柴油机电控系统的组成、类型及其各类型的特点
- 格式:doc
- 大小:34.50 KB
- 文档页数:3
电控柴油机的基本结构及工作原理电控柴油机的基本结构及工作原理电控柴油机与传统柴油机的主要区别表现在燃油喷射系统和控制技术上,电控柴油机的燃油喷射系统主要有3种类型:即高压共轨系统、泵喷油器系统以及单体泵系统。
1、3种主流电控燃油喷射系统简介(1)高压共轨喷射系统它是由燃油泵把高压油输送到公共的、具有较大容积的配油管——油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。
在公共油轨上,设置了油压传感器、限压阀和流量限制器。
由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。
特点:①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与喷油过程无关。
燃油从喷油器喷出以后,油轨内的油压几乎不变;②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴油机负荷和转速的影响;③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。
(2)泵喷油器喷射系统它是燃油泵与喷油器组合为一体式结构,燃油泵位于喷油器的上方,柴油机每个气缸都有一个独立的小型泵喷油器,泵喷油器通过卡块固定在气缸盖上。
泵喷油器与进气门、排气门一起被同一个凸轮轴驱动,凸轮轴推动油泵柱塞产生高压油然后微电脑通过高速电磁阀打开和关闭喷油器的高压油腔,以控制喷油正时和喷油量。
由于取消了燃油泵与喷油器之间的高压油管,因而降低了燃油压力损失,提高了油压的响应度,可以实现对燃油喷射周期的精确控制。
最高燃油压力可以达到200MPa,使燃油得以更好地雾化和燃烧,有利于提高柴油机功率、降低噪声和减少尾气排放。
(3)单体泵喷射系统每个气缸都装配一个单体泵,柴油从燃油箱出来后,先经过低压输油泵对柴油初步加压,然后由单体泵正式加压,再由微电脑控制单体泵中电磁阀的动作时刻和通电时间的长短,来完成对喷油时刻和喷油量的精确控制。
柴油机电控系统柴油机电控系统(一)柴油发动机电控系统的组成电控柴油机喷射系统主要由传感器、开关、ECU(计算机)和执行器等部分组成。
如图2-59所示。
其任务是对喷油系统进行电子控制,实现对喷油量以及喷油定时随运行工况变化的实时控制。
电控系统采用转速、温度、压力等传感器,将实时检测的参数同步输入ECU并与ECU已储存的参数值进行比较,经过处理计算,按照最佳值对喷油泵、废气再循环阀、预热塞等执行机构进行控制,驱动喷油系统,使柴油机运作状态达到最佳。
(二)柴油机电控系统控制原理1.概述图2-59柴油发动机电控系统的组成和原理(1)喷油量控制柴油机在运行时的喷油量是根据两个基本信号来确定的,分别是燃油控制旋钾和柴油机转速。
喷油泵调节齿杆位置则是由喷油量整定值、柴油机转速和具有三维坐标模型的预先存储在控制器内的喷油泵速度特性所确定。
在运行中,系统一直校验和校正调节齿杆的实际位置和设定值之间的差异,以获得正确的喷油量,提高发动机的功率。
(2)喷油定时控制喷油定时是根据柴油机的负荷和转速两个信号确定,并根据冷却液的温度进行校正。
控制器把喷油定时的设定值与实际值加以比较,然后输出控制信号使定时控制阀动作。
以确定通至定时器的油量。
油压的变化义使定时器的活塞移动,喷油定时就被调整到设定值。
当发生故障时,定时器使喷油定时处在最滞后的位置。
(3)怠速两种控制方式怠速有两种控制方式,分别是手动控制和自动控制。
借助于选择开关可选定怠速控制方式。
选定手动控制时,转速由怠速控制旋钮来调整。
选择自动控制时,随着冷却液温度逐渐升高,转速从暖车前的800r/min降至暖车后的400r/min。
