汽车悬架系统综述
- 格式:doc
- 大小:12.00 KB
- 文档页数:3
目录一、引言 (1)二、汽车空气悬架结构组成 (1)(一)空气弹簧 (1)(二)导向机构 (2)(三)高度控制阀组件 (3)(四)减振器 (4)(五)横向稳定器 (4)(六)缓冲限位块 (4)三、汽车空气悬架系统的特性 (4)(一)空气弹簧的特性 (4)(二)空气悬架对整车的影响 (5)四、汽车空气悬架的优缺点 (6)(一)汽车空气悬架的优点 (6)(二)汽车空气悬架的缺点 (6)五、电子控制空气悬架系统ECAS (7)(一)ECAS系统组成和工作原理 (7)(二)ECAS系统的功能和优势 (9)六、汽车空气悬架的发展及我国研发对策思考 (10)(一)国外空气悬架的发展历程和现状 (10)(二)国内空气悬架的发展历程和现状 (11)(三)国内常用的空气悬架 (12)(四)对策思考我国空气悬架的研发状态 (14)七、结论 (15)汽车空气悬架系统综述【摘要】文章介绍了空气悬架系统的发展过程,阐述了汽车空气悬架的工作原理及其结构特性,介绍了电子控制空气悬架的工作原理及其功能和优势。
也介绍了国内空气悬架系统的发展现状及其发展的历程,并且分析了我国汽车空气悬架系统的发展趋势。
【关键词】汽车空气悬架结构特性发展一、引言空气悬架系统是高档商用车的关键部件,是汽车钢板弹簧悬挂系统的更新换代产品,现已成为汽车性能提升的主要部件之一,具有独特的变刚度、低振动频率、抗道路凹凸冲击的特性,更加有效地提高了汽车乘坐舒适性、行驶平顺性及操纵稳定性,同时还具有可以减少汽车自重、提高运行速度、减少路面破坏等多项性能。
由于以上的诸多优越性,空气悬架系统的研究及发展正越来越受到人们的重视。
对空气悬架系统的研究始于二十世纪五十年代,最初应用在载重车、小轿车、大客车及铁道车辆上。
到了六十年代已经进入蓬勃发展阶段,不仅取得了丰富的理论成果,并且在德国、美国等发达国家所生产的大部分公共汽车、豪华旅游车等领域中得到了广泛应用。
虽然我国早在六十年代就设计生产了汽车空气悬架系统,但由于当时工业技术条件有限,生产的产品使用效果不是很理想。
汽车悬架系统简介2005-8-15 13:27:02来源: 编辑:一.悬架的功用汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。
它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力;保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。
悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。
由此可见悬架系统在现代汽车上是重要的总成之一。
图1 悬架总成二、悬架的组成一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。
1.弹性元件弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。
弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧等。
1)钢板弹簧:由多片不等长和不等曲率的钢板叠合而成。
安装好后两端自然向上弯曲。
钢板弹簧除具有缓冲作用外,还有一定的减震作用,纵向布置时还具有导向传力的作用,非独立悬挂大多采用钢板弹簧做弹性元件,可省去导向装置和减震器,结构简单。
2)螺旋弹簧:只具备缓冲作用,多用于轿车独立悬挂装置。
由于没有减震和传力的功能,还必须设有专门的减震器和导向装置。
3)油气弹簧:以气体作为弹性介质,液体作为传力介质,它不但具有良好的缓冲能力,还具有减震作用,同时还可调节车架的高度,适用于重型车辆和大客车使用。
4)扭杆弹簧;将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。
