第五章_煤层气储层压力、吸附、解吸特征
- 格式:ppt
- 大小:677.00 KB
- 文档页数:24
煤层气藏保存条件煤层气藏定义:含有一定量煤层气,具有相对独立流体流动系统的煤体或地质体。
即煤层气藏是煤层气聚集的最小单元,具有统一压力系统。
煤层气作为开采利用对象,煤层气藏必须具有一定量煤层气。
其处于同一个压力系统,受相同流体流动系统控制,属于最基本单元。
该地质体不仅指煤层,同时包含了煤层顶、底板。
煤是一种有机质高度富集的烃源岩, 生烃能力很强,其生气能力远超煤层自身储气能力,因而决定煤层含气量的主要因素不是煤层生气能力, 而是其储气能力与保存条件。
保存条件主要指盖层的封盖能力、水动力条件和构造运动等因素。
在地质历史中,上述地质作用主要是通过改变地层的温压条件而改变吸附与解吸和吸附与溶解之间的平衡,来控制地层中的煤层气赋存形式,从而影响煤层气的保存与富集。
1、较强的吸附能力是煤层气富集的前提煤层气以溶解气、游离气和吸附气三种方式赋存于煤层的双孔隙系统中:割理系统和微孔隙系统。
割理孔隙度一般都较小且被水充满,溶解气、游离气较少,煤层气主要以吸附状态存在于煤的基质微孔中,吸附气占总含气量的90~95%以上,正是由于煤的这种吸附特性决定了煤的储集能力。
在地层条件下,吸附气、游离气和溶解气处于一种动态平衡过程中,在达到吸附平衡后,吸附量是压力和温度的函数。
但煤对气体的吸附属于物理吸附,吸附与解吸是可逆的,当温度和压力条件改变后,吸附量也会改变:当压力下降或温度升高时,吸附气就会解吸,转化为游离气。
同样,在地层水交替作用下,原有的平衡条件也会被打破而使吸附气越来越少。
由于吸附气的活性较游离气和溶解气弱得多,更易保存,因此煤的吸附能力越强,吸附量越大,越有利于煤层气的保存。
各种地质作用就是通过改变吸附与解吸及吸附与溶解的关系而影响煤层气的保存。
2、良好的封盖条件是煤层气保存的重要因素煤层气属于自生自储式,不需要初次运移,这就要求自生气开始,就需要有良好的封盖条件才能使煤层气得以保存。
盖层对于煤层气藏的作用主要是维持吸附与解吸的平衡,减少游离气的逸散和减弱交替地层水的影响。
第五章煤层气产出过程煤层气井的排采过程与常规天然气井显然不同,通常具有一个产气高峰期。
这种差异,起源于煤层气主要以吸附状态赋存。
第一节主要内容:在煤层气开采初期一般要进行“脱水”处理,即所谓的“排水降压”过程,目的是诱导煤层气的解吸、扩散、渗流作用由高势能方向往低势能方向连续进行。
一、煤层气流动机理煤层气产出包括三个相互联系的过程,即解吸、扩散与渗流。
地下水的采出使煤层气压力降低。
当煤层压力降低到一定程度时,煤中被吸附的气体开始从微孔隙表面分离,即解吸。
解析气浓度在解吸面附近较高,在裂隙空间中较低。
因此,煤层气会在浓度梯度的驱动下,通过孔隙—微裂隙系统向裂隙空间扩散。
在煤层中,可能有三种扩散机理:以分子之间相互作用为主的体积扩散,以分子—表面相互作用为主的Knudsen扩散,基质表面的吸附气层表面扩散。
按照煤层中发生的物理过程,煤层气产出相继经历了三个阶段:第一阶段,水的单相流。
在此阶段,煤层裂隙空间被水所充满,为地下水单相流动阶段。
第二阶段,非饱和单相流。
这一阶段,裂隙中为地下水的非饱和单相流阶段,虽然出现气—水两项阶段,单只有水相才能够连续流动。
第三阶段,气—水两相流。
随着储层压力下降和水饱和度降低,水的相对渗透率不断下降,气的相对渗透率逐渐升高。
最终,在煤层裂隙系统中形成了气—水两相达西流,煤层气连续产出。