这种方法可缩短车辆在冬季的暖车时间。
(4)巡航控制巡航控制是由机械速度、柴油机转速、加速踏板位置、巡航开关传感器和电子调速器的控制来实现。
一个快寒、精密的电子调速器执行器,根据控制器的指令自动进行巡航控制,使发动机始终处于最母工作状态。
在原有的电子调速器基础上,只需增加几个开关和软件就可实现这项功能。
柴油发动机的电控系统柴油机电控系统以柴油机转速和负荷作为反映柴油机实际工况的基本信号,参照由试验得出的柴油机各工况相对应的喷油量和喷油定时MAP来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时,然后通过执行器进行控制输出。
柴油机电控系统概述【任务目标】(1)柴油机电控技术的发展。
(2)柴油机电控技术的特点。
(3)柴油机电控系统的基本组成。
(4)应用在柴油机上的电控系统。
【学习目标】(1)了解柴油机电控技术的发展。
(2)了解柴油机电控技术的特点。
(3)了解柴油机电控系统的基本组成。
(4)掌握应用在柴油机上的电控系统。
柴油机电控技术的发展1.柴油机电控技术的发展1)柴油机技术的发展历程柴油用英文表示为Diesel,这是为了纪念柴油发动机的发明者――鲁道夫·狄塞尔(RudolfDiesel)如图8-1所示。
狄塞尔生于1858年,德国人,毕业于慕尼黑工业大学。
1879年,狄塞尔大学毕业,当上了一名冷藏专业工程师。
在工作中狄塞尔深感当时的蒸气机效率极低,萌发了设计新型发动机的念头。
在积蓄了一些资金后,狄塞尔辞去了制冷工程师的职务,自己开办了一家发动机实验室。
针对蒸汽机效率低的弱点,狄塞尔专注于开发高效率的内燃机。
19世纪末,石油产品在欧洲极为罕见,于是狄塞尔决定选用植物油来解决机器的燃料问题(他用于实验的是花生油)。
因为植物油点火性能不佳,无法套用奥托内燃机的结构。
狄塞尔决定另起炉灶,提高内燃机的压缩比,利用压缩产生的高温高压点燃油料。
后来,这种压燃式发动机循环便被称为狄塞尔循环。
鲁道夫·狄塞尔压燃式发动机像所有伟大的发明家一样,狄塞尔的前进道路上困难重重。
实验证明,植物油燃烧不稳定,成本也太高,难以承担狄塞尔的“重任”。
好在当时石油制品在欧洲逐渐普及,狄塞尔选择了本来用于取暖的重馏分燃油———柴油作为机器的燃料。
柴油机的电控技术柴油机是现代交通工具和机械设备中常用的动力设备之一。
由于柴油机本身的结构和性能特点,电控技术在柴油机的应用中日益重要。
一、柴油机的结构柴油机主要由进气系统、燃油系统、动力机构和排气系统等部分组成。
其中进气系统和排气系统主要用于将气体输送到燃烧室和排出废气,燃油系统主要用于控制燃油的喷射量和喷射时间,动力机构则负责把燃烧过程的能量转化为机械能,从而驱动车辆或机械设备。
二、电控技术的应用由于柴油机的燃烧和动力转化过程十分复杂,传统的机械控制方式无法满足现代机械设备对高效、低排放、高可靠性的要求。
因此,电控技术的应用对柴油机的性能提升和污染减少等方面产生了重要的作用。
1. 传感器和执行器电控技术的核心是传感器和执行器的使用。
传感器能够实时感测柴油机运行状态和环境参数,例如气压、油温、气温等;执行器则能够根据传感器的信号控制喷油、进气和排气等运行参数。
这些电子设备的应用能够提高柴油机的燃烧效率、降低废气排放、提高动力输出和减少机械故障。
2. 发动机管理系统发动机管理系统(EMS)是柴油机电控技术的一种重要形式。
EMS能够通过内置的控制算法和智能化传感器来实现对柴油机的精细化管理。
同时,它还可以把柴油机与其他相关设备和系统进行联动,例如环保装置、行驶控制系统等。
EMS的核心功能包括调节燃油喷射和空气进气量、监测发动机故障、管理排气和废气后处理设备等。
3. 燃油系统的电控设计燃油系统是柴油机电控的重要组成部分。
燃油系统的电控设计能够实现对柴油机燃油喷射量和喷射时间的精确控制。
