4 储层压力与吸附性
- 格式:ppt
- 大小:596.50 KB
- 文档页数:46
页岩吸附性能及作用规律霍培丽;张登峰;王倩倩;李伟;陶军;王浩浩;彭健【期刊名称】《化工进展》【年(卷),期】2016(35)1【摘要】页岩气(主要组分为甲烷)作为一种新兴的非常规天然气,其对于优化能源消费结构、缓解能源对外依存度具有重要意义。
相关研究表明,吸附态是页岩气的主要赋存形态,因此明确页岩吸附性能及作用规律是页岩气有效开采的重要前提。
为此,本文结合国内外相关研究工作,分析了页岩的吸附特性,归纳了影响页岩吸附能力的因素,指出了页岩及页岩气后续研发方向。
分析表明:页岩储层内部页岩气的赋存形态主要包括游离态、溶解态和吸附态,其中吸附态页岩气含量至少占页岩气总含量的40%;页岩气吸附量与页岩储层理化性质、储层温度和压力均有关。
虽然国内外已对页岩气开展大量研究工作,但是相比于煤层气等非常规天然气研究仍显不足。
为此,关于页岩吸附性能及作用规律需要在以下方面开展研究工作:①进一步探明页岩储层地质特征;②深入明确甲烷和页岩之间的流固作用关系;③利用页岩对甲烷和 CO2吸附性能的差异,推进注入 CO2强化页岩气采收率技术。
%Shale gas,a typical unconventional natural gas mainly consisting of methane,is of great importance to optimize energy consumption structure and to mitigate energy dependence on import. Previous study has shown that shale gas is present in shale reservoir mainly due to adsorption. Thus,a review of adsorption performance of shale is of importance for effective exploration of shale gas. In this work,the recent research progress of adsorption performance of shale is summarized. The adsorptionmechanism of shale gas is analyzed. The future work focused on shale and shale gas is also indicated. Shale gas in shale reservoir is accumulated as free state,dissolved state and adsorbed state. The shale gas in adsorbed state accounts for more than forty percent of the total amount of shale gas. Shale gas reserve is greatly dependent on physico-chemical characteristics,temperature and pressure of shale reservoirs. Although investigations on shale gas have been initiated,the depth and scope of study is still inferior to other unconventional natural gas,such as coal-bed methane. Thus,future investigations on adsorption performance of shale could include①exploration of the geologic characteristics of shale gas reservoirs,②elaboration of fluid-solid interaction between methane and shale,and③further implementation of CO2 sequestration in shale reservoirs with enhanced shale gas recovery due to superior adsorption performance of CO2 to methane.