上述三个阶段在时间和空间上都是一个连续的过程。
随着排采时间的延长,第三阶段从井筒沿径向逐渐向周围的煤层中推进,形成一个足以使煤层气连续产出的降压漏斗。
二、煤层气开采过程原始地层条件下,煤层及其围岩中地下水一般较多,储层压力大致等同于水头压力,气体在压力作用下吸附于煤层中。
当排水使储层压力降至临界解吸压力之后,煤层气开始解吸,并通过扩散进入裂隙系统产生流动。
1、煤层气井排水阶段煤层气井的排水阶段主要取决于临解比(临界解吸压力与储层压力之比)和煤层渗透率。
临解比大,所需的压降幅度就大,排水量多,排水时间相对较长。
实验四 煤层气的解吸特征一、实验目的掌握解吸法测试煤层气含量的方法;掌握损失气(逸散气)的推算方法;掌握吸附时间的计算方法。
二、实验内容1、逸散气量(损失气量)的推算逸散气量(损失气量)与取心至样品密封解吸罐中所需时间有关,取心、装罐所需时间越短,则计算的逸散气量(损失气量)越准确。
当逸散气量(损失气量)不超过总含气量的20%时,直接法所测的含气量比较准确。
解吸气和逸散气(损失气量)是煤层气的可采部分,因此准确测定逸散气(损失气量)至关重要。
美国矿业局采用的直接法计算逸散气的理论依据是:煤体内的空隙是球形的,且孔径的分布是单峰的,气体在孔隙中的扩散是等温的且服从菲克第一定律,所有孔隙中气体的初始浓度相同,球体的边界处浓度为零。
则解吸最初几个小时释放出的气体与解吸时间的平方根成正比,总的解吸量可由下式表示:01t t a V V ++=总式中:总V —总解吸量,ml ;1V —逸散气量,ml ;a —系数;t —解吸罐解吸时间,min ;0t —逸散时间,min 。
令0t t T +=,则上式写为:aT V V +=1总其中实测解吸气量aT V =2。
由此在解吸气量与时间的平方根的图中(一般取前10个点),反向延长到计时起点,即可估算出逸散气量(图4-1)。
图4-1 逸散气量的估算直接法的计时起点与钻井液类型有关,对于气相或雾相取心,假设取心筒穿透煤层即开始解吸,损失时间(逸散时间)为取心时间、起钻时间和样品到达地面后密封在解吸罐中之前时间的总和。
对于清水取心,假设当岩心提到距井口一半时开始解吸,这种情况下,损失时间为起钻时间的一半加上地面装罐之前的时间。
2、吸附时间的计算吸附时间通常由煤样的自然解吸实验(美国的直接法)来确定。
1)计算累计达到总解吸气量的63.2%时所对应的气体体积V 63.2%=总解吸气量(STP )×63.2% 2)计算累计达到总解吸气量的63.2%时所对应的时间在煤样的自然解吸实验中找到该样品累计达到总解吸气量的63.2%时所在的时间区间t 1和t 2,其所对应的累计解吸量为V t1和V t2,则:121%2.63121)(t t t V V V V t t t --⨯-+=τ三、实验报告根据煤样的自然解吸实验(美国的直接法,表4-1,煤层段为清水钻进)推算损失气(逸散气)含量和计算吸附时间。
煤体结构对煤层气吸附-解吸及产出特征的影响摘要:本文旨在探讨煤体结构对煤层气的吸附-解吸及产出特征的影响。
通过实验研究,结果表明,煤体结构对煤层气吸附-解吸及产出特征具有重要意义,主要体现在以下几个方面:1)小粒径煤体表面纳气(吸附)能力强,对于吸附和解吸有重要影响;2)煤体的结构类型、孔隙侵蚀和水分含量会影响煤层气的产出特征;3)气体流动性能与孔隙尺寸大小有关;4)煤体的结构特征会影响煤层气的吸附-解吸及产出特征。
本文研究结果为开发煤层气提供了理论基础。