与传统的机械喷油系统相比,这种电子喷油系统具有响应速度快、工作效率高、控制精度高等优点。
同时,电子喷油系统还能够通过反馈机制对柴油机的工作状态进行实时监测,从而做出相应的调整和优化。
三、电控技术的优点电控技术的应用在柴油机上具有以下几个优点:1. 提高燃油利用率和动力输出电控技术的应用能够实现调整燃油喷射时间和喷射量,从而提高燃油利用率和动力输出。
常见的柴油机电控系统有哪几种类型,特点答:位置控制型:控制精度,响应速度都有所提高,但控制频率低,喷油压力和规律不能独立控制。
时间控制型:控制精度大大提高,可以实现按照需要控制喷油压力和喷油速率。
时间压力型:控制喷油压力,结合了位置控制与时间控制的特点。
柴油共轨控制系统的组成答:低压油路:低压管路、前滤清器、电动燃油泵、燃油滤清器、燃油回路管、温控起动电磁阀,温控起动预热塞。
高压油路:高压燃油泵、高压燃油管路、燃油轨和喷油器。
柴油共轨控制系统的组成曲轴位置、空气流量、燃油温度、冷却液温度、增加压力、进气温度、加速踏板、油压共轨传感器、E CU、压力控制阀、喷油器、(涡轮增压器)。
1ZR发动机油门踏板传感器结构原理及接有哪些段子,其电压值如何?答:原理:油门踏板位置传感器安装在油门踏板支架上并有两个传感器电路:VPA(主)和V PA2(副),该传感器为非接触型。
使用霍尔效应元件,以便在极端的行驶条件下,例如高速以及极低车速下,也能生成精确的信号。
施加在ECM端子VPA和VP A2上的电压在0V~5V之间变化。
并与油门踏板(节气门)工作角度成比例。
来自VPA的信号,指示实际的油门踏板开度(节气门开度)并用于发动机控制。
来自VPA2的信号,传输VP A电路的状态信息,并用于检测油门踏板位置传感器自身情况。
EC M通过来自VP A和VPA2的信号监视实际油门踏板开度(节气门开度),并根据这些信号控制节气门执行器。
V PA:点火开关ON松开加速踏板0.5~1.1VV PA:点火开关ON完全踏下加速踏板2.6~4.5VV PA2:点火开关O N松开加速踏板1.2~2.0VV PA:点火开关ON完全踏下加速踏板3.4~5.0VV CPA:点火开关ON 4.5~5.5VV CP2:点火开关ON 4.5~5.0VVE泵结构、原理及供油提前角自动调节过程结构:驱动机构、二级滑片式输油泵、高压分配泵头、电磁断油阀,包括机械式调速器和液压式喷油提前器。
第二章柴油机电子控制系统第一节柴油机电子控制系统的组成及工作原理一、柴油机电子控制系统的组成柴油机电子控制系统由信号输入装置、电子控制单元ECU和执行器三部分组成。
1、信号输入装置(1)加速踏板位置传感器用来检测加速踏板的位置,此信号输入ECU后与转速信号共同决定柴油机的喷油量及喷油提前角,是柴油机电子控制系统的主要控制信号。
(2)转速传感器,曲轴位置传感器用来检测发动机转速或曲轴位置,与加速踏板位置传感器共同决定喷油量和喷油提前角,是柴油机电控系统的主要控制信号。
(3)泵角传感器:检测喷油泵凸轮轴转角,与曲轴位置传感器配合共同控制喷油量,并保证在喷油正时改变时不影响喷油量。
(4)着火正时传感器:检测燃烧室开始燃烧的时刻,修正喷油正时。
(5)冷却液温度传感器检测发动机水温修正喷油量及喷油正时。
(6)进气温度传感器:检测进气温度,修正喷油量及喷油正时。
(7)进气压力传感器:检测进气压力,以修正喷油量及喷油正时。
(8)溢流环位置传感器:检测溢流控制电磁铁的电枢位置,以反馈控制溢流环的位置。
(9)正时活塞位置传感器:检测电子控制正时器正时活塞的位置,将喷油正时提前量信号输入ECU。
(10)控制杆位置传感器:检测电子控制柱塞式喷油泵调速器中控制杆的位置,将燃油喷射量的增减信号反馈给电脑。
(11)控制套筒位置传感器:检测电子控制分配式喷油泵调速器中控制套筒位置,将燃油喷射量的增减信号反馈给ECU。
(12)E/G开关:发动机点火开关信号,向ECU输入发动机工作状态信号。
