第二章晶态和非晶态的特性案例
- 格式:ppt
- 大小:11.32 MB
- 文档页数:125
非晶态金属的特点全文共四篇示例,供读者参考第一篇示例:非晶态金属是一类特殊的金属材料,具有许多独特的特性。
非晶态金属具有无序的结构,与晶态金属相比,非晶态金属具有更高的硬度、强度和耐腐蚀性。
在工程领域中,非晶态金属已经被广泛应用于各种领域,如电子、汽车、医疗等,取得了显著的成就。
非晶态金属的最大特点之一是其无晶格结构。
晶体具有有序的排列结构,而非晶态金属中原子的排列是无序的。
这种无序结构使得非晶态金属具有高度均匀性和致密性,因此具有更高的硬度和强度。
相比之下,晶体结构中原子的有序排列会导致晶界的存在,降低了金属的强度和硬度。
除了高硬度和强度外,非晶态金属还具有优异的耐腐蚀性。
由于其无晶格结构,非晶态金属在原子尺度上没有缺陷和孔隙,减少了氧化和腐蚀的可能性。
这使得非晶态金属在恶劣环境下具有更长的使用寿命和更好的稳定性。
另一个非晶态金属的特点是其优异的磁性能。
由于非晶态金属的无晶格结构,使得其具有优异的磁性特性,包括高饱和磁感应强度、低磁滞损耗和低磁导率。
这使得非晶态金属在磁记录和磁传感器等领域中具有广泛的应用前景。
非晶态金属还具有良好的形变性能和高温抗氧化性。
经过适当的处理,非晶态金属可以具备良好的可塑性,可以进行冷热加工,制备出各种复杂形状的零件。
非晶态金属在高温条件下能够抵抗氧化和腐蚀,具有优异的高温稳定性和耐久性。
非晶态金属具有无晶格结构、高硬度和强度、优异的耐腐蚀性、良好的磁性能、良好的形变性能和高温抗氧化性等特点,使得其在工程领域中具有广泛的应用前景。
随着科技的不断发展,相信非晶态金属将在未来取得更大的突破和进展,为人类社会的发展和进步作出更大的贡献。
第二篇示例:非晶态金属,又称非晶合金,是一种具有非晶结构的金属材料。
相对于晶态金属,在非晶态金属中,原子排列是无规则的,而且没有长程周期性的结构。
非晶态金属具有很多独特的特点,使其在材料科学领域得到了广泛的应用和研究。
非晶态金属具有优异的力学性能。
第二章晶态与非晶态材料的特性引言:材料是构成各种物质的基本组成单位,不同种类的材料在原子结构和物理特性上存在显著的差异。
本章将介绍晶态和非晶态材料的特性,包括结构、力学特性、热学特性、电学特性以及光学特性等方面。
一、晶态材料的特性:1.结构特性:晶态材料具有有序的原子排列,呈现出规则的晶格结构。
晶格结构可以通过X射线衍射和电子衍射等实验方法进行表征,其结果常用晶胞参数和晶面指数表示。
2.力学特性:晶态材料在外力作用下存在明确的弹性行为,其力学性能可以通过弹性模量、屈服强度和断裂韧性等指标来评估。
不同晶向的材料在力学特性上表现出明显的各向异性。
3.热学特性:晶态材料的热导率和热膨胀系数常随着温度的变化而变化。
晶态材料的热导率和热膨胀系数通常沿不同的晶向显示出很大的差异。
4.电学特性:晶态材料具有离散的能带结构,其导电性质主要与能带结构和载流子特性有关。
电学特性可以通过电导率、介电常数和磁导率等参数来表征。
5.光学特性:晶态材料对光的传播和相互作用表现出明显的各向异性。
晶态材料的光学特性主要包括折射率、吸收系数和散射等。
二、非晶态材料的特性:非晶态材料的原子排列呈现出无序的状态,缺乏长程的周期性结构。
由于缺乏晶格结构,非晶态材料具有一些与晶态材料不同的特性。
1.结构特性:非晶态材料的原子排列没有明确的规则,其结构可以通过X射线衍射和中子衍射等方法进行分析。
非晶态材料的结构通常表现为短程有序和中程有序的特点。
2.力学特性:非晶态材料的力学性能表现出明显的非线性行为。
非晶态材料的硬度和断裂韧性较低,但延展性和形变能力较好。
3.热学特性:非晶态材料的热导率通常较低,但热膨胀系数较高。
非晶态材料的热导率和热膨胀系数随温度变化较小。
4.电学特性:非晶态材料通常表现出低电导率和较高的电阻率。
其导电性主要受原子之间的无规则排列和有序排列之间的相互作用影响。
5.光学特性:非晶态材料的光学特性与晶态材料有较大的区别。
3单晶
一、非晶态合
元素周期
大家都知道的非晶态材料仅有窗玻璃,它的主要成分是非晶态二氧化硅。
非晶态材料是
由晶态材料变来的。
它们相比有两个最基本的特点:一是非晶态材料中原子排列不具有周期性;二是非晶态材料属于热力学的亚稳态。
在晶态中,原子的排列是规则的、有序的,共有
