我国煤层气储层异常压力的成因分析
- 格式:pdf
- 大小:191.32 KB
- 文档页数:6
72我国是能源大国,煤炭资源丰富,为人们提供了良好的物质条件。
煤层气是近些年来出现的较为洁净、优质的新能源,也是化工原料,通常被称为“瓦斯”。
实际上,煤层气主要存在于煤层当中,大多通过甲烷的形式加以呈现,通常牢牢吸附于煤基质颗粒的表面,很少以游离态的形式溶于水中。
1 煤层气开采技术现状及发展趋势1.1 煤层气开采技术现状现如今,中国的钻井现状并不顺利。
实际上,煤层气对于中国而言,是尤为关键的。
一旦煤层钻井发生问题,将会直接造成大面积污染,从而降低煤层气的实际质量。
故此,研究者需要针对中国在当前时期的煤层钻井现状,进行深入的细致分析。
通常情况下,煤层的位置居于岩石的最底层,并且脆性较强,硬度较低,一旦出现岩石挤压现象,将很有可能出现变形,甚至坍塌,尤其在开采煤层的过程中,更容易出现坍塌现象,长此以往,下限甚至坍塌的频率将会越高。
值得一提的是,煤层通常出现在岩石底部深处,施工方进行开采的过程中,很有可能由于距离的限制,而无法进行开采,并难以对煤层气及其井储层,进行恰当的保护。
1.2 煤层气开采技术发展趋势根据相关统计得知,中国在不超过地底直线距离2 000 m的浅煤气层,所含有的资源量大约为3.67×1013 m 3,名列全球第三。
近年来,全球资源短缺现象明显,在此背景下,开采非常规能源煤层气,成为各个国家的主要研究方向。
其中,最佳的开采方式,是基于压裂改造储层,保持其和井筒之间的通畅性。
然而,现如今,这项技术尚未成熟,有待于进一步研究。
2 煤层气储层伤害机理分析2.1 钻井液对储层的损害(1)由于微粒运移及其相应的黏土膨胀,而直接导致的储层损害对于大部分煤岩裂隙而言,其孔隙度一般相对很低,保持在1%~2%的范围,当钻井液中的滤液,已经渗入煤岩,则将会造成煤基质膨胀,从而切实降低煤岩裂隙的孔隙度及其实际渗透率。
此外,钻井液中存在的固相颗粒,一般会跟随裂隙持续流动,或者直接残存于孔隙当中,严重损害储层。
我国煤层气产业发展中存在的问题与对策近几十年来,随着能源供应能力的不断提高,我国煤层气产业发展也取得了显著成就。
然而,目前我国煤层气产业仍然存在一些问题,这些问题会影响煤层气产业的发展,所以必须采取有效的措施来解决这些问题。
首先,我国煤层气开发技术有待提高。
我国现有煤层气开发技术已经处于落后水平,矿井水平技术落后,有钻井难度大、效率低、成本高等问题。
同时,还存在着地质反应不良、储层质量不高、水热压力低等问题,这些问题都会影响煤层气产量和质量。
因此,我们必须加强技术研究,加快煤层气开发技术的创新,使煤层气的开发更加高效、安全和可持续。
其次,我国煤层气开发运营模式也有待改进。
当前,我国煤矿企业在煤层气开发运营模式上存在国有独占、服务独家、资本缺乏等问题,这些问题导致了发展效率低,经济效益不高。
因此,我们应该推行多元化的发展模式,以资本、技术、服务等多方参与,充分发挥企业创新能力和技术优势,提高煤层气开发效率,提升经济效益。
再者,我国煤层气的市场开发也需要强化。
当前,我国煤层气的市场开发能力不强,煤层气在市场竞争中没有足够的优势,市场占有率也不高。
因此,我们应该采取有效措施,强化市场开发,加强煤层气产品的推广和宣传,建立完善的定价机制,加强煤层气产品的质量管理,吸引更多投资者参与煤层气产业,提高煤层气在市场上的份额。
最后,应该加强对煤层气产业的监督管理。
煤层气开发过程中可能会造成生态环境的污染,因此,必须加强管理,以确保煤层气的开发不会影响到当地的生态环境。
此外,煤层气的开发和运营过程还存在安全隐患,因此,我们必须制定出严格的安全管理规定,确保煤层气的开发过程是安全的。
综上所述,煤层气产业发展存在一些问题,必须采取一系列有效措施解决这些问题,以促进煤层气产业的可持续发展。
首先,应加强煤层气开发技术的研究,实现技术的创新和发展,提高开发效率和质量;其次,应该推行多元化的发展模式,以提高发展效率和经济效益;最后,应加强煤层气市场开发,确保煤层气可持续发展,充分受益于煤层气产业的发展。
