【高中数学选修2-1】2.2.1椭圆及其标准方程
- 格式:ppt
- 大小:1.72 MB
- 文档页数:23
人教版高中数学精品资料2.2.1 椭圆及其标准方程课时演练·促提升A组1.若F1,F2是两个定点,且|F1F2|=6,动点M满足|MF1|+|MF2|=8,则点M的轨迹是()A.椭圆B.直线C.圆D.线段解析:由椭圆定义知,点M的轨迹是椭圆.答案:A2.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:方程可化为=1,表示焦点在y轴上的椭圆时,应满足>0,即m>n>0.所以是充要条件.答案:C3.设P是椭圆=1上一点,P到两焦点F1,F2的距离之差为2,则△PF1F2是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形解析:由椭圆定义知|PF1|+|PF2|=2a=8.又|PF1|-|PF2|=2,∴|PF1|=5,|PF2|=3.又|F1F2|=2c=2=4,∴|PF1|2=|PF2|2+|F1F2|2,∴△PF1F2为直角三角形.答案:B4.已知椭圆的焦点坐标为(0,-1),(0,1),且过点,则椭圆方程为()A.=1B.=1C.+y2=1D.+x2=1解析:由已知椭圆焦点在y轴上,设方程为=1(a>b>0).则2a==4,故a=2.又c=1,则b2=a2-c2=3,故椭圆方程为=1.答案:B5.已知椭圆的焦点是F1,F2,P是椭圆上的一动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A.圆B.椭圆C.直线D.抛物线解析:由题意,得|PF1|+|PF2|=2a(a>0是常数).∵|PQ|=|PF2|,∴|PF1|+|PQ|=2a,即|QF1|=2a,∴动点Q的轨迹是以F1为圆心,2a为半径的圆,故选A.答案:A6.若方程=1表示焦点在x轴上的椭圆,则m的取值范围是.解析:将方程化为=1,依题意,得8>2-m>0,解得-6<m<2.答案:-6<m<27.若椭圆=1的焦距为6,则k的值为.解析:由已知,得2c=6,∴c=3,∴c2=9,∴20-k=9或k-20=9,∴k=11或k=29.答案:11或298.若椭圆的焦点在y轴上,其上任意一点到两焦点的距离和为8,焦距为2,则此椭圆的标准方程为.解析:由已知,得2a=8,2c=2,∴a=4,c=,∴b2=a2-c2=16-15=1,故椭圆的标准方程为+x2=1.答案:+x2=19.已知椭圆=1(a>b>0)的焦点分别是F1(0,-1),F2(0,1),且3a2=4b2.(1)求椭圆的方程;(2)设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦值.解:(1)依题意知c=1,又c2=a2-b2,且3a2=4b2,所以a2-a2=1,即a2=1.所以a2=4.因此b2=3.从而椭圆方程为=1.(2)因为点P在椭圆上,所以|PF1|+|PF2|=2a=2×2=4.又|PF1|-|PF2|=1,所以|PF1|=,|PF2|=.又|F1F2|=2c=2,所以由余弦定理,得cos ∠F1PF2==.即∠F1PF2的余弦值等于.10.已知圆A:x2+(y+6)2=400,圆A内有一定点B(0,6),动圆C过点B且与圆A内切,求动圆圆心C的轨迹方程.解:设动圆C的半径为r,则|CB|=r.因为圆C与圆A内切,所以|CA|=20-r,所以|CA|+|CB|=20>12,所以点C的轨迹是以A,B两点为焦点的椭圆.因为2a=20,2c=|AB|=12,所以a=10,c=6,b2=64.因为点A,B在y轴上,所以点C的轨迹方程为=1.B组1.已知F1,F2是椭圆=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=4∶3,则三角形PF1F2的面积等于()A.24B.26C.22D.24解析:因为a2=49,所以|PF1|+|PF2|=2a=14.又|PF1|∶|PF2|=4∶3,所以|PF1|=8,|PF2|=6.又因为|F1F2|=2c=2=10,所以|PF1|2+|PF2|2=|F1F2|2,所以PF1⊥PF2.故△PF1F2的面积S=|PF1|·|PF2|=×8×6=24.答案:A2.设F1,F2是椭圆C:=1的焦点,在曲线C上满足=0的点P的个数为()A.0B.2C.3D.4解析:∵=0,∴PF1⊥PF2.∴点P为以线段F1F2为直径的圆与椭圆的交点,且此圆的半径为c==2.∵b=2,∴点P为该椭圆y轴的两个端点.答案:B3.F1,F2分别为椭圆=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是.解析:∵|OF2|=c,∴由已知得,∴c2=4,c=2.设点P的坐标为(x0,y0),由△POF2为正三角形,∴|x0|=1,|y0|=,代入椭圆方程得=1.∵a2=b2+4,∴b2+3(b2+4)=b2(b2+4),即b4=12,∴b2=2.答案:24.已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于点M,求点M的轨迹方程.解:如图,M是AQ的垂直平分线与CQ的交点,连接MA,则|MQ|=|MA|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,且|AC|=2,∴动点M的轨迹是椭圆,且其焦点为C,A.