关键词:煤体结构;煤层气;吸附-解吸;产出特征正文:煤体结构是影响煤层气吸附-解吸及产出特征的重要因素,通常由煤体的外部特征(如结构类型、粒度、水分含量等)和内部特征(如孔隙径、孔隙空间结构和气体流动性能等)两个方面来描述。
1. 对于煤体的小粒径,表面积比大粒径煤体更大,可以有效地提高吸附和解吸能力。
实验证明,当粒径小于0.05mm时,煤体的吸附-解吸特征变化较大。
2. 煤体的结构类型、孔隙侵蚀和水分含量均会影响煤层气的产出特征,孔洞类型越多越复杂,产出率越高;水分含量越高,煤体的渗透性越强,可以有效降低煤层气的产出。
3. 气体流动性能与孔隙尺寸大小有关,孔隙尺寸小时,气体流动受到阻碍,影响煤层气的产出。
4. 最后,煤体的结构特征会影响气体的分布,同时也会影响煤层气的吸附-解吸及产出特征。
结论:煤体结构对煤层气的吸附-解吸及产出特征具有重要意义,因此,我们在建立煤层气模型和研究煤层气资源开发时应将其作为一个重要参考因素。
本文还探讨了另外两个因素对煤层气吸附-解吸及产出特征的影响,即压力和温度。
在实验条件下,压力的升高会增加吸附量,但也可能减少吸附特性的稳定性;温度的升高会提高解吸速率,从而改变吸附-解吸平衡点。
此外,随着温度的升高,气体的渗透度也会增加,结果会促进分布均匀的气体流动。
同时,压力和温度也会直接影响煤层气的产出。
实验研究表明,在某些情况下,随着压力的降低,煤层气的产出会减小,而温度的升高会提高煤层气的产出。
不同含水及负压条件下煤层气等温吸附解吸规律
煤层气等温吸附解吸规律是关于不同含水及负压条件下煤层气的吸附
解吸特性的一种定律。
它对于评价煤层气储层的渗流效率,及其与藏
层岩性特征的关系有着重要作用。
下面结合NSLQ(模型名称)等模
型分述煤层气等温吸附解吸规律:
1、吸附等温规律:煤层吸附容量随着负压和含水量的变化而变化,如果负压趋于0且/或含水量较高,煤层气会有较大的吸附容量;而负压
较大或含水量较低,煤层抽取的气体会减少,从而使吸附容量减少。
2、解吸等温规律:煤层气的解吸规律与吸附规律类似,当负压较大时,煤层气抽取容量会减少,而当负压趋于0且/或含水量较高时,煤层气
抽取容量会增加。
3、NSLQ模型等温规律:NSLQ模型研究发现不论是吸附还是解吸,
当当温度较高时,煤层气的吸附容量和解吸容量会增加,当温度较低时,吸附容量和解吸容量会减少。
4、煤层气吸附解吸动态变化:煤层气蕴藏储层的吸附和解吸是动态的,随着负压的变化,会造成吸附解吸状态的变化,负压较大时让煤层吸
附状态越来越强烈,而负压趋于0时驱动煤层气向外释放。
5、含水率、负压与吸附解吸:煤层气吸附解吸受负压和含水量影响较大。
上述模型研究表明,当含水量低时,煤层气吸附容量减少;负压越大,煤层气的吸附量越强;当含水量较高时,煤层气获取的吸附量和解吸量增加。
以上就是关于不同含水及负压条件下煤层气等温吸附解吸规律的相关研究内容,可以帮助我们更好的理解煤层气的储量及渗流能力,提高煤层气藏层的开发利用效率。
煤的吸附解吸曲线通常指的是煤对气体(如甲烷)的吸附和解吸过程中的关系曲线。
这些曲线可以用于了解煤储层中甲烷的吸附和释放行为,这对于煤层气的开发和利用具有重要的意义。
煤的吸附解吸曲线通常包括以下关键参数和特性:
1. 吸附等温线:
- 描述在特定温度下,煤对气体的吸附量随着气体压力的变化而变化的曲线。
这反映了煤对气体的吸附能力。
2. 解吸等温线:
- 描述在特定温度下,已吸附的气体在气体压力减小的情况下从煤中解吸的曲线。
这反映了储层中甲烷的释放行为。
3. 吸附解吸等温线的斜率和形状:
