式液位计旳工作原理:压阻式压力传感器安装在不锈钢壳体内, , 并用不锈钢支架固定放置在液体底部。
第五章WORD复习题及答案一、单项选择题1.中文 Word编辑软件的运行环境是。
A.DOSB.UCDOSC.WPSD.Windows2.在 Word 环境下, Word()。
A. 只能打开一个文件B.只能打开两个文件C.可以打开多个文件D.以上都不对3. WORD是()的文字处理软件。
A.编辑时屏幕上所见到的,就是所得到的结果B.模拟显示看到的,才是可行到的结果C.打印出来后,才是可行到的结果D.无任何结果4. Word 程序启动后就自动打开一个名为()的文档。
A.NonameB.UntitledC. 文件 1D. 文档 15.在 Word 环境下,改变 " 间距 " 说法正确的是()。
A. 只能改变段与段之间的间距B. 只能改变字与字之间的间距C.只能改变行与行之间的间距D. 以上说法都不成立6.在 Word 环境下, Word 在保存文件时自动增加的扩展名是()。
A..TXTB..DOCC..SYSD..EXE7.在 Word 环境下,如果你在编辑文本时执行了错误操作,()功能可以帮助你恢复原来的状态。
A. 复制B. 粘贴C. 撤消D. 清除8.( WORD文字处理)使用模板的过程是:单击(),选择模板名。
A. 文件 --- 打开B. 文件 --- 新建C. 格式 --- 模板D. 工具 --- 选项9.( WORD文字处理)在WORD中,可以利用()很直观地改变段落缩进方式,调整左右边界。
A. 菜单栏B. 工具栏C. 格式栏D. 标尺10.在 Word 环境下,在删除文本框时()。
A. 只删除文本框内的文本B. 只能删除文本框边线C.文本框边线和文本都删除D. 在删除文本框以后,正文不会进行重排11.( WORD文字处理)在()菜单中选择“打印”命令,屏幕将显示“打印”对话框。
A. 文件 B. 编辑 C. 视图 D. 工具12.( WORD文字处理)单击格式工具栏上的有关按钮,下列()种文本属性不会作用到选定的文本上。
第五章相交线与平行线单元试卷检测(基础+提高,Word 版 含解析)一、选择题1.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450° 2.如图,AB CD ∥,154FGB ∠︒=,FG 平分EFD ∠,则AEF ∠的度数等于( ).A .26°B .52°C .54°D .77°3.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++-4.已知AB CD ∥,点E F ,分别在直线AB CD ,上,点P 在AB CD ,之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则EPF ∠的度数为( )A .120︒B .135︒C .45︒或135︒D .60︒或120︒5.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个6.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°7.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定 8.下列命题中,属于真命题的是( ) A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b9.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°10.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm11.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm12.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .12二、填空题13.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________14.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.15.如图,已知AB ∥CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作∠ABE 和∠DCE 的平分线,交点为E 1,第二次操作,分别作∠ABE 1和∠DCE 1的平分线,交点为E 2,第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3,…,第n 次操作,分别作∠ABE n ﹣1和∠DCE n ﹣1的平分线,交点为E n .若∠E n =1度,那∠BEC 等于________度16.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________17.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.18.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .19.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.20.如图,AB ∥CD ,∠β=130°,则∠α=_______°.三、解答题21.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P 点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).22.