2.减振器减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。
车辆悬架知识车辆悬架是指车辆的底盘系统,它连接了车身和车轮,起到支撑车身、降低震动以及保持车辆稳定性的作用。
悬架系统的设计和性能直接影响着车辆的行驶舒适性、操控性以及安全性。
本文将介绍车辆悬架的基本原理和常见类型。
我们来了解一下车辆悬架的基本原理。
悬架系统的主要任务是通过减震器和弹簧来吸收道路不平和车辆运动带来的震动,保持车身相对稳定。
减震器是悬架系统中的核心部件,它通过控制车轮的运动,使车身保持相对稳定。
弹簧则起到支撑车身的作用,使车辆在通过不平路面时能够保持相对平稳。
悬架系统还包括控制臂、转向节、横拉杆等部件,它们协同工作,使车辆具备良好的操控性。
根据悬架系统的构造和工作原理,可以将车辆悬架分为多种类型。
常见的悬架类型有独立悬架、非独立悬架和半独立悬架。
独立悬架是指每个车轮都有独立的悬挂系统,它能够使车轮在行驶过程中保持相对独立的运动,从而提高车辆的行驶稳定性和操控性。
非独立悬架是指两个相邻车轮共用一个悬挂系统,它的结构相对简单,但对车辆的行驶稳定性和操控性要求较低。
半独立悬架则是介于独立悬架和非独立悬架之间的一种类型,它在结构上介于两者之间。
不同类型的悬架系统适用于不同的车辆和使用环境。
一般来说,高速公路上的轿车多采用独立悬架,因为它能够提供更好的操控性和行驶稳定性。
而越野车和SUV等车型则更适合采用非独立悬架或半独立悬架,因为它们可以更好地适应复杂的路况和颠簸的路面。
悬架系统还可以根据其结构特点进行更细分。
常见的细分类型有麦弗逊悬架、双叉臂悬架、多连杆悬架等。
麦弗逊悬架是一种常见的独立悬架类型,它通过麦弗逊支撑结构来支持车轮的运动。
双叉臂悬架则采用了两个控制臂来支撑车轮,它具备较好的悬架刚度和操控性能。
多连杆悬架是一种较为复杂的独立悬架类型,它通过多个连杆和支撑杆来实现车轮的运动控制,具有较高的工作效率和稳定性。
除了常见的悬架类型外,还有一些特殊的悬架系统。
例如,空气悬架系统可以通过改变气囊的气压来调节车身的高度和硬度,提供更好的行驶舒适性和通过性。
车辆悬架知识车辆悬架是汽车重要的组成部分之一,它承担着车身支撑和缓解路面震动的重要任务。
悬架系统的设计和调校直接影响到车辆的操控性、舒适性以及安全性。
本文将介绍车辆悬架的基本原理、类型和调校方法,以及对车辆性能的影响。
一、悬架系统的基本原理悬架系统是连接车身和车轮的重要组件,其主要功能是支撑车身并缓解路面的冲击。
悬架系统通常由弹簧、减震器和悬架结构组成。
其中,弹簧起到支撑车身的作用,减震器则用来吸收和控制弹簧的振动。
二、悬架系统的类型根据结构和工作原理的不同,悬架系统可以分为独立悬架和非独立悬架两种类型。
独立悬架系统的特点是每个车轮都有独立的悬架装置,能够独立响应路面的不平,提高车辆的操控性和舒适性。
而非独立悬架系统则是多个车轮共用一个悬架装置,其结构简单但对路面的响应能力较差。
根据弹簧的类型,悬架系统又可以分为螺旋弹簧悬架、气囊悬架和叶片弹簧悬架等。
螺旋弹簧悬架广泛应用于大多数汽车上,它具有结构简单、制造成本低的优点。
气囊悬架则主要用于高档车型,具有可调节车身高度和硬度的特点。
叶片弹簧悬架则常见于商用车辆,其悬架结构坚固耐用。
三、悬架系统的调校方法悬架系统的调校是指根据车辆的用途和要求,调整悬架的刚度、行程和减震特性,以达到最佳的操控性和舒适性。
调校悬架系统需要考虑到车辆的质量、型号、悬架结构和使用环境等因素。
调校悬架系统的方法主要包括调整弹簧预紧力、更换弹簧和减震器、调整减震器的阻尼力和行程等。
通过这些方法,可以改变悬架系统的刚度和减震特性,从而提高车辆的操控性和舒适性。
四、悬架系统对车辆性能的影响悬架系统对车辆的操控性、舒适性和安全性都有重要的影响。
一个好的悬架系统可以提高车辆的操控性,使驾驶者更容易控制车辆,并提高车辆的稳定性和操纵性。
同时,良好的悬架系统还能提供舒适的乘坐感受,减少车辆在行驶过程中的颠簸感。