易知2a=5,2c=2,∴a=,c=1,∴b2=a2-c2=-1=,故动点M的轨迹方程为=1.5.已知椭圆的焦点在x轴上,且焦距为4,P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若△PF1F2的面积为2,求点P坐标.解:(1)由题意知,2c=4,c=2,|PF1|+|PF2|=2|F1F2|=8,即2a=8,∴a=4.∴b2=a2-c2=16-4=12.∵椭圆的焦点在x轴上,∴椭圆的方程为=1.(2)设点P坐标为(x0,y0),依题意知,|F1F2||y0|=2,∴|y0|=,y0=±.代入椭圆方程=1,得x0=±2,∴点P坐标为(2)或(2,-)或(-2)或(-2,-).6.已知P是椭圆+y2=1上的一点,F1,F2是椭圆上的两个焦点.(1)当∠F1PF2=60°时,求△F1PF2的面积;(2)当∠F1PF2为钝角时,求点P横坐标的取值范围.解:(1)由椭圆的定义,得|PF1|+|PF2|=4且F1(-,0),F2(,0).①在△F1PF2中,由余弦定理,得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°.②由①②得|PF1|·|PF2|=.所以|PF1||PF2|·sin ∠F1PF2=.(2)设点P(x,y),由已知∠F1PF2为钝角,得<0,即(x+,y)·(x-,y)<0.又y2=1-,所以x2<2,解得-<x<.所以点P横坐标的范围是。
2.2.1圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程 教学难点:椭圆标准方程的推导 教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数. 二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b ac =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b+=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -.通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==(教师引导——学生回答) 例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=. 2. 作业:40P 第2题.2.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程. 求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为2的动点的轨迹方程. (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形. 方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,()()()()1212,0,,0,,0,,0A a A aB b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比c a 称为离心率.记ce a=. 可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹.(教师分析——示范书写)三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程.⑴经过点()(,P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.。
2.2.1 椭圆的标准方程(二)1.已知a =13,c =23,则该椭圆的标准方程为( ) A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1 [解析]选D.由a 2=b 2+c 2,∴b 2=13-12=1.分焦点在x 轴和y 轴上写标准方程.2.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( ) A .5 B .6C .7 D .8[解析]选D.∵a =5,|PF 1|=2.∴|PF 2|=2a -|PF 1|=2×5-2=8.3.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1C.y 24+x 23=1 D.y 24+x 2=1 [解析]选A.c =1,a =12()2+12+0+2-12+0=2,∴b 2=a 2-c 2=3.∴椭圆的方程为x 24+y 23=1. 4.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1[解析]选B.由椭圆方程,得a =3,b =2,c =5,∵|PF 1|+|PF 2|=2a =6且|PF 1|∶|PF 2|=2∶1,∴|PF 1|=4,|PF 2|=2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴△PF 1F 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×2×4=4. 5.