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.23.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .24.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)25.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.26.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.27.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由28.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG,中间有条分界小路(图中折线ABC),左边区域为王爷爷的,右边区域为李爷爷的。
自动检测第五章复习题1.用K热电偶测某设备的温度,测得的热电势为20mV,冷端(室温)为25℃,求设备的温度?如果改用E电热偶来测量温时,在相同的条件下。
E热电偶测得的热电势为多少?解:⑴当热电势为20mV时,此时冷端温度为25℃,即E(t,t0)=20mV查表可得 E(t0,0)=E(25,0)=1mV因为 E(t,0)= E(t,t0)+E(t0,0)=20+1=21mV℃由此电势,查表可得t=509℃,即设备温度为509℃.⑵若改用E热电偶来测温度时,此时冷端温度仍为25℃。
查表可得E(t0,0)=E(25,0)=1.05mV当509℃,查表可得 E(t,0)=E(509,0)=37.7mV因为E(t,t0)= E(t,t0)-E(t0,0)=37.7-1.5=36.2mV即E热电偶测得的热电势为36.2mV。
2.现用一只镍铬-铜镍热电偶测某换热器内的温度,其冷端温度为30℃,显示仪表为动圈仪表(即XCZ-101),此仪表的机械零位为0℃,这时指示值为400℃,若认为换热器内的温度为430℃,对不对?为什么?正确值是多少?解:不对。
因为此时冷端度为30℃.而仪表的指示值(400℃)是在仪表的机械零位在0℃时的值。
所以,此时仪表指示值不是换热器的实际温度。
查表可得E(400,0)=28.943mV.此热电势即为E(t,30),即E(t,30)=E(400,0)=28.943mV因为 E(t,t0)=E(t,t0)+E(t0,0)=E(t,30)+E(30,0)=28.943+1.801=30.744mv查表可得:t=422°C.有上面分析可看出,换热器的实际温度不是简单的仪表指示值与冷端温度之和,而是热电势之和。
即仪表指示值所对应的热电势值E(t ,30)加上热端为30℃冷端为0℃时的热电势,由此才能得到实际温度下的热电势E(t ,0),这样查表即可得到实际温度t 的值。
3. 若用两支铂铑10-铂热电偶串联来测量炉温,连接方式分别如图3-16(a )、(b )、(c )所示。
已知炉内温度均匀,最高温度为1000摄氏度,假设补偿导线C 、D 与热电偶A 、B 本身在100摄氏度以下具有相同的热电特性。
要求:(1)试分别计算测量仪表范围(以最大毫伏数表示);(2)以上述三种情况下,若由测量仪表得到的信号都是15mV ,分别计算这是炉子的实际问温度。
解(1)计算测量仪表的测量把范围。
(a)此时热电偶冷端温度均匀为0℃,则查表可得 E(1000,0)=9.585mv.两支热电偶串联,测量仪表所测信号最大值为ax E m =2E(1000,0)=2×9.585=19.17mV.根据这个数值可确定仪表测量范围。
由此数据可知两个热电偶串联可测范围将这增大到1800℃以上。
(b )此时不仅应考虑补偿导线引出来以后的冷端温度(30℃),还应考虑旁边补偿导线与热电偶的接线盒内温度(100℃)对热电势的影响。
又因为补偿导线C 、D 与热电偶A 、B 本身在100℃以下的热电特性时相同的,所以,在冷端处引成的热电势为 E(30.0)=0.173mV在补偿导线C 、D 与热电偶的连接处1、4两点可认为不产生热电势,但在接线盒内2、3两点处形成的热电偶相当于热电偶在100℃时引成的热电势。
即 E(100,0)=0.645mV此电势方向与两支热电偶在热端产生的电势方向是相反的,所以这时总的热电势为ax E m =2E(1000,0)―E(100,0)―E(30,0)=2×9.585―0.645―0.173=18.352mV根据这个数值可以确定仪表的测量范围。
在这种情况下,如果炉旁边接线盒内的温度变化,会对测量产生较大影响,造成较大的测量误差。
(c )此时两支热电偶的两端都用补偿导线引至远离炉子处,冷端温度为30℃,故总的电热式势为ax E m =2E(1000,0)―2E(30,0)=2×9.858―2×0.173=18.824mV由此可知,在同样都是用两支热电偶串联来测量炉温时,由于接线不同,产生的热电势也不同,在选择测量仪表时,应考虑这种情况。
(2)在(a)情况时,由于2E(t,0)=15mV ,则E(t,0)=7.5mV 。
由此查表可得实际温度t=184℃在(b )情况时,由于2E(t,0)=15+E(30,0)+2E(100,0)=15+0.173+0.645=15.818mV 则查表可得实际温度t=851℃。
在(c )情况时,由于2E(t,0)=15+2E(30,0)=15+2×0.173=15.346mV 则 E(t ,0)=7.673mV查表可得实际温度t=830℃。
从上面分析可看出,虽然采用了补偿导线,但并不能完全克服冷端温度变化对测量的影响。
补偿导线只是将冷端由温度变化较剧烈的地方移至温度变化较小的地方。
若这时冷端的温度仍不为0℃,那么还必须考虑如何进行冷端温度的补偿问题。