悬架系统对车辆的安全性也有重要的影响。
一方面,良好的悬架系统可以保持车轮与地面的接触,提供良好的抓地力,从而减少制动距离和转向距离。
汽车悬架和转向系统设计1. 概述汽车悬架和转向系统是汽车中至关重要的部分,对汽车的操控性、行驶稳定性和乘坐舒适性有着重要的影响。
悬架系统负责支撑汽车车身,保证车轮与地面的接触,同时吸收来自路面的冲击力;而转向系统则负责使车辆按照驾驶员的指令实现转向操作。
在汽车设计中,悬架和转向系统的设计需要综合考虑多种因素,包括车辆的用途、性能需求、成本以及使用环境等。
本文将介绍汽车悬架和转向系统设计中的关键要点,并探讨一些常见的设计策略和优化方法。
2. 悬架系统设计2.1. 悬架类型常见的汽车悬架类型包括独立悬架和非独立悬架。
独立悬架指的是四个车轮各自独立悬挂,相互之间没有连接,可以独立运动。
非独立悬架指的是四个车轮之间通过悬架系统相连接,受到相互影响。
独立悬架相较于非独立悬架具有更好的悬挂效果,能够提供更好的操控性和乘坐舒适性。
常见的独立悬架类型包括麦弗逊悬架、多连杆悬架和双叉臂悬架等。
2.2. 悬架参数设计悬架系统的参数设计对于汽车的行驶稳定性、乘坐舒适性和操控性都有重要影响。
其中一些关键的参数包括减振器刚度、悬架弹簧刚度、悬架几何参数等。
减振器刚度决定了汽车在受到冲击力时的反应速度,过大或过小的减振器刚度都会影响汽车的乘坐舒适性。
悬架弹簧刚度则负责车身的支撑和回弹,也对乘坐舒适性有重要影响。
悬架几何参数则涉及到悬架的运动轨迹和相对位置,对悬架系统的整体性能起着决定性作用。
2.3. 悬架系统优化悬架系统的优化设计旨在提升汽车的行驶性能和乘坐舒适性。
在悬架系统设计中,常见的优化手段包括材料选择、刚度调整、阻尼控制和减重等。
材料选择是悬架系统设计中的一个重要环节。
采用合适的材料可以提高悬架系统的刚度,同时减轻悬架组件的重量。
刚度调整可以通过调整减振器和弹簧的硬度来实现,以获得更好的悬架效果。
阻尼控制则可以通过控制减振器的阻尼力来实现,以提升汽车的稳定性和乘坐舒适性。
减重是悬架系统设计中的一个重要目标,通过使用轻量化材料和结构设计优化来减轻悬架组件的重量,从而提高汽车的燃油经济性和操控性能。
汽车底盘悬挂系统解析当我们谈论汽车的性能和舒适性时,底盘悬挂系统是一个至关重要的因素。
它不仅影响着车辆的操控稳定性,还对乘坐的舒适性有着直接的影响。
那么,汽车底盘悬挂系统到底是什么?它又是如何工作的呢?接下来,让我们一起深入了解一下这个神秘而又重要的汽车部件。
汽车底盘悬挂系统是连接车轮和车身的一系列部件的组合,其主要作用是支撑车身重量、吸收路面震动、传递驱动力和制动力,并保证车轮在行驶过程中的正确定位和运动轨迹。
简单来说,悬挂系统就像是汽车的“腿”,让车辆能够在各种路况下平稳行驶。
悬挂系统的类型多种多样,常见的有麦弗逊式悬挂、双叉臂式悬挂、多连杆式悬挂、扭力梁式悬挂等。
麦弗逊式悬挂是目前应用最为广泛的一种悬挂形式,它结构简单、成本较低,占用空间小。
其主要由螺旋弹簧、减震器和三角形下摆臂组成。
麦弗逊式悬挂的优点是轻便、响应速度快,能够在一定程度上保证车辆的操控性能。
但由于其结构的限制,对于侧向支撑力的表现相对较弱,不太适合激烈驾驶。
双叉臂式悬挂则是一种较为高级的悬挂形式,它具有更好的侧向支撑力和操控性能。
双叉臂式悬挂由上下两个叉臂以及减震器和弹簧组成,能够有效地控制车轮的运动轨迹,提高车辆在高速行驶和弯道中的稳定性。
不过,这种悬挂结构复杂,成本较高,通常只在一些高端车型或运动型车辆上使用。
多连杆式悬挂是在双叉臂式悬挂的基础上发展而来,它通过多个连杆来控制车轮的运动,可以更加精确地调整车轮的定位参数,从而提供更好的舒适性和操控性能。
多连杆式悬挂的结构较为复杂,但能够适应各种不同的路况和驾驶需求,是目前许多中高端车型所采用的悬挂形式。
扭力梁式悬挂则是一种非独立悬挂形式,它通过一根扭转梁来连接左右车轮。
这种悬挂结构简单、成本低,能够在一定程度上保证车辆的承载能力,但在舒适性和操控性能方面相对较差,一般多用于经济型车型。