【总页数】9页(P74-82)【作者】霍培丽;张登峰;王倩倩;李伟;陶军;王浩浩;彭健【作者单位】昆明理工大学化学工程学院,云南昆明 650500;昆明理工大学化学工程学院,云南昆明 650500;昆明理工大学化学工程学院,云南昆明 650500;太原理工大学矿业工程学院,山西太原 030024;昆明理工大学化学工程学院,云南昆明 650500;昆明理工大学化学工程学院,云南昆明 650500;昆明理工大学化学工程学院,云南昆明 650500【正文语种】中文【中图分类】P66【相关文献】1.吸附性碳材料对水中痕量邻苯二甲酸二甲酯的吸附性能及特征研究 [J], 杜尔登;崔旭峰;宋澄杰;李香青2.煤基质表面官能团对二氧化碳及甲烷吸附性能作用规律的研究进展 [J], 张锦;张登峰;霍培丽;降文萍;杨振;杨荣;李伟;贾帅秋3.油页岩热解过程中微量元素迁移及其作用规律 [J], 何璐;王丽;马跃;李术元4.页岩吸附性能及孔隙结构特征——以四川盆地龙马溪组页岩为例 [J], 薛华庆;王红岩;刘洪林;闫刚;郭伟;李小龙5.氧氯化催化剂的吸附和反应性能及其活性位置——Ⅰ.氧氯化催化剂对HCl、乙烯和氧的吸附性能及吸附位置 [J], 蔡小海;谢有畅;桂琳琳;唐有祺因版权原因,仅展示原文概要,查看原文内容请购买。
页岩储层润湿性及孔隙结构对吸附特征的影响范青云【摘要】采用氮气吸附法和高压压汞法对基质孔隙和有机质孔隙进行分类,并构建了2个分段函数模型对吸附特征进行描述.结果表明,有机质孔隙表面为油润湿,基质孔隙表面为水润湿,且水相接触角和油相铺展程度差异较大.在储层温度和压力条件下,页岩气属于气相多层吸附,采用Langmuir单分子层模型和L-F多分子层模型组成的分段函数拟合程度更高.【期刊名称】《重庆科技学院学报(自然科学版)》【年(卷),期】2016(018)005【总页数】4页(P10-13)【关键词】润湿性;孔隙结构;赋存场所;多层吸附;分段函数【作者】范青云【作者单位】中国石油长城钻探公司地质研究院,辽宁盘锦124010【正文语种】中文【中图分类】P618.13页岩气在储层中主要以自由气和吸附气2种状态赋存[1-3]。
统计数据表明,页岩储层中吸附气含量占总气量的20%~85%[4-6]。
页岩气井生产过程中优先采出的是游离气,当页岩气藏的压力降至临界解吸压力时,吸附在孔隙表面的气体开始解吸,页岩气井先期产量取决于游离气含量及流动机理,后期稳产阶段取决于吸附气含量及解吸附速度[7]。
页岩气藏压力具有迅速降低的特点,因此,页岩储层的吸附能力评价对于页岩气井能否效益开发具有重要意义。
学者们通过等温吸附实验对页岩储层吸附能力进行了评价[8-10],但采用单分子层吸附理论的Langmuir模型或其变形对等温吸附曲线进行拟合时常常无法拟合后期数据点。
在储层压力和温度条件下页岩气处于超临界状态,呈现气相多层吸附的特点,因而不能使用单分子层吸附模型来加以描述[11]。
为此,根据有机质是吸附气唯一赋存场所的论证,结合有机质孔隙和基质孔隙尺寸的研究结果,考虑多层吸附理论的吸附过程,建立了2个分段函数模型来描述页岩储层吸附规律,并对该模型进行了验证。
页岩储层是在海洋、湖泊等环境下沉积形成的泥页岩层,岩石基质表面润湿性为水湿,而页岩岩石中含有有机质,有机质孔隙表面润湿性为亲油,故储层表现出斑状润湿[12]。
储层“四性”关系与电测油层的解释五、储层“四性”关系与电测油层的解释(一)、储层的“四性”关系储层的“四性”关系是指储层的岩性、物性、含油性与电性之间的关系。
沉积相是控制岩性、物性和含油性的主要因素,电性是对其三者的综合反映,不同的沉积相带,决定了不同岩性、物性和含油性,并决定了不同的电性特征。
只有正确地认识岩性,准确地掌握沉积环境、沉积规律和所处的沉积相带,认清各种岩性在电测曲线上的反应,才能正确地认识它的物性和含油性,才能与电性特征进行有机的结合,正确地进行油水层判断,提高解释符合率和钻井成功率。
测井曲线能反映不同的岩性,尤其对储集层及其围岩有较强的识别能力。