- 吸附解吸等温线的斜率和形状反映了煤与气体相互作用的强度和方式。
曲线的形状和斜率的变化可以提供关于储层中气体吸附和解吸机理的信息。
4. 临界吸附压力:
- 描述气体在特定温度下开始吸附的最低压力。
这对于了解气体在储层中的启动吸附条件很重要。
这些曲线通常在实验室条件下通过吸附解吸实验测定。
研究煤的吸附解吸曲线有助于了解煤层气的形成、储存和释放机制,为煤层气资源的勘探和开发提供科学依据。
需要注意的是,实际煤层气储层的吸附解吸行为受到多种因素的影响,包括煤的孔隙结构、温度、压力等,因此煤层气勘探和开发中还需要考虑更多的地质和工程因素。
收稿日期:20120217;改回日期:20120430基金项目:国家重大专项技术“大型油气田及煤层气开发”之“胜利油田薄互层低渗透油田开发示范工程”部分内容(2011ZX05051)作者简介:张杰(1987-),男,2008年毕业于中国石油大学(华东)电气工程及其自动化专业,现为该校油气田开发工程专业在读硕士研究生,主要从事采油工程及油田化学方面的研究工作。
DOI :10.3969/j.issn.1006-6535.2012.06.031煤层气气驱吸附及解吸规律实验研究张杰1,林珊珊1,曲永林2,王荣3,李登峰1(1.中国石油大学(华东),山东青岛266580;2.中油大港油田公司,天津300280;3.中海油田服务股份有限公司,河北廊坊065201)摘要:为研究煤层气的赋存形式和气驱原理,通过实验测量了煤层气注气开采中主要涉及的3种气体CH 4、CO 2和N 2的吸附及解吸量,并利用Langmuir 模型和BET 模型进行实验处理拟合等温曲线,比较3种气体吸附性的强弱和模型的适用性,得出气驱煤层气的机理。
此外,还通过实验研究了注入不同气体后煤岩渗透率的变化情况,定性分析了不同气体驱替煤层气时流量的大小以及不同气体驱替的效果。
研究结果表明,开采煤层气时可利用CO 2和N 2的竞争吸附将煤层气采出,N 2具有增渗作用,CO 2具有减渗作用。
关键词:煤层气;气驱;吸附;解吸;渗透率中图分类号:TE312文献标识码:A文章编号:1006-6535(2012)06-0122-04引言煤层气气驱技术是指将驱替气体注入到深部不可开采的煤层中,同时将储藏在煤层中的煤层气(主要成分为CH 4)置换出来[1]。
该过程不仅减少了温室气体CO 2的排放,同时还大幅度提高了煤层气采收率,因此气驱替煤层气技术越来越受到很多国家的重视[2]。
美国、加拿大、日本、欧盟等纷纷开展研究,并先后进行了不同规模的现场试验[3-5]。
第五章煤储层含气性及其地质控制含气量是确定煤层气资源量必不可少的参数,与储层压力和吸附等温线结合起来使用,还可以预测煤层气的产能。
值得注意的是,并不是每个含煤区,每个煤层都赋存有可供开采的煤层气。
因此,必须预先测定煤层的含气量。
第一节煤储层含气量的构成煤层含气量测定方法目前为大多数人所接受的是美国矿业局(USBM)的直接法(Kissel 等,1973)。
我国在此基础上作了大量修改,由抚顺分院等单位制定了“煤层瓦斯含量和成分测定方法”(MT-77-84、MT-77-94)。
新的煤层气含量测定方法(GB/T 19559—2004)见附录五。
一、阶段含气量1、USBM直接法USBM直接法测定的煤层含气量是由三阶段实测气量构成,即逸散气量、解吸气量和残留气量。
逸散气量:指从钻头钻至煤层到煤样放入解吸罐以前自然析出的天然气量。
这部分气体无法直接测得,通常依据前两小时的解吸资料推测。