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析]选C.mx 2+ny 2=1可化为x 21m +y 21n =1,因为m >n >0,所以0<1m <1n,因此椭圆焦点在y 轴上,反之亦成立.6.椭圆x 2m +y 215=1的焦距等于2,则m 的值是________. [解析]当焦点在x 轴时,m -15=1,m =16;当焦点在y 轴时,15-m =1,m =14.[答案]16或147.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是________.[解析]原方程可化为x 22+y 22k =1,因表示焦点在y 轴上的椭圆.∴⎩⎪⎨⎪⎧k >0,2k >2.解得0<k <1. ∴k 的取值范围是(0,1).[答案](0,1)8.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项,则椭圆的方程为__________.[解析]由题设知|PF 1|+|PF 2|=2|F 1F 2|=4,∴2a =4,2c =2,∴b =3,∴椭圆的方程为x 24+y 23=1.[答案]x 24+y 23=1 9.求适合下列条件的椭圆的标准方程:(1)椭圆上一点P (3,2)到两焦点的距离之和为8;(2)椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15.解:(1)①若焦点在x 轴上,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由题意知2a =8,∴a =4,又点P (3,2)在椭圆上,∴916+4b 2=1,得b 2=647. ∴椭圆的标准方程为x 216+y 2647=1. ②若焦点在y 轴上,设椭圆的标准方程为:y 2a 2+x 2b 2=1(a >b >0),∵2a =8,∴a =4. 又点P (3,2)在椭圆上,∴416+9b 2=1,得b 2=12.∴椭圆的标准方程为y 216+x 212=1. 由①②知椭圆的标准方程为x 216+y 2647=1或y 216+x 212=1. (2)由题意知,2c =16,2a =9+15=24,∴a =12,c =8,∴b 2=80.又焦点可能在x 轴上,也可能在y 轴上,∴所求方程为x 2144+y 280=1或y 2144+x 280=1. 10.已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是椭圆左、右焦点,若PF 1⊥PF 2,试求:(1)椭圆方程;(2)△PF 1F 2的面积.解:(1)由PF 1⊥PF 2,可得|OP |=c ,即c =5.设椭圆方程为x 2a 2+y 2a 2-25=1代入P (3,4), 得9a 2+16a 2-25=1,解得a 2=45,a 2=5(舍去).∴椭圆方程为x 245+y 220=1. (2)S △PF 1F 2=12|F 1F 2||y P |=5×4=20. 能力提升1.已知椭圆x 23+y 24=1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形[解析]选B.由椭圆定义知|MF 1|+|MF 2|=2a =4,且已知|MF 1|-|MF 2|=1,所以|MF 1|=52,|MF 2|=32.又|F 1F 2|=2c =2.所以有|MF 1|2=|MF 2|2+|F 1F 2|2.因此∠MF 2F 1=90°,△MF 1F 2为直角三角形.2.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为__________.[解析]当△PF 1F 2面积取最大时,S △PF 1F 2=12×8b =12,∴b =3.又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1. [答案]x 225+y 29=1 3.已知椭圆8x 281+y 236=1上一点M 的纵坐标为2. (1)求M 的横坐标;(2)求过M 且与x 29+y 24=1共焦点的椭圆的方程. 解:(1)把M 的纵坐标代入8x 281+y 236=1,得8x 281+436=1, 即x 2=9.∴x =±3.即M 的横坐标为3或-3.(2)对于椭圆x 29+y 24=1,焦点在x 轴上且c 2=9-4=5, 故设所求椭圆的方程为x 2a 2+y 2a 2-5=1(a 2>5),把M 点坐标代入得9a 2+4a 2-5=1, 解得a 2=15(a 2=3舍去).故所求椭圆的方程为x 215+y 210=1. 4. 已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过点B 且与圆A 内切,如下图,求圆心P 的轨迹方程.解:设|PB|=r.∵圆P与圆A内切,圆A的半径为10,∴两圆的圆心距|P A|=10-r,即|P A|+|PB|=10,而|AB|=6,∴|P A|+|PB|>|AB|,∴圆心P的轨迹是以A,B为焦点的椭圆.∴2a=10,2c=|AB|=6.∴a=5,c=3.∴b2=a2-c2=25-9=16.∴圆心P的轨迹方程为x225+y216=1.。