南泥湾油田松700井区长4+5、长6储集层测井显示:自然电位曲线为负异常,自然伽玛低值,微电极两条曲线分开,声波时差曲线相对较低,而且比较稳定,电阻率曲线随含油性不同而变化。
泥岩表现为:自然电位为基线,自然伽玛高值,微电极两条曲线重合,声波时差曲线相对较高,且有波动,电阻率曲线表现为中-高阻。
过渡岩性的特征界于纯砂岩与泥岩之间。
储层的钙质夹层显示为,声波时差低值,自然伽玛低值,电阻率高值;而泥质、粉砂质夹层显示为,自然伽玛增高,电阻率增大。
普通视电阻率曲线的极大值对应高阻层底界面。
感应曲线及八侧向曲线在储集层由于侵入而分开,而在泥岩及致密层3条曲线较接近。
但是,由于该区大部分井采用清水泥浆,所以,井径曲线在渗透层曲线特征不明显,微电极曲线在渗透层特征不明显。
长4+5储层岩性致密,渗透率值比较集中,在渗透性较好的储层段,一般含油性较好。
长4+5油层组含油层的曲线特征比较明显,油、水层的特征总体上便于识别。
电阻率曲线是识别油水层最重要的曲线。
理论上来说,感应曲线因其在地层中的电流线是环状的,那么,地层的等效电阻是并联的,它比普通视电阻率曲线及侧向测井更能识别相对低阻的地层。
所以,一般最好用感应测井曲线识别油水层。
油层电阻率幅度大,含油段的储层电阻率是水层电阻率的1.5—4倍,深、浅探测幅度差小,含油层的深感应电阻率大致为50—150Ω•m。
2019年第2期西部探矿工程115尔林兔井田主煤储层特征及地质控制因素分析李鹏飞",陈小军,邹海江(陕西省煤层气开发利用有限公司地质研究院分公司,陕西西安710065)摘要:根据煤田地质勘探资料及煤层气参数井的成果,对陕北侏罗纪煤田尔林兔井田煤储层特征及地质控制因素进行分析该矿区地质构造简单,主力煤层厚度大且稳定,煤的变质程度、围岩的封闭性较差是影响本井田内气含量低的关键性因素。
通过对井田内3口煤层气参数井主煤层2二5"煤层进行储层吸附性、渗透率及压力等方面的测试和研究,结果表明,在当前技术条件下,尔林兔井田煤层气资源不具备开发利用价值关键词:控制因素;煤储层特征;尔林兔井田;陕北侏罗纪煤田中图分类号:P618.ll文献标识码:A文章编号:1004-5716(2019)02-0115-031地质概况尔林兔井田位于陕北侏罗纪煤田中部的榆神矿区,地层区划属华北地层区鄂尔多斯盆地分区,构造单元处于鄂尔多斯宽缓的东翼——陕北斜坡上,井田内地层平缓,为一走向北西倾向南西的单斜.倾角小于1。
,地质构造简单’延安组是本区的含煤地层,平均厚度236.27m,为一套陆源碎屑沉积,共赋存煤层7〜24层(包括煤线),其中具有对比意义的煤层共15层,平均总厚度20.84m,含煤系数为&82%0可米煤层共11层,主要可采煤层5层,分别为2=3=4=5353可采煤层平均总厚度18.92m,含煤系数为&01%。
2亠煤层赋存于延安组第四段顶部,煤层埋深272-620m,厚度0.75〜&48m,平均4.12m。
5"煤层赋存于延安组第一段顶部,煤层埋深为420〜783m,厚度0.83〜9.04m,平均6.01m°两个主煤层厚度变化小,且规律性较明显,结构较简单,煤类单一,煤质变化小,为全区稳定可采煤层。
2煤储层岩石学特征区内主煤宏观煤岩组分由镜煤、亮煤、暗煤和丝炭组成,且以亮煤和暗煤为主,镜煤为线理状、细条带状和透镜状,丝炭多沿层面分布;条带状结构明显.内生裂隙较发育,宏观煤岩类型以半亮煤和半暗煤为主,可见暗淡煤和极少量光亮煤,区内主煤有机显微组分总量变化于96.1%〜97.8%之间;惰质组综合平均值为34.5%〜61.5%;镜质组综合平均值为32.3%〜61.5%;壳质组综合平均值为0.7%〜3.8%。
潘谢东区块煤层气富集地质控制因素研究
彭金宁;傅雪海
【期刊名称】《天然气地球科学》
【年(卷),期】2007(18)4
【摘要】从构造、煤层埋深和水文地质条件等3个方面探讨了淮南煤田潘谢东区块煤层气富集的地质控制规律,指出现今煤层含气量的分布规律体现出褶皱控气的特征,但不同煤层因构造煤发育程度的差异,其含气性在不同褶曲部位有所不同;煤层气含量总体上受储层压力的控制,但埋深增加和储层温度升高,吸附性降低,煤层气含量随埋深增加的下限深度因褶曲和煤层有所不同;区内断层的富水性弱,断层两侧裂隙较为发育,煤层气有所逸散,断层带煤层气含量稍低。
