4.非晶态和半晶态习题解答
- 格式:pdf
- 大小:304.80 KB
- 文档页数:5
非晶态固体物理历年试题及答案汇编1、 说明晶体与非晶体在结构上的区别(5分);为何制备非晶体合金需要较快冷却速度(5分)?在结构上,晶体是长程有序,原子排列有周期性;非晶体是短程有序,原子排列没有周期性。
只有在较快的冷却速度下,合金才能避免形核,即避免形成晶体,最终形成非晶体。
2、 写出非晶体的三个连续无规模型及它们各自适用的玻璃结构(10分)。
请举出其中一种模型的实例,并描述它的结构特点(10分)。
连续无规网络, 适合于共价玻璃结构;无规密堆积,适用于简单金属玻璃结构;无规线团模型,适用于聚合有机玻璃结构。
举例:α-Si 是连续无规网络结构,它的特点如下:1. z=4, 每个原子四重配位;2. 不变的键长;3. 没有悬空键;和金刚石不同的是:4. 键角有明显的分散;5. 没有长程有序。
3、 什么是分形维数(5分)?说明自迥避行走与简单无规行走的区别(5分)。
分形维数:这种维数适合于描述高分子链位的随机-几何特性,与欧几里德维数和拓扑维数不同,这个新的维数可以具有非整数值。
对于一些规则形状,从方程d N N r 1)(-=(N :一个整体分成N 个与整体相似的形状)重新得到嵌入空间的欧几里德维数d 。
对于一些非常不规则的随机形状,方程就会得出一个不同的维数,这个维数提供了非常有价值的不规则本身的测度。
这个维数在数学上称为HausdorffBescovitch 维数,我们把它叫做分形维数。
自迥避行走与简单无规行走不同的地方在于自迥避行走能记住过去曾走过些什么地方,并且不允许再回到已过去的地方。
4、 何谓波粒二象性?写出微观粒子二象性的基本公式。
(5分))/(/mu h P h ==λ,此式表明一个动量为P = mu 的电子或其它微观粒子的行为或属性宛如波长为的波的属性。
5、 什么是过渡族元素和稀土元素?(5分)凡是外层电子填充在d 轨道的元素都称为过渡族元素;外层电子填充在4f (镧系)、5f (锕系)轨道上的元素称为稀土元素。
课后练习思考题:第一章晶体结构1-1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
1-2.晶格点阵与实际晶体有何区别和了解?1-3.晶体结构可分为Bravais格子和复式格子吗?1-4.图1.34所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类?(a)(b)(c)(d)图1.341-5.以二维有心长方晶格为例,画出固体物理学原胞、结晶学原胞,并说出它们各自的特点。
1-6.倒格子的实际意义是什么?一种晶体的正格矢和相应的倒格矢是否有一一对应的关系?1-7.一个物体或体系的对称性高低如何判断?有何物理意义?一个正八面体(见图)有哪些对称操作?1-8.解理面是面指数低的晶面还是指数高的晶面?为什么?1-9. 5.晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基矢、和重合,除O点外,OA、OB和OC上是否有格点?若ABC面的指数为(234),情况又如何?1-10.带轴为[001]的晶带各晶面,其面指数有何特点?1-11. 与晶列[l1l2l3]垂直的倒格面的面指数是什么?1-12. 在结晶学中,晶胞是按晶体的什么特性选取的?1-13. 六角密积属何种晶系?一个晶胞包含几个原子?1-14.体心立方元素晶体, [111]方向上的结晶学周期为多大?实际周期为多大?1-15. 面心立方元素晶体中最小的晶列周期为多大?该晶列在哪些晶面内?1-16. 在晶体衍射中,为什么不能用可见光?第二章固体的结合2-1.试述离子键、共价键、金属键、范德瓦尔斯键和氢键的基本特征.2-2.有人说“晶体的内能就是晶体的结合能”,对吗?2-3.当2个原子由相距很远而逐渐接近时,二原子间的力与势能是如何逐渐变化的?2-4.为什么金属比离子晶体、共价晶体易于进行机械加工并且导电、导热性良好?2-5.是否有与库仑力无关的晶体结合类型?2-6.如何理解库仑力是原子结合的动力?2-7.晶体的结合能,晶体的内能,原子间的相互作用势能有何区别?2-8.原子间的排斥作用取决于什么原因?2-9.原子间的排斥作用和吸引作用有何关系?起主导的范围是什么?2-10.共价结合为什么有“饱和性”和“方向性”?2-11.共价结合,两原子电子云交迭产生吸引,而原子靠近时,电子云交迭会产生巨大的排斥力,如何解释?2-12.试解释一个中性原子吸收一个电子一定要放出能量的现象.2-13.如何理解电负性可用电离能加亲和能来表征?2-14.何为杂化轨道?2-15.你认为固体的弹性强弱主要由排斥作用决定呢,还是吸引作用决定?第三章晶格振动与晶体的热学性质3-1.什么是简谐近似?3-2.试定性给出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线,并简要说明其意义。