32种基本排列方式,从一个原子位置出发,在各个方向每隔一定的距离,一定能找到另一
个相同的原子;而在非晶态中,原子排列混乱,千变万化、无章可循。
无定型材料、无序材料、玻璃态材料是它的别名。
非晶态合金是在研究合金快速淬火处理过程中意外发现的。
这一发现从根本上解决了晶
态和非晶态之间的转换难题。
非晶态金属又称玻璃金属,分为金属-半金属合金系、金属-金
属合金系。
讲
授
山东理工职业学院教案纸
山东理工职业学院教案纸。
第二章2.1聚合物的晶态和非晶态结构2.1.1内聚能密度例2-1 根据高聚物的分子结构和分子间作用能,定性地讨论表2-3中所列各高聚物的性能。
表2-3线形高聚物的内聚能密度高聚物内聚能密度兆焦/米3 卡/厘米3聚乙烯259 62聚异丁烯272 65天然橡胶280 67聚丁二烯276 66丁苯橡胶276 66聚苯乙烯305 73高聚物内聚能密度兆焦/米3 卡/厘米3聚甲基丙烯酸甲酯347 83聚醋酸乙烯酯368 88聚氯乙烯381 91聚对苯二甲酸乙二酯477 114尼龙66 774 185聚丙烯腈992 237解:(1)聚乙烯、聚异丁烯、天然橡胶、聚丁二烯和丁苯橡胶都有较好的柔顺性,它们适合于用作弹性体。
其中聚乙烯由于结构高度对称性,太易于结晶,从而实际上只能用作塑料,但从纯C-C单键的结构来说本来应当有很好的柔顺性,理应是个橡胶。
(2)聚苯乙烯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯和聚氯乙烯的柔顺性适中,适合用作塑料。
(3)聚对苯二甲酸乙二酯、尼龙66和聚丙烯腈的分子间作用力大,柔顺性较差,刚性和强度较大,宜作纤维。
可见一般规律是内聚能密度<70卡/厘米3的为橡胶;内聚能密度70~100的为塑料;>100的为纤维。
2.1.2 比容、密度、结晶度例2-2 由文献查得涤纶树脂的密度ρc=1.50×103kg·m-3,和ρa=1.335×103kg·m-3,内聚能ΔΕ=66.67kJ·mol-1(单元).今有一块1.42×2.96×0.51×10-6m3的涤纶试样,重量为2.92×10-3kg,试由以上数据计算:(1)涤纶树脂试样的密度和结晶度;(2)涤纶树脂的内聚能密度.解(l) 密度结晶度或(2) 内聚能密度文献值CED=476(J·cm-3)例2-3 试从等规聚丙烯结晶(α型)的晶胞参数出发,计算完全结晶聚丙烯的比容和密度。
2.2晶态材料和非晶态材料2.2.1晶态材料和非晶态材料的异同晶体广泛存在,并可以用各种偏离理想晶体的缺陷使其具有一定的性质,晶体材料是固体材料的核心。
非晶态材料指非结晶状态的材料,一般指以非晶态半导体和非晶体金属为主的普通低分子的非晶态固体材料,广义地,还包括玻璃、陶瓷以及非晶态聚合物。
晶态材料和非晶态材料都是真实的固体,其内部的原子都处于完全确定的平衡位置附近,并围绕平衡位置坐振动;都具有固体的基本属性,即宏观表现为连续刚体,不流动有确定的形状,体积不变动;具有弹性硬度,可反抗切应力。
两者的本质区别是晶态材料具有长程有序的点阵结构,其组成原子或基元处于一定格式空间排列的状态;非晶态材料只有在几个原子间距量级的短程范围内具有原子有序的状态,为短程有序。
2.2.2水泥和玻璃水泥、玻璃和陶瓷都属于传统的无极非金属材料。
它们都是以硅酸盐为主要成分的材料,也包括一些生产工艺相近的非硅酸盐材料。
由于化学结构的原因,它们大多具有耐压强度高、硬度大、耐高温、抗腐蚀等特点。
1.水泥水泥是一类非常基础的建筑材料,与水混合后,经过物理化学过程能由可塑性浆体变成坚硬而具有一定强度的石状体并能将散粒材料胶结成为整体。
硅酸盐水泥兴起于19世纪。
它的化学成分复杂,但主要的胶结成分是水化硅酸钙。
它是一种水硬性胶凝材料。
普通硅酸盐水泥强度高、能抗硫酸盐腐蚀、水化热,也可用于制备砂浆。
为了建筑需要,水泥可做成白色、黑色或其他各种颜色。
(1)水泥的优点:水泥具有以下优点,因此在土木工程领域得到广泛的应用。
水硬性、与钢筋粘结性好、耐久性、工艺简单、可塑性、低成本、多样性(2)水泥的分类水泥按用途可分为通用水泥、专用水泥和特性水泥。
通用水泥包括硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合水泥专用水泥包括砌筑水泥、油井水泥特性水泥包括快硬水泥、膨胀水泥、抗硫酸盐水泥、中热水泥水泥按化学成份可分为硅酸盐水泥、铝酸盐水泥和硫酸盐水泥。