2.2.1 椭圆及其标准方程(第二课时)一、教学目标 (一)学习目标1.掌握椭圆的定义与标准方程;2.会求椭圆的标准方程. (二)学习重点用待定系数法与定义法求椭圆方程 (三)学习难点掌握求椭圆方程的基本方法. 二、教学设计 (一)预习任务设计 1.预习任务(1)读一读:阅读教材第38页至第40页. (2)想一想:如何求椭圆的标准方程?(3)写一写:椭圆的一般方程: . 2.预习自测(1)已知6,1a c ==,则椭圆的标准方程为( )A.2213635x y +=B.2213635y x +=C.221365x y += D.以上都不对 【解题过程】由于条件中只给出,a c 的值,椭圆的焦点位置不确定,有两种可能性,故答案为D.【思路点拨】求椭圆方程时,要先定型后定量. 【答案】D(2)已知椭圆的方程为222116x y m +=,焦点在x 轴上,则m 的取值范围是( )A.44m -≤≤B.44m -<<C.4m >或4m <-D.04m << 【解题过程】由条件可知:216m <可得:44m -<<. 【思路点拨】把握椭圆方程的结构特征解题. 【答案】B(3)若ABC ∆的两个顶点坐标为(4,0),(4,0)A B -,ABC ∆的周长为18,则顶点C 的轨迹方程为( )A.221259x y +=B.221(0)259y x y +=≠C.221(0)169x y y +=≠D.221(0)259x y y +=≠ 【解题过程】由条件可知:||||10||CA CB AB +=>,故点C 的轨迹是以,A B 为焦点,210a =的椭圆.考虑到,,A B C 三点构成三角形,故0y ≠. 【思路点拨】利用椭圆的定义解题. 【答案】D(4)已知椭圆的方程是2221(5)25x y a a +=>,它的两个焦点分别为12,F F ,且12||8F F =,弦AB 过1F ,则2ABF ∆的周长为( )A.10B.20C.D. 【解题过程】2251641a =+=.由椭圆的定义得:2ABF ∆的周长为:221212||||||(||||)(||||)4AB AF BF AF AF BF BF a ++=+++==. 【思路点拨】利用椭圆定义求解即可. 【答案】D (二)课堂设计 1.知识回顾 (1)椭圆的定义; (2)椭圆的标准方程. 2.新知讲解探究 如何求椭圆标准方程 ●活动① 双基口答练习①方程194522=+y x 表示到焦点1F (-6,0) 和2F __(6,0)_的距离和为常数____的椭圆;②求满足下列条件的椭圆的标准方程:(1)125,(3,0),(3,0)a F F =-,22+12516x y = (2)5,3a c ==2222+1+125161625x y x y ==,③如果方程2214x y m +=表示焦点在x 轴的椭圆,则实数m 的取值范围是(0,4). ●活动② 归纳提炼方法例1 已知椭圆两个焦点的坐标分别是12(2,0),(2,0)F F -,并且经过点53(,)22P -,求它的标准方程. 【知识点】椭圆的定义和标准方程. 【解题过程】 法一:定义法:因为椭圆的焦点在x 轴上,所以设它的标准方程为).0(12222>>=+b a by a x由椭圆的定义知,,102232252322522222=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=a所以10=a .又因为2c =,所以.6410222=-=-=c a b因此,所求椭圆的标准方程为.161022=+y x 法二:待定系数法:由题意,椭圆的两个焦点在x 轴上,所以设它的标准方程为).0(12222>>=+b a by a x 由已知,2c =,所以.422=-b a ①又由已知,得123252222=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛b a ②联立①②解方程组,得6,1022==b a .因此,所求椭圆的标准方程为.161022=+y x【思路点拨】先确定标准方程的形式,用椭圆的定义或待定系数法求解. 求椭圆标准方程的解题步骤: (1)确定焦点的位置; (2)设出椭圆的标准方程;(3)用椭圆的定义或待定系数法确定a 、b 的值,写出椭圆的标准方程.【答案】.161022=+y x同类训练 求适合下列条件的椭圆的标准方程. (1)焦距为8,经过点(0,P ;(2)与椭圆22194x y +=有相同焦点,且过点(3,2)M -.【知识点】椭圆的定义和标准方程.【解题过程】(1)∵焦距是8,即28,4c c =∴=①若焦点在x轴上,则b =,222241640,a b c ∴=+=+=∴椭圆方程为2214024x y +=; ②若焦点在y轴上,则a =,22224168,b a c ∴=-=-=∴椭圆方程为221248y x +=.(2)由题意设所求方程为222215x y a a +=-,∵过点(3,2)M -∴229415a a +=-,解得215a =或23a =(舍) ∴椭圆方程为2211510x y +=.【思路点拨】牢记椭圆的标准方程【答案】(1)2214024x y +=;(2)2211510x y +=.例2.如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段'PP ,求线段'PP 的中点M 的轨迹. 【知识点】椭圆的定义和标准方程.【解题过程】设动点M 的坐标为),(y x ,则P 的坐标为)2,(y x 因为点P 在圆心为坐标原点半径为2的圆上,所以有 4)2(22=+y x .即2214x y +=. 所以点M 的轨迹是椭圆,方程是1422=+y x【思路点拨】这种利用未知点表示一个或几个与之相关的已知点,从而求解未知点轨迹方程的方法,即为相关点法,是解析几何中常用的求轨迹的方法.【答案】1422=+y x ●活动③ 强化提升 灵活应用例3. 等腰直角三角形ABC 中,斜边BC长为,一个椭圆以C为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过点,A B ,求该椭圆方程.【知识点】椭圆的定义和标准方程.【解题过程】由题意知24=BC ,设椭圆的另一个焦点为D . 以直线DC 为x 轴,线段DC 的中点为原点建立直角坐标系。