逸散气的体积取决于钻孔揭露煤层到把煤样密封于解吸罐的时间、煤的物理特性、钻井液特性、水饱和度和游离态气体含量。
缩短取心时间是准确计算逸散气的有效途径之一,如采用绳索取心对于600m的井深只需几分钟,这就大大降低了逸散气的体积。
不同物理特性的煤具有不同的解吸速率,如碎粉煤、糜棱煤由于扩散距离短造成逸散气体积大。
钻井液的比重较大时对于煤层气的逸散有阻滞作用。
如果煤储层被水饱和,游离态煤层气含量低,则逸散气体积小;相反如果煤储层未被水饱和,游离态煤层气含量高,则逸散气体积较大。
解吸气量:解吸气是指煤样置于解吸罐中在正常大气压和储层温度下,自然脱出的煤层气量。
终止于一周内平均解吸气量小于10ml/d或在一周内每克样品的解吸量平均小于0.05ml/d,实测的解吸气量只是总解吸气量的一部分,总解吸气量应包括逸散气量。
残留气量:是指充分解吸结束后残留在煤样中的气量。
将样品罐加入钢球后密封,放在球磨机上磨2h,然后按测试解吸气的程序测残留气。
残留气或者是由于扩散速率极低所致,或者是在一个大气压下煤层气处于吸附平衡状态,不再解吸。
实验五煤储层的解吸特征煤储层的三元孔、裂隙结构决定了煤层甲烷解吸动力学的阶段性,在排水降压作用下,煤储层宏观裂隙内压降较快,显微裂隙、大孔隙次之,而微孔隙则压降缓慢。
当储层压力低于临界解吸压力以后,甲烷首先在宏观裂隙内开始解吸,然后依次是显微裂隙、大孔隙、微孔隙。
煤层甲烷不断由吸附相变成游离相。
解吸与吸附作用几乎是完全可逆的过程,同样可用Langmuir 等温吸附定理来描述。
当煤储层压力降低到一定程度,煤中被吸附的甲烷开始与微孔表面分离,这个过程叫解吸。
解吸是煤中吸附气由于储层压力降低而转变成游离气体的过程,在压降过程中,吸附/解吸动态平衡结果是造成吸附量减少。
煤储层解吸特性常用可解吸率或可解吸量和解吸速率来衡量,解吸总量由阶段解吸量组成,解吸速率往往采用吸附时间来定量表示。
一、解吸率与解吸量我国煤层气井和美国煤层气解吸资料由3部分构成,即逸散气量、解吸气量(解吸至一周内平均每天小于10cm3时为止)、残余气量。
逸散气量、解吸气量之和为可解吸量,其与总含气量之比称为可解吸率。
我国前期煤田地质勘探资料,瓦斯(煤层气)解吸资料多由四部分构成,即损失气量(V1)、现场两小时解吸量(V2)、真空加热脱气量(V3)和粉碎脱气量(V4)。
通常,将损失气量与解吸气量之和与总气量之百分比称为解吸率,解吸率与该深度下实际含气量的乘积称为解吸量。
沁水盆地中南部煤储层的解吸特性变化较大,煤层甲烷解吸率分布范围为15.6 ~68.0%(表5-5),平均为37.82%,其中,3煤解吸率、解吸量基本上随埋深增加而增大(图5-16);15煤在埋深500m左右解吸率最高(图5-17)。
层域上,15煤解吸率、解吸量大于3煤,3煤平均解吸率为30.9%,15煤平均为37.8%,区域上,屯留、大宁解吸率最低,樊庄次之,但大宁、樊庄、屯留井田含气量大,二、吸附时间吸附时间表示甲烷通过煤基质块进入裂隙的扩散时间。
由罐装煤样解吸实验求得,定义为实测解吸气体体积累计达到总解吸气量(STP:标准温度、压力)的63%时所对应的时间。
西安科技大学硕士学位论文不同温度下煤层气吸附/解吸特征的实验研究姓名:王鹏刚申请学位级别:硕士专业:矿产普查与勘探指导教师:马东民@论文题目:不同温度下煤层气吸附/解吸特征的实验研究专 业:矿产普查与勘探硕 士 生:王鹏刚 (签名) 指导教师:马东民 (签名)摘 要煤层气吸附/解吸机理的研究是煤层气开发技术发展的关键理论。