煤层气储层破坏机理及其影响分析朱家伟1,2(1.贵州省煤田地质局一四二队; 2.贵州省煤层气页岩气工程技术研究中心 贵州贵阳 550081)摘要:煤层气与常规天然气不同,具有孔渗特征、流体性特征以及裂隙特征。
为解决煤层气开发过程中易受环境影响而出现煤岩坍塌与污染问题,该文从实践角度出发,分析了煤层气储层特征、破坏机理,并找出了破坏影响因素。
结果表明:煤层气储层破坏影响控制,须在明确储层特征与破坏机理基础上,才能发挥出具有适用性与针对性的作用。
关键词:煤层气储层 储层特征 破坏机理 勘探中图分类号:TD84文献标识码:A 文章编号:1672-3791(2023)19-0173-04 Analysis of the Failure Mechanism and Its Influence of theCoalbed Methane ReservoirZHU Jiawei1,2(1.Group 142, Guizhou Bureau of Coal Geology; 2. Guizhou Coalbed Gas Shale Gas Engineering TechnologyResearch Center, Guiyang, Guizhou Province, 550081 China)Abstract:Coalbed methane is different from conventional natural gas, and it has poroperm characteristics, fluidity char‐acteristics and fracture characteristics. In order to solve the problem of coal rock collapse and pollution caused by the en‐vironmental impact during the development of coalbed methane, this paper analyzes the characteristics and failure mechanism of the coalbed methane reservoir from a practical point of view, and finds out the influence factors of failure. The results show that the control of the failure influence of the coalbed methane reservoir needs to play an applicable and targeted role on the basis of clarifying the characteristics and failure mechanism of the reservoir.Key Words: Coalbed methane reservoir; Reservoir characteristics; Failure mechanism; Exploration社会经济发展逐年增速,工业化建设对煤层气资源的使用量需求越来越大。
山西煤炭管理干部学院学报2010.1收稿日期:2009-11-09作者简介:郗宝华(1977-),山西煤炭职业技术学院助教,硕士。
我国煤层气储层特点及主控地质因素郗宝华(山西煤炭职业技术学院,山西太原030031)摘要:通过对我国煤层气储层的分析,总结我国煤层气储层具有渗透率低、地应力分布不均、普遍欠压三大特点。
同时对控制煤层气储层特点的因素进行了分析,认为控制我国煤层气储层特点的主要地质因素是构造地质条件和煤的变质程度,其次是煤层埋藏埋藏深度和地下水活动性。
关键词:地质勘探;煤层气;储层;地质因素中图分类号:P624.7文献标识码:A文章编号:1008-8881(2010)01-0112-02煤层气的生成、保存及开采直接受到储层环境的影响。