4.测温系统如图3-17所示,请说出这是工业上用的哪种温度计?已知热电偶的分度号为K ,但错用与E 配套的显示仪表,当仪表指示为160℃时,请计算实际温度x t 为多少度(室温为25℃)解: 这是工业上用的热电偶温度计。
查看分度号E ,可得160℃时的电势为10501μV ,这电势实际上由K 热电偶产生的,即 E(x t ,25)=10501μV.查看分度号K ,可得E(25,0)=1000μV ,由此可见,E(x t ,0)=E(x t ,25)+E(25,0)=10501+1000=11501μV 。
由这个数值查看分度号K ,可得实际温度x t ≈283℃。
5.已知热电偶的分度号为K ,工作时的冷端温度为30℃,测得的热电势为38.5mV ,求工作端的温度是多少。
如果热电偶的分度号为E 。
其他条件不变,那么工作端的温度又是多少?解: 查看分度K ,可得E(30,0)=1203μV ,由此可知,E(t,30)=38500μV ,E(t,0)=E(t,30)+E(30,0)=1203+38500=39703(μV ),查看分度号K ,可得工作端温度t=960℃。
用同样的方法,查看分度号E ,可算得工作端约为532℃。
6.已知热电偶的分度号为K,工作时冷端温度为30℃,测得热电势以后,错用E 分度表查得工作端的温度为715.2℃,试求工作端的实际温度是多少?解: 查分度号E ,查得与715.2℃对应的电势为54.322mV ,这实际上是有分度号为K 的热电偶产生的E(t,30)。
查分度号为K,得E(30,0)=1.203mV 。
E(t,0)=E(t,30)+E(30,0)=54.322+1.203=55.525(mV) 查分度号K,得t ≈1391℃。
7.用Pt100测量温度,在使用时错用了Cu100的分度表,查得温度为140℃,试问实际温度应该为多少?解 由分度号Cu100查得140℃时的电阻值为159.96欧姆 。
再由分度号Pt100查得与159.96 对应的温度为157.1℃,这就是实际温度的值。
8.用分度号Pt50的热电阻测温,却错查了Cu50的分度表,得到的温度是150℃。
问实际温度是多少?解 由分度号Cu50查得150℃时的电阻值为82.13欧姆 。
再由分度号Pt50查得与82.13欧姆 对应的温度为166℃,这就是实际温度的值。
9.某台动圈式仪表是与镍铬-镍硅热电偶配套使用的,但错接了铂铑10-铂热电偶,仪表的指示值为201ºC ,则实际温度为多少?(冷端温度为0ºC )解: 查分度号K ,查得与201℃对应的电势为8177μV ,这实际上是分度号为S 的热电偶产生的. 因为冷端温度为0ºC ,所以可以直接查分度号为S 的热电偶表,差表为876℃10.若用铂铑10-铂热电偶测量温度,其仪表指示值为600ºC ,而冷端温度为65ºC ,在没有冷端温度补偿的情况下,这实际温度为650ºC ,对不对?,为什么?正确值是多少?解:E(t ,0t )=E(600,0)=5237μv E(0t ,0)= E(65,0)=398μvE(t ,0)= E(t ,0t )+E(0t ,0)= 5237+398=5635μ查表约等于639ºC11.用补热电偶偿可使热电偶不受接线盒所处温度t 1变化的影响(参照图3-21),试用回路电势的公式来证明。
解:依图应有E AB (t 1,t 0)= E CD(t 1,t 0) 由图热电回路的总电势为E ABCD =E AB (t)+ E BD (t 1)+ E DC (t 0)+ E CA (t 1)(1)当t=t 1=t 0 E ABCD =E AB (t 1)+ E BD (t 1)+ E DC (t 1)+ E CA (t 1)=0(2)将有-E AB (t 1)- E DC (t 1)= E BD (t 1)+ E CA (t 1)将其代入(1)E ABCD =E AB (t)-E AB (t 1)+ E DC (t 0)-E DC (t 1)。
而E DC (t 0)-E DC (t 1)= E DC (t 0,t 1)=- E CD (t 0,t 1)= E CD (t 1,t 0)=E AB (t ,t 1)+ E CD (t 1,t 0)因为E AB (t 1,t 0)= E CD(t 1t 0) 所以E ABCD = E AB (t ,t 1)+ E AB (t 1,t 0)E ABCD =E AB (t)- E AB (t 1)+ E AB (t 1)- E(t 0)AB= E AB (t)- E AB (t 0) 所以热电偶不受接线盒所处温度t 1变化的影响。
12.如果将镍铬-镍硅补偿导线极性接反,当电路温度控制于800ºC 时,若热电偶接线盒处温度是50ºC ,仪表接线板处温度为40ºC ,问测量结果与实际相差多少?解:见12图,上图为正确补偿导线接法图,下图为反接补偿导线接法图,反接补偿导线将会产生新的接触电势)50(AB e ,和)50(BA e .其中)800(AB e 、)50(AB e 、)50(BA e 为接触电势,其他为温差电势。
上图正确的接法的总的电势和为:E1=)800(AB e -)50,80(A e -)40,50(A e +)40,50(B e +)50,80(B e 下图反接的接法的总的电势和为:E2=)800(AB e -)50,80(A e -)50(AB e -)40,50(B e +)40,50(A e +)50(BA e +)50,80(B e ΔE=E1-E2=)50(AB e -)50(BA e -2)40,50(A e +2)40,50(B e 其中)50(BA e =-)50(AB e 所以ΔE=2)50(AB e -2)40,50(A e +2)40,50(B e13.分度号为K的热电偶,误将E的补偿导线配在K的电子电位差计上,如图3-22所示。