在长期的等温吸附/解吸实验研究中我们发现,增压吸附与降压解吸过程中,随着压力变化实验对象的自由空间皆伴随温度的变化;吸附过程与解吸过程相同压力平衡点自由空间的温度变化量存在差异。
煤层气的开采现场,基本地质条件、工艺技术、排采制度相同的两口生产井产气能力差别很大。
尤其是不同季节进行压裂作业的垂直井,由于大量的前置液以微小的温度差异进入煤层,相邻两口井产气时间有时相差3月之久。
这些都说明了煤层气吸附/解吸过程中有温度效应。
温度对于煤层气吸附/解吸作用的影响,属于当前煤层气研究的盲区,需要专门来做实验进行分析。
论文通过3个煤样在系列温度点的等温吸附/解吸实验,得到不同阶煤煤样的等温吸附/解吸曲线,利用Langmuir模型拟合吸附实验数据,Weibull模型拟合解吸实验数据,并根据Clausius-Clapeyron方程计算吸附/解吸过程的吸附热,以此分析煤层气吸附/解吸的热效应机制,而后总结了温度对煤层气吸附/解吸的影响。
主要结论为:(1)采用Langmuir模型能够较好的描述等温吸附实验数据,而对于等温解吸过程,Weibull模型是目前最好的模型;(2)增压吸附是一个持续放热的过程,吸附量越大,放出热量越大;解吸作用是非自发的吸热过程,吸收热量小于吸附过程同平衡压力点放出的热量,解吸过程促使储层温度降低,抑制了解吸作用的持续进行;(3)随着温度的升高,解吸率增大,温度升高促进了解吸作用。
在3.5~5Mpa中高压阶段,温度增高比压力降低对解吸作用的影响更敏感。
而此压力范围属于排采的排水阶段,对排采制度的制定十分重要。
煤层气吸附解吸机理研究【摘要】随着社会的发展,开拓新能源已是各国政府努力发展的方向,煤层气因为具有新能源效应、环保效应、煤炭生产安全效应及领域广阔的商业效应,而成为各国的主要发展对象,煤层气的勘探、开发受到了世界各国能源部门以及研究人员的高度重视。
本文试图对当前制约煤层气开发的因素和能源需求的分析,指出了研究煤层气的解吸吸附机理的意义。
通过分析国内外解吸吸附机理的研究历史和现状,例如煤层中的水分含量以及地层压力条件和温度条件等作了大量研究,希望为我国的煤层气实际开采提供可靠的理论依据。
【关键词】煤层气解吸吸附影响因素非常规天然气中煤层气(CBM)的储量占世界天然气总储量的30%以上。
煤层气(CBM)是成煤过程中生成,并以吸附和游离状态赋存于地下煤层及围岩的自储式天然气体。
由于我国的特殊国情,在不同学术时期或者因为外文资料的翻译原因等,造成CBM有不同的名字或者定义,比如煤层甲烷、瓦斯、煤层气等。
为方便表述,统一命名为煤层气,即CBM。
1 中国煤层气勘探开发问题分析众所周知,目前我国的沁水盆地中南部地区的煤层气的勘探开发利用发展较为快速,但其他地区的开发利用还停留在比较基础的阶段,因为:(1)由于起步较晚,我国的CBM基础理论一般是从美国的技术学习而来,虽然美国的技术相对成熟,但是中国的地质结构特殊,结合中国煤层自身特点的赋存条件的指导理论研究尚且不足;(2)石油天然气开发技术一直影响我国CBM的开发,我国的CBM开发工艺没有考虑到CBM独特的生储特性,没有做到具体问题具体分析。
资料显示,地质的演化或者现阶段地质的构造状况对CBM的开采影响十分巨大。
由于我国的含煤岩系是经历了多期构造作用的影响而保存,与其他国家大为不同。
煤体结构较为特殊,降低了煤层气的渗透性能且影响产能输出;同时,由于煤是自生自储,它与石油天然气的储层截然不同,多种因素制约着它的产能,例如CBM的勘探理论或者开采工艺技术,以及国家能源政策制约了对外合作,科技人才的短缺等。