【总页数】4页(P568-571)
【关键词】煤层气;控制规律;水文地质条件;潘谢东区
【作者】彭金宁;傅雪海
【作者单位】中国石化勘探开发研究院无锡石油地质研究所;中国矿业大学资源与地球科学学院
【正文语种】中文
【中图分类】TE132.2
【相关文献】
1.三交区块水文地质条件对煤层气富集高产控制作用 [J], 陈跃;汤达祯;田霖;许浩;陶树;李勇;郭乐乐
2.延川南区块煤层气富集规律及主控地质因素研究 [J], 郑健
3.沁水盆地和顺区块煤层气富集地质控制因素分析 [J], 周芊芊
4.沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素 [J], 王勃;姚红星;王红娜;赵洋;李梦溪;胡秋嘉;樊梅荣;杨春莉
5.QS盆地HS区块煤层气富集控制因素研究 [J], 王媛;宋立军;周大伟;王蕊;徐荣忠因版权原因,仅展示原文概要,查看原文内容请购买。
湘中冷水江矿区煤层气地质条件分析
杜江;蔡宁波;张良平
【期刊名称】《煤炭技术》
【年(卷),期】2024(43)4
【摘要】基于勘探资料和实验数据,分析了冷水江矿区煤层含气性和储层特征,估算了煤层气资源量。
研究表明:研究区3、5煤层累计厚度3.5 m。
3、5煤层含气量一般大于8 m^(3)/t,最高可达20.37 m^(3)/t。
3、5煤层煤体结构较破碎,孔隙、裂隙发育,渗透性差,吸附性好,储层压力适中。
研究区煤层气地质资源量28.37亿m^(3),资源丰度0.61亿m^(3)/km^(2),资源前景较好。
【总页数】5页(P114-118)
【作者】杜江;蔡宁波;张良平
【作者单位】湖南省地球物理地球化学调查所;湖南省地质新能源勘探开发工程技术研究中心
【正文语种】中文
【中图分类】P618.11
【相关文献】
1.我国南方潜在的高煤级煤煤层气开发基地-贵州五轮山矿区煤层气地质条件浅析
2.平顶山矿区十三矿二_1煤煤层气地质条件分析
3.沁南地区寺河矿区煤层气地质条件分析
4.新疆阜康矿区煤层气开发地质条件分析
5.淮北煤田宿东矿区芦岭煤矿煤层气赋存地质条件及主控因素分析
因版权原因,仅展示原文概要,查看原文内容请购买。
煤层甲烷等温吸附拟合模型毋亚文;潘结南【摘要】我国煤层气储量较为丰富,只有更好的了解等温吸附曲线,才能更好估计最大吸附量及采收率等.为了找到更为合适的拟合方程,对单层吸附理论的代表模型Langmuir方程和以微孔填充理论为基础的DR方程进行对比研究,并针对4种不同煤阶(Ro,max介于0.60%~3.18%)煤样吸附甲烷的数据进行了拟合.结果表明:对Langmuir万程中的VL,pL先计算后拟合,可以使两参数的物理意义更加准确,方程拟合更有意义;对DR方程中的V0进行计算,能够提高其他参数拟合的准确性;对DR方程中的p0,引用虚拟饱和蒸气压的概念,并对比5种计算方法,得出Amankwah法最为合适.通过对比Langmuir和DR方程发现,DR方程的拟合效果更好,与实际数据更接近.%China is relatively rich in coalbed methane.A better estimation of maximum adsorption capacity and recovery ratio is based on a better understanding of isothermal adsorption curve.This paper is going to make a comparative study on Langmuir equation,the representative theory of monolayer adsorption theory,and DR equation,which is based on micropore filling theory on an attempt to find a more suitable model fitting equation.Data of the coal sample from four different coal ranks (R from 0.60% to 3.18%) are fitted.The result shows that VL and PL would be