如果在采煤之前不先抽采煤层中的煤层气,它将在采煤过程中逐渐排放到大气中,一方面造成资源的浪费,另一方面给环境带来了巨大的压力。
再者不合理的开采还会造成矿井灾害。
所以研究煤层气储层特点及主控因素,对寻找和开采煤层气资源都是十分重要的一项工作。
一、中国煤层气分布在地质发展史上,我国形成了以六大聚煤区为主的丰富的煤炭资源。
为煤层气的形成和储集创造了良好基本条件。
我国的煤层气资源及其丰富。
我国煤层气资源总量为31.46万亿m3。
迄今为止最完整的煤炭资源勘探成果和煤层气含量的实测资料显示:我国煤层气埋深2000m以浅的煤层气资源量为14.34万亿m3;埋深1500m以浅的煤层气资源量为9.26万亿m3;埋藏深度介于1500-2000m的煤层气资源量为5.08万亿m3。
区域上煤层气资源的分布受含煤地区的制约,使我国煤层气资源表现出富集高产的特征。
在中国六大聚煤区中,煤层气资源量主要分布于华北、西北和华南区,分别占58.1%、31.7%和8.6%东北区仅占2%(表1)。
我国大部分的煤层气资源分布在西气东输管运沿线,有很大的开发利用前景。
二、我国煤层气储层的特点1、煤层渗透率低煤层渗透率是决定富集区糨层气能否以可采气流出的关键参数之一。
一、生气因素:1、有机质成分:越高生气性越好,有机质类型为腐植型的生气能力较强。
2、镜质组反射率:是反映煤化程度的一个指标,煤化程度越高,产生的煤层气越多。
但煤化程度达到一定程度(大于1.8%~3%)过成熟时,其生气能力会逐步下降。
3、厚度:厚度越大越好二、储(保)气影响因素(或形成气藏的影响因素)1、埋深:影响煤层气赋集的地质因素主要是埋藏深度。
煤化作用过程中产生的大量气体能否很好保存,与上覆有效地层厚度有关。
煤层上覆有效地层厚度增加,煤层的保存能力增强,气含量也随之增加。
到一定深度后,随着地压增大,地温也随之增高,煤的储集性能相对变差,煤层气沿煤层缓慢向上运移,含气量减少。
一般情况下,埋深大有利于储气,但超出一定深度后,受地应力等各种因素影响,游离气的量会大大减小,开发成本会增大。
2、断层:开放性(或连通性好的)断层,不利于储气;封闭性断层储气能力强。
逆断层、平推断层构造应力大,低渗,有利于储气,但不利于开发,正断层构造应力较小,高渗,利于开发;因此在选区时要从断层的多个方面评价。
3、构造:向斜埋深大,储层压力大,含气量往往较高。
背斜埋深较浅,储层压力较小,裂隙较发育,不利于储气。
4、上覆下伏地层的封盖性:对煤矿来讲就是煤层顶底板岩性,一般来说砂岩透气性好,不利于储气,泥岩的封盖性比较好。
5、水文地质:地下水活动频繁的地层渗透性较好,随着水的运移,煤层气也会产生运移,导致该区域含量较低。
三、影响开发效果的因素1、储层自身条件因素煤层对CH4的吸附性:吸附性强的煤层开发难度大。
渗透性:透气性越好越利于开发顶底板及煤层的可改造性:脆性矿物含量高利于压裂改造。
厚度:厚度越大,资源丰度越高。
地层压力:一般地应力大,储层渗透性会较低;同时,主应力方向影响压裂主裂缝的延展方向,因此对水平井布置方向及直井井网间距确定影响较大。
储层压力:一般储层压力大,储层渗透性会较好有效应力越大的储层,一般渗透性都较差(有效应力是地应力与储层压力的差值)水文条件:地下水频繁不利于气储存,在排采过程中也会加大排采开发难度地温:地温高有利于气体解吸2、开发过程中的生产工艺影响因素钻井:钻进工艺:欠平衡或平衡钻进钻井液:比重越大,对储层伤害越大,要求低固相,比重不大于1.03 固井:固井泥浆密度不大于1.6,满足固井质量要求情况下,降低固井注浆压力井身质量:狗腿弯会对油管造成磨损,造成频繁停排修井,易形成缝堵。
煤吸附能力的影响因素:1.煤阶对吸附能力的影响:阶段1:镜质组反射率在0.6~1.3%范围内时,煤的兰氏体积随着煤化程度的加深迅速增加,是整个演化过程中吸附能力变化速率最快的阶段;阶段2:镜质组反射率在1.3~2.5%范围内时,煤的兰氏体积随着煤化程度的加深而增加,速率比阶段1有所降低;阶段3:镜质组反射率在2.5~4.0%范围内时,煤的兰氏体积达到最大值,变化速率最小;阶段4:镜质组反射率超过4.0%时,煤的兰氏体积随着煤化程度的加深迅速下降。