(13)A/C开关向ECU输入空调工作信号,是怠速控制信号之一。
(14)动力转向油压开关:检测动力转向管路油压的变化,是怠速控制信号之一。
(15)空档起动开关:向ECU输入自动变速器是否处于空档位置信号,是怠速控制信号之一。
2、电子控制单元ECU是一个综合控制装置,具有如下功能:(16)接受传感器或其他装置输入的信息,给传感器提供参考基准电压:2V 、5V、9V、12V。
第二章电控柴油喷射系统分类2.1位置控制系统它用电子伺服机构代替机械调速器控制供油滑套位置以实现供油量的调整。
其特点是保留了传统的喷油泵——高压油管——喷油器系统,只是对齿条或滑套的运动位置由原来的机械调速器控制改为计算机控制(见图 1)。
这类技术已发展到了可以同时控制定时和预喷射的TICS系统。
图1 第一代柴油机电控燃油喷射系统(位置控制系统)2.2时间控制系统其特点是供油仍维持传统的脉动式柱塞泵油方式,如博世公司的电控泵喷嘴系统(见图2),但供油量和喷油定时的调节则由电脑控制的强力快速响应电磁阀的开闭时刻所决定。
一般情况下,电磁阀关闭时,执行喷油,电磁阀打开时,喷油结束;喷油始点取决于电磁阀关闭时刻,喷油量则取决于电磁阀关闭时间的长短。
时间控制系统的控制自由度更大。
图2 第二代柴油机电控燃油喷射系统(时间控制系统)2.3直接数控系统它完全脱开了传统的油泵分缸燃油供应方式,通过共轨和喷油压力/时间的综合控制,实现各种复杂的供油回路和特性(见图3)。
图3 高压共轨喷油压力控制系统(直接数控系统)因柴油机的喷射系统形式多样。
国外柴油机的电控系统也型式多样,有直列泵和分配泵的可变预行程TICS系统,有基于时间控制的泵喷嘴系统,有蓄压共轨系统和高压共轨系统等。
各种技术方案都在原有的基础上发展,但高压共轨系统是总的发展方向。
2.4高压共轨电控喷射系统2.41共轨(Common-rail)式电控燃油喷射技术的原理在汽车柴油机中,高速运转使柴油喷射过程的时间只有千分之几秒。
实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。
由于柴油的可压缩性和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。
油管内的压力波动有时还会在主喷射之后使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开,产生二次喷油现象。
由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,油耗增加。
技术通报主题: 柴油机电控系统简介1.柴油机喷油技术的发展柴油机喷油技术经历了传统的纯机械操纵式喷油 和现代的电控操纵式喷油这两个发展阶段。
而现代电控喷油技术的崛起,则应归功于计算机技术和传感检测技术的迅猛发展。
目前电控喷油技术已从初期的位置控制型发展到时间控制型。
现代电控喷油技术实现的手段主要有电控泵喷嘴,电控单体泵以及电控共轨系统。
2.电控喷油系统的介绍1).泵喷嘴(UIS)在泵喷嘴系统中喷油泵和喷油嘴组成一个单元。
每个发动机气缸都在其缸盖上装有这样一个单元,它或者直接通过摇臂或者间接的由发动机凸轮轴通过推杆来驱动。
2).单体泵(UPS)单体泵系统工作方式跟泵喷嘴相同,它是一种模块式结构的高压喷射系统。
与泵喷嘴系统不同的是,其喷油嘴和油泵用一根较短的喷射油管连接,单体泵系统中每个气缸都设置一个PF单柱塞喷油泵,由发动机的凸轮轴驱动。
3).共轨系统(CRS)在共轨式蓄压器喷射系统中,ECU通过接收各传感器的信号,借助于喷油器上的电磁阀,让柴油以正确的喷油压力在正确的喷油点喷射出正确的喷油量,保证柴油机最佳的燃烧比、雾化和最佳的点火时间,以及良好的经济性和最少的污染排放。
3.共轨系统的特点柴油机共轨式电控燃油喷射技术是一种全新的技术,因为它集成了计算机控制技术、现代传感检测技术以及先进的喷油结构于一身。