more accurate in physical significance and the equation fitting would be more meaningful if the two parameters are calculated before fitted;the accuracy of other parameters is improved while Vo in DR equation is calculated;and Amankwah method is the most suitable method for calculating P0 after a comparison of five calculation methods byintroducing the concept of virtual saturated vapor pressure.DR equation works better in fitting effect and comes nearer to the actual data after a comparison between Langmuir and DR equation.【期刊名称】《煤炭学报》【年(卷),期】2017(042)0z2【总页数】7页(P452-458)【关键词】煤层气;等温吸附;Langmuir方程;DR方程【作者】毋亚文;潘结南【作者单位】河南理工大学资源环境学院,河南焦作454003;中原经济区煤层(页岩)气河南省协同创新中心,河南焦作454003;河南理工大学资源环境学院,河南焦作454003;中原经济区煤层(页岩)气河南省协同创新中心,河南焦作454003【正文语种】中文【中图分类】P618.11根据国土资源部新一轮油气资源评价结果,我国五大聚气区带,38个含煤盆地,68个聚煤单元,2 000 m以浅的煤层气资源量约为36.8×1012 m3[1]。
第一章绪论1、天然气:(广义)所谓天然气是指自然界一切天然生成的气体。
(狭义)目前仅限于地壳上部存在的各种天然气体,包括烃类气体和非烃类气体。
性评2、天然气的来源机制,可分为无机成因气和有机成因气。
天然气的成因分类可分为4种:生物成因气(细菌气)、油型气(油成气)、煤型气(煤成气)、无机成因气。
3、煤型气(煤成气):指煤系有机质(包括煤层和煤系地层中的分散有机质)在变质过程中(即热演化)形成的天然气,也称煤成气。
包括煤系气与煤层气两类。
煤系气:是指从生气母岩(煤系地层及煤层)中运移出来聚集在储集层中甚至形成气藏的煤型气,一般均经过较大规模运移。
属常规天然气。
❤煤层气:是指赋存于煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解于煤层水中的烃类气体。
属非常规天然气范畴。
(也称煤层吸附气、煤层甲烷或煤层瓦斯。
)4、三重国家需求:资源利用/矿山安全/环保5、全国累计探明面积777km2,探明储量1343亿m3,可采储量621亿m3,初步探明374亿m3。
❤6、我国煤层气研究开发存在的主要问题:①预测理论亟待完善。
②产能预测技术有待解决。
③开发工艺亟待突破。
④投入严重不足。
⑤煤层气基础设施建设不完善。
7、我国煤层气资源存在低压、低渗、低饱和的“三低”现象以及地质变动的特殊性。
我国煤储层的特点和难点:地史复杂、类型多样、改造强烈;低孔、低渗、低相渗、低压、高非均质性。
第二章煤层气的物质组成、性质和利用❤1、煤层气有两种基本成因类型:生物成因和热成因。
生物成因气:各类微生物经过一系列复杂作用过程导致有机质发生降解而形成的。
热成因气:指随着煤化作用的进行,伴随温度升高、煤分子结构与成分的变化而形成的烃类气体。
2、生物成因气阶段:①早期生物气(泥炭~褐煤阶段,Ro,max<0.5%)②热解型煤层气(褐煤~瘦煤阶段,Ro,max0.5~2.0%)以含氧官能团的断裂为主③裂解型煤层气(瘦煤~二号无烟煤,2.0%<Ro,max<3.7%)主要以裂解的方式及芳香核缩合为主④次生生物成因煤层气(褐煤~焦煤,0.3%<Ro,max<1.5%)3、在含煤盆地中,次生生物作用活跃并影响气体成分的深度间隔称作蚀变带,一般位于盆地边沿或中浅部;不发生蚀变的气体一般位于盆地深部,称为原始气带。