2.煤炭组分对吸附能力的影响:(1)镜质组含量高的镜煤的吸附能力比含量低的暗煤的吸附能力高;(2)惰质组具有很强的吸附能力;(3)惰质组含量低的煤,吸附能力取决于镜质组的含量。
3.煤体变形对吸附能力的影响:(1)煤体变形增加了煤的孔隙度和比表面积,有利于煤的吸附能力的增加;(2)在强烈的构造应力的作用下,煤的表面物理化学性质发生了变化,增强了其亲甲烷能力,使煤的吸附能力增加。
4.比表面积和孔体积对吸附能力的影响:煤的吸附能力与比面积和孔隙成正相关,随着其增加而增加。
5.水分对吸附能力的影响:煤中分水增高,吸附能力降低,当水分高于一定值时,不再对吸附能力产生影响,该值称为平衡水分值或临界水分值。
6.压力与温度对煤吸附能力的影响:随着压力的增加吸附能力增加,但达到一定值后将不再变化;随着温度的增高煤的吸附能力减小。
7.煤中矿物质对吸附能力的影响:煤中矿物质不利于煤对煤层气的吸附。
煤层气储层异常高压的形成机制大体可分为水动力封闭型和自封闭型两类。
自封闭型有可分为物性封闭和生烃封闭。
其特征如下:1.水动力封闭型的特征:煤储层特征:原生结构煤或碎裂煤,储层渗透性良好。
作为一个独立的流体单元一般规模较大。
封闭机制:上下为低渗的煤层顶底板围限,流体运移方向上存在渗透性壁障(断层、相变、构造枢纽线、排泄区)。
在补给区方向与大气降水沟通。
为不完整的封存箱。
压力机制:异常高压的形成是现今地下水动力作用的结果。
浅谈我国煤层气开发利用的制约因素摘要:我国煤层气资源十分丰富,总资源量占全世界的13%,近年来我国的煤层气产业有了很大的发展,但是与美国等煤层气商业化较好的国家相比却相差很远。
本文简要总结了我国煤层气的开发利用现状,并从煤层气的利用率、煤层气的赋存地质条件及其勘探开发工艺和国家政策这四个方面与国外进行对比,指出以上四个方面是制约我国煤层气发展的主要因素,同时提出相关措施,对我国的煤层气的发展具有一定的借鉴。
关键词煤层气利用率地质因素勘探开发发展Abstract:Chinese CBM resources are very rich, 13% of the total amount of the world, the CBM industry of China has made great development in recent years. However, there is huge gap between china and other developed countries. The main aim of this article summarizes the development and utilization of Chinese CBM resources. There are many comparisons among china and developed countries in terms of utilization, the geological conditions, exploration and development process and national policy that are main factors of restricting our country’s development of CBM.A lot of measures are proposed to solve those Problems. That’s meant so much to the development of Chinese CBM.Keywords: CBM, Utilization,The geological conditions,Exploration and development ,Develop引言随着经济的发展,世界各国对能源的需求量日益增多,再加上近些年来全球环境恶化不断加深,沙尘、风暴、疾病、气候变暖等环境问题已严重影响到人们的正常生活,这就迫使人们在追求经济飞速发展的同时也不得不更多的来关注环境、生态问题。