高分子的溶解溶解与溶胀例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。
这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。
整个过程往往需要较长的时间。
高聚物的聚集态又有非晶态和晶态之分。
非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。
晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。
非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。
例3-2.用热力学原理解释溶解和溶胀。
解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合:上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。
焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。
对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。
但一般来说,高聚物的溶解过程都是增加的,即>0。
显然,要使<0,则要求越小越好,最好为负值或较小的正值。
极性高聚物溶于极性溶剂,常因溶剂化作用而放热。
因此,总小于零,即<0,溶解过程自发进行。
根据晶格理论得=(3-1)式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。
的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。
而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2)式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。
《固体结构》非晶态物理部分习题
一、径向分布函数(RDF)是非晶体结构研究中的重要函数,试写出
RDF的意义,定义;晶体、非晶体与气体的RDF的特点及共性,并试用图表法表示晶体、非晶体(与气体的RDF的特点及共
性)RDF的这些结构特征和差异。
二、配位数是描述非晶固体结构的参数之一,它可以在一定意义上
给出固体中的键结合信息。
试给出晶体中配位数与可能的键合
方式的关系(Z=1,2,3,4,6,8,12)。
三、试写出Debye散射方程,并解释它的含义及应用范围。
用Debye
方程计算由N个等同原子随机取向的体心立方微晶体(由9个
原子组成,边长为a)的体系中,由每个这种微晶体产生的弹
性散射强度,将结果计算出来并作出I-S•a的图示,(S为散射
矢量,a为点阵常数)。
与体心立方晶体BCC的衍射谱作比较(查
看体心立方晶体的衍射谱特征谱线)。
四、试写出描述非晶体结构的三个分布函数,它们之间的关系及在
确定非晶体结构参数中的应用(实验、模拟)。
第二章2.1聚合物的晶态和非晶态结构2.1.1内聚能密度例2-1 根据高聚物的分子结构和分子间作用能,定性地讨论表2-3中所列各高聚物的性能。
表2-3线形高聚物的内聚能密度高聚物内聚能密度兆焦/米3 卡/厘米3聚乙烯259 62聚异丁烯272 65天然橡胶280 67聚丁二烯276 66丁苯橡胶276 66聚苯乙烯305 73高聚物内聚能密度兆焦/米3 卡/厘米3聚甲基丙烯酸甲酯347 83聚醋酸乙烯酯368 88聚氯乙烯381 91聚对苯二甲酸乙二酯477 114尼龙66 774 185聚丙烯腈992 237解:(1)聚乙烯、聚异丁烯、天然橡胶、聚丁二烯和丁苯橡胶都有较好的柔顺性,它们适合于用作弹性体。
其中聚乙烯由于结构高度对称性,太易于结晶,从而实际上只能用作塑料,但从纯C-C单键的结构来说本来应当有很好的柔顺性,理应是个橡胶。
(2)聚苯乙烯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯和聚氯乙烯的柔顺性适中,适合用作塑料。
(3)聚对苯二甲酸乙二酯、尼龙66和聚丙烯腈的分子间作用力大,柔顺性较差,刚性和强度较大,宜作纤维。
可见一般规律是内聚能密度<70卡/厘米3的为橡胶;内聚能密度70~100的为塑料;>100的为纤维。
2.1.2 比容、密度、结晶度例2-2 由文献查得涤纶树脂的密度ρc=1.50×103kg·m-3,和ρa=1.335×103kg·m-3,内聚能ΔΕ=66.67kJ·mol-1(单元).今有一块1.42×2.96×0.51×10-6m3的涤纶试样,重量为2.92×10-3kg,试由以上数据计算:(1)涤纶树脂试样的密度和结晶度;(2)涤纶树脂的内聚能密度.解(l) 密度结晶度或(2) 内聚能密度文献值CED=476(J·cm-3)例2-3 试从等规聚丙烯结晶(α型)的晶胞参数出发,计算完全结晶聚丙烯的比容和密度。