它不仅能达到较高的喷射压力、实现喷射压力和喷油量的控制,而且能实现预喷射和后喷,从而优化喷油特性形状,降低柴油机噪声和大大减少废气的排放量。
该技术的主要特点是:1).采用先进的电子控制装置及配有高速电磁开关阀,使得喷油过程的控制十分方便,并且可控参数多,益于柴油机燃烧过程的全程优化。
2).采用共轨方式供油,喷油系统压力波动小,各喷油嘴间相互影响小,喷射压力控制精度较高,喷油量控制较准确。
3).高速电磁开关阀频响高,控制灵活,使得喷油系统的喷射压力可调范围大,并且能方便地实现预喷射、后喷等功能,为优化柴油机喷油规律、改善其性能和降低废气排放提供了有效手段。
柴油机发动机电控系统介绍柴油机发动机电控系统是一种采用电子技术控制柴油机工作的系统,它由控制单元、传感器、执行器和通信接口等组成。
柴油机电控系统能够实现对柴油机的精确控制,提高功率输出、节省燃油、减少废气排放和提高整机可靠性等。
柴油机电控系统的核心部分是控制单元,它采用高性能微处理器芯片作为控制核心,通过与传感器和执行器的接口实时收集和处理各种工作参数信号,并根据预先设定的控制策略,输出控制信号驱动执行器,实现对柴油机的控制。
传感器是柴油机电控系统的重要组成部分,它能够将柴油机各项工作参数转换成相应的电信号,传送给控制单元。
常见的传感器包括转速传感器、温度传感器、油压传感器、气流传感器等。
这些传感器能够实时监测柴油机的运行状态,提供准确的参数数据给控制单元,使其能够做出正确的控制决策。
执行器是柴油机电控系统的另一个重要组成部分,它通过执行控制单元的指令,实现对柴油机各种执行部件的控制,例如喷油器、进气门、废气门等。
执行器能够根据控制单元的指令,精确地控制柴油机的工作过程,提高燃烧效率和动力输出。
柴油机电控系统还具有通信接口功能,它能够与其他控制系统进行数据交互,实现对柴油机的更精确控制。
例如,柴油机电控系统可以与车载诊断系统进行通讯,实时监测柴油机的工作状态,检测故障码,并根据诊断结果实施相应的修复工作。
柴油机电控系统具有许多优点。
首先,它能够实现精确的燃油控制,通过对喷油器的精确控制,可以使柴油机在不同负荷下获得最佳的燃烧效率,提高燃油经济性。
其次,它能够减少废气排放,通过控制柴油机的燃烧过程,可以有效减少有害气体的排放。
再次,它能够提高柴油机的可靠性,通过实时监测柴油机的运行状态,控制单元能够及时发现故障,并采取相应的措施,保证柴油机正常工作。
最后,它能够提高柴油机的动力输出,通过精确的控制柴油机的工作参数,电控系统能够使柴油机达到最大的功率输出。
总之,柴油机电控系统是一种通过电子技术对柴油机进行精确控制的系统,它能够提高柴油机的功率输出、节省燃油、减少废气排放和提高整机可靠性。
柴油机电控系统的组成、类型及其各类型的特点
柴油机电控系统部件的组成
柴油机电控系统的基本组成与其他电子控制系统一样,也是由传感器,ECU
和执行元件三部分组成.
A 、传感器:传感器(包括信号开关)用来检测柴油机与汽车的运行状态,并
将检测结果转换成电信号输送给ECU。
1. 加速踏板位置传感器:加速踏板位置传感器用来检测加速踏板所处位置,
ECU根据此传感器信号间接判断柴油机的负荷,作为控制柴油机喷油量和喷油正时的主控制信号,常用的加速踏板位置传感器有电位计式和差动电感式。
2. 反馈信号传感器:柴油机电控系统一般对供(喷)油量和供(喷)油正时采用
闭环控制,反馈信号传感器就是指闭环控制系统中用来检测控制系统执行元件实际位置的传感器,主要包括负荷传感器(如供油齿条位置传感器、滑套位置传感器、喷油压力传感器等)和正时传感器(如分配泵正时活塞位置传感器、着火正时传感器等)两大类。
3. 燃油温度传感器:柴油的温度直接影响其黏度,燃油温度传感器用来检
测柴油的温度变化ECU根据此传感器信号对喷油量进行修正;一般采用热敏电阻式,其结构原理与进气温度传感器基本相同。