煤层气成因类型及影响因素摘要:煤层气已成为一种新兴的非常规天然气资源。
煤层气是成煤物质在煤化过程中生成并储集于煤层中的气体。
按其成因类型分为生物成因气和热成因气。
生物成因气有原生和次生两种类型,原生生物成因气一般在低级煤中生成,很难保存下来。
次生生物成因气常与后来的煤层含水系统的细菌活动有关。
热成因煤层气的生成始于高挥发份烟煤(Ro=0.5%~0.8%)。
与分散的Ⅰ/Ⅱ型或Ⅲ型干酪根生成的气体相比,煤层气的地球化学组成变化较大,反映了控制煤层气组成和成因的因素多而复杂,主要的影响因素包括煤岩组分、煤级、生气过程和埋藏深度及相应的温度压力条件。
此外,水动力等地质条件和次生作用等也影响着煤层气的组成。
煤层气,又称煤层甲烷(Coalbed Methane,简称CBM),俗称煤层瓦斯,指自生自储于煤层中的气体,成分以甲烷为主,含少量其它气体成分。
在长期的地下采煤过程中,这种气体一直被视为有害气体。
70年代末,由于能源危机,美国政府采取税制优惠政策,鼓励煤层气的开发工作,从而推动了煤层气的研究和开发试验工作,并于80年代初取得重大突破,成为第一个进行大规模商业性生产的国家,证实了煤层气资源的巨大价值与潜力,从而引起煤层气研究的全球性热潮。
据估计,全世界煤层气的资源量可达(84.9~254.9)×1012m3。
根据美国的报告,煤层气的采收率为30%~60%,最高可达80%。
煤层气的发热量也很高,达8 000~9 000 kcal/m3,相当于常规天然气的90%以上。
煤层气属洁净能源,甲烷含量一般在80%~90%以上,燃烧时仅产生少量CO2。
因此,煤层气是一种潜力巨大的非常规天然气资源。
而且,采煤前排出煤层中的气体,也有利于地下采煤的安全和大气环境的改善。
1 煤层气的成因类型与形成机理植物体埋藏后,经过微生物的生物化学作用转化为泥炭(泥炭化作用阶段),泥炭又经历以物理化学作用为主的地质作用,向褐煤、烟煤和无烟煤转化(煤化作用阶段)。
146煤层气是一种赋存于煤炭的气体,由煤的煤化作用生成,是一种可以利用工艺技术开采并具有一定经济价值的非常规天然气。
煤层气的主要成分是甲烷,其成分与常规天然气相同,燃烧热值与天然气也基本一致。
可作为一种清洁新能源广泛应用于日常生活,是一种高效的新能源。
本文重点对影响煤层气赋存的因素进行了分析。
1 煤层气赋存影响因素煤层气主要以吸附形态存在于煤储层中。
煤层气分布主要受地质条件、水文条件、埋深以及煤层物性等因素控制[1]。
1.1 地质条件影响构造演化史控制含煤层系沉积埋深史和热演化史,从而控制了煤层气生成、赋存及成藏过程,在盆地层次上控制着煤层气聚集区带的形成和分布。
在成煤期后,构造沉降作用通过不断增加煤层上覆地层厚度,使煤变质程度和煤储层压力增加,促进煤生烃作用和煤层气吸附保存;生烃期后的构造抬升作用则使煤层上覆地层遭受剥蚀,煤储层卸压,并促使裂隙发育,导致煤层气解吸、逸散和逃脱[2]。
1.2 埋深的影响煤层气的赋存与压力成正相关关系,与温度成负相关关系。
即随着压力的增加,有利于煤层的保存;随着温度的升高,煤层气易处于游离态。
随着煤储层深度的不断加大,储层压力与温度均不断增加,压力的增加对煤层气的赋存有着积极的正效应,温度的升高对煤层气的赋存产生负效应。
埋深增加时,压力的正效应大于温度的负效应,煤层气的赋存量随着深度的增加不断增加。
但当埋深增加到一定程度,煤层气的压力正效应小于温度的负效应,不利于煤层气的赋存。
另外,随着埋深的增加,储层的物性不断降低,有利于煤层气的赋存[3]。
1.3 水文条件的影响煤储层一般含有大量的水。
水利作用对煤层气的保存既有一定的积极作用,又有一定的破坏作用。
在水力运移过程中煤层气发生逸散破坏,主要存在于断层构造附近。
水力封堵作用对煤层气的赋存有着积极的作用,主要存在于构造简单的向斜。
1.4 物性的影响煤层物性条件主要包含了煤变质程度、煤层厚度以及煤体结构等。
煤层的变质程度直接对煤的生气量有直接关系,并且影响着煤层的孔隙度、渗透率。