2019-2020学年高中数学选修2-1第二章《圆锥曲线与方程》2.2.1 椭圆及其标准方程(二)学习目标 加深理解椭圆定义及标准方程,能熟练求解与椭圆有关的轨迹问题.知识点一 椭圆标准方程的推导思考 观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程. 答案 (1)如图所示,以经过椭圆两焦点F 1,F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴,建立直角坐标系xOy .(2)设点:设点M (x ,y )是椭圆上任意一点,且椭圆的焦点坐标为F 1(-c,0),F 2(c,0).(3)列式:依据椭圆的定义式|MF 1|+|MF 2|=2a 列方程,并将其坐标化为(x +c )2+y 2+(x -c )2+y 2=2a .①(4)化简:通过移项、两次平方后得到:(a 2-c 2)x 2+a 2y 2=a 2(a 2-c 2),为使方程简单、对称、和谐,引入字母b ,令b 2=a 2-c 2,可得椭圆标准方程为x 2a 2+y 2b2=1(a >b >0).②(5)从上述过程可以看到,椭圆上任意一点的坐标都满足方程②,以方程②的解(x ,y )为坐标的点到椭圆的两个焦点F 1(-c,0),F 2(c,0)的距离之和为2a ,即以方程②的解为坐标的点都在椭圆上.由曲线与方程的关系可知,方程②是椭圆的方程,我们把它叫做椭圆的标准方程. 梳理 (1)椭圆的标准方程的形式(2)方程Ax 2+By 2=1表示椭圆的充要条件是A >0,B >0且A ≠B . 知识点二 椭圆的焦点位置确定思考1 已知椭圆的标准方程,怎样判定椭圆焦点在哪个坐标轴上?答案 看x 2,y 2的分母的大小,哪个分母大,焦点就在哪个坐标轴上.较大的分母是a 2,较小的分母是b 2.如果x 2项的分母大,焦点就在x 轴上,如果y 2项的分母大,则焦点就在y 轴上.思考2 椭圆方程中的a 、b 以及参数c 有什么意义,它们满足什么关系?答案 椭圆方程中,a 表示椭圆上的点到两焦点间距离的和的一半,可借助图形帮助记忆,a 、b 、c (都是正数)恰构成一个直角三角形的三条边,a 是斜边,c 是焦距的一半,叫半焦距. a 、b 、c 始终满足关系式a 2=b 2+c 2.梳理 (1)椭圆的焦点位置确定是由x 2,y 2的系数大小决定的. (2)当求解椭圆标准方程,遇到其焦点位置不定时,需分类讨论.类型一 椭圆标准方程的确定例1 求适合下列条件的椭圆的标准方程.(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P 到两焦点的距离之和等于10; (2)经过点P (-23,1),Q (3,-2). 解 (1)∵椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由题意得c =4,2a =10, ∴a =5,b 2=a 2-c 2=9.∴所求的椭圆的标准方程为x 225+y 29=1.(2)设椭圆的方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ), ∵点P (-23,1),Q (3,-2)在椭圆上,∴代入得⎩⎪⎨⎪⎧12m +n =1,3m +4n =1,∴⎩⎨⎧m =115,n =15.∴椭圆的标准方程为x 215+y 25=1.反思与感悟 求解椭圆的标准方程,可以利用定义,也可以利用待定系数法,选择求解方法时,一定要结合题目条件,其次需注意椭圆的焦点位置. 跟踪训练1 求适合下列条件的椭圆的标准方程.(1)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点(-32,52);(2)焦点在y 轴上,且经过两个点(0,2)和(1,0). 解 (1)∵椭圆的焦点在y 轴上, ∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).由椭圆的定义知: 2a =(-32)2+(52+2)2+ (-32)2+(52-2)2 =210,即a =10.又c =2, ∴b 2=a 2-c 2=6.∴所求的椭圆的标准方程为y 210+x 26=1.(2)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).又椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4,b 2=1.∴所求的椭圆的标准方程为y 24+x 2=1.类型二 相关点法在求解椭圆方程中的应用例2 如图,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点M 的轨迹.。