4.其他传感器和信号开关:发动机转速传感器(或凸轮轴/曲轴位置传感器),
车速传感器,冷却液温度传感器,制动开关,空调开关,E/G开关(点火开关)等的功用,结构和工作原理与汽油机电控系统基本相同。
B 、ECU :ECU的功用和结构与汽油机电控系统基本相同,只是控制程序
有较大差别。
C 、执行元件:执行元件主要是执行ECU的指令,调节柴油机的供(喷)油
量和供(喷)油正时,不同柴油机电控系统的执行元件有很大差异,常用的执行元件有:电子调速器和电磁阀。
柴油机电控系统的类型
按对供油量的控制方式不同,柴油机电控系统可分为位置控制方式、时间控制方式、时间-压力控制方式和压力控制方式四种类型。
位置控制方式和时间控制方式是早期的第一代柴油机电控系统,它们保留了传统柴油机燃料供给系统的基本组成和结构,只是取消了机械调速器,增加了传感器、电控单元和电子执
行元件,喷油压力与传统柴油机燃料供给系统相同。
时间-压力控制方式和压力控制方式则属第二代柴油机电控系统,它们基本改变了传统燃料供给系统的组成和结构,主要以电控共轨为特征,喷油压力一般也比传统柴油机燃料供给系统高。
位置控制方式柴油机电控系统的特点
此类型的柴油机电控系统通常是在传统直列柱塞泵或转子分配泵燃料供给系统的基础上改进而成的,它的特点是不仅保留了传统的喷油泵-高压油管-喷油器想,而且还保留了喷油泵中齿条、齿圈、滑套、柱塞上控螺旋槽等控制油量的传动机构,只是取消了传统机械调速器和加速踏板拉线,由ECU通过电子调速器来控制油量控制滑套的位置,以实现对喷油泵供油量的控制。
时间控制方式柴油机电控系统的特点
时间控制,就是用高速电磁阀直接控制高压燃油的适时喷射。
此类型的柴油机电控系统通常是在传统转子分配泵燃料供给系统基础上加以改进形成的,转子分配泵时间控制系统中,取消了原转子分配泵的油量控制滑套及柱塞上的回油孔或回油槽,不再利用滑套控制柱塞泵供油有效行程来实现供油量的控制,而是在柱塞泵的高压油腔与喷油泵内腔之间设一条回油通道,用受ECU控制的回油控制电磁阀直接控制柱塞泵回油开始时刻,依次实现对供油量的时间控制。
在转子分配泵时间控制方式柴油机电控系统中,ECU根据泵角传感器信号确定喷油开始时刻和计量喷油持续角度(时间)。
时间-压力控制方式柴油机电控系统的特点
时间-压力控制方式,即电控蓄压式共轨燃油喷射系统。
时间-压力控制方式的柴油机电控系统主要由油箱、输油泵、高压泵、公共油轨(即公共容积,简称共轨)、喷油器和各种电子元件组成。
高压泵并不直接控制喷油,只是将柴油油压提高到大约120MPa后输入共轨,高压泵的供油量一般几倍于实际耗油量以保证供油的可靠性,多余的燃油经回油管流回油箱。
高压泵的出口端装有一个用来调节共轨中油压的供油压力调节阀,ECU根据柴油机的转速、负荷等控制压力调节阀的开度,从而控制共轨中的油压保持目标值,以保证喷油器的喷油压差不变。
此外,ECU还根据任由压力传感器信号对共轨中的油压进行闭环控制。
在“时间—压力控制”系统中,ECU控制供油压力调节阀使喷油器喷油压差保持不变,再通过控制三通电磁阀工作实现喷油量的时间控制和喷油正时的控制。
电磁阀通电开始时刻决定了喷油的开始时刻,其通电时间决定喷油量。
压力控制方式柴油机电控系统的特点
在后期开发的柴油机电控共轨式燃油喷射系统中,为降低对供油压力的要求,喷油量的控制采用控制喷油压力的方法实现,即喷油量的“压力控制”方式。
喷油器喷孔尺寸一定,喷油时间一定,控制喷油压力即可控制喷油量;而在增压活塞和柱塞尺寸一定时,喷油压力(即增压压力)取决于共轨中的油压,共轨中的油压是由ECU根据各种传感器信号通过燃油压力调节阀来控制的,所以将此种喷油量控制方式称为“压力控制”方式。
在系统中,ECU根据实际的共轨压力信号对共轨压力进行闭环控制。
此资料是由湖北合力吸粪车()厂家的工作人员编辑整理的!。