除了悬挂的类型,悬挂系统中的弹簧和减震器也起着至关重要的作用。
弹簧的作用是支撑车身重量,并吸收路面的冲击。
目录 第一章 悬架的结构形式的选择 第一节 悬架的构成和类型 第二节 独立悬架结构形式分析 第三节 前后悬架的选择 第二章 悬架主要参数的选择 第一节 悬架性能参数的选择 第二节 悬架的自振频率 第三节 侧倾角刚度 第四节 悬架的静动挠度的选择 第三章 弹性元件的设计分析及计算 第一节 前悬架弹簧 第二节 后悬架弹簧 第四章 独立悬架导向机构的设计分析及计算 第一节 导向机构设计要求 第二节 麦弗逊独立悬架示意图 第三节 导向机构受力分析 第四节 横臂轴线布置方式 第五节 导向机构的布置参数 第五章 减震器的设计分析及计算 第一节 第一章 悬架的结构形式的选择 1.1悬架的构成和类型 1.1.1 构成 (1)弹性元件 具有传递垂直力和缓和冲击的作用。常见的弹性元件有: 钢板弹簧、螺旋弹簧、扭杆弹簧、空气弹簧、油气弹簧、橡胶弹簧等。 (2)导向装置 其作用是传递除弹性元件传递的垂直力以外的各种力和力矩。常见的导向装置有:斜置单臂式、单横臂式、双横臂式、双纵臂式、麦弗逊式等。 (3)减震器 具有衰减振动的作用。常见的减震器有:简式减震器、充气式减震器、阻力可调式减震器等。 (4)缓冲块 其作用是减轻车轴对车架的直接冲撞,防止弹性元件产生过大的变形。 (5)横向稳定器 其作用是减少转弯行驶时车身的侧倾角和横向角振动。
1.1.2 类型 悬架可分为非独立悬架和独立悬架。 (1)非独立悬架 非独立悬架的特点是:左、右车轮用一根整体轴连接,再经过悬架与车架连接。 优点是:结构简单、制造容易、维修方便、工作可靠。 缺点是:①由于整车布置上的限制,钢板弹簧不可能有足够的长度(特别是前悬架),使之刚度较大,所以汽车平顺性较差。 ②簧下质量较大。 ③在不平路面上行驶时,左、右车轮相互影响,并使车轴和车身倾斜。 ④当两侧车轮不同步跳动,车轮会左、右摇摆,使前轮容易产生摆振。 ⑤前轮跳动时,悬架易与转向传动机构产生运动干涉。 ⑥汽车转弯行驶时,离心力也会产生不利的轴转向特性。 ⑦车轴上方要求有与弹簧行程相适应的空间。 然而由于非独立悬架结构简单、易于维护以及可以使用多种类型的弹性元件等优点,非独立悬架多用于载货汽车和大客车的前、后悬架。 (2)独立悬架 独立悬架的特点是:左、右车轮通过各自的悬架与车架连接。 优点是:①簧下质量小。 ②悬架占用的空间小 ③弹性元件只承受垂直力,所以可以用刚度小的弹簧,使车身振动频率降低,改善了汽车行驶的平顺性。 ④由于采用了断开式车轴,所以能降低发动机的位置高度,使整车的质心高度下降,改善了汽车行驶的稳定性。 ⑤左、右车轮各自独立运动互不影响,可减少车身的倾斜和振动,同时在好的路面上能获得良好的地面附着能力。 缺点是:结构复杂、成本较高、维修困难 然而由于独立悬架具有以上优点,因此现代轿车多采用独立悬架。 1.2 独立悬架结构形式分析 独立悬架又可以分为双横臂式、单横臂式、双纵臂式、单纵臂式、单斜臂式、麦弗逊式和扭转梁随动臂式等。 对于不同形式的独立悬架,不仅结构特点不同,而且许多基本特性也有较大区别。评价时常从以下几个方面进行: ①侧倾中心高度 ②车轮定位参数的变化 ③悬架倾角刚度 ④横向刚度 不同形式悬架的特点 导向机构形式 特性 双横臂式 单横臂式 单纵臂式 单斜臂式 麦弗逊式 扭转梁随动臂式
车辆底盘的悬挂系统参数车辆的底盘悬挂系统是保证行车平稳性和乘客舒适度的重要组成部分。
悬挂系统的参数对于车辆的操控性能和驾驶感受有着直接影响。
本文将详细介绍车辆底盘悬挂系统的参数,包括弹簧刚度、减震器设置、悬挂高度和悬挂类型等。
一、弹簧刚度弹簧刚度是悬挂系统中最重要的参数之一。
它指的是在单位位移下,弹簧对于外部力所产生的反作用力的大小。
弹簧刚度越大,车辆在行驶过程中的起伏变化越小,悬挂系统对于颠簸路段的响应能力越好。
一般来说,越高级的车辆所采用的弹簧刚度越大,提供更好的行驶质感和操控性能。
二、减震器设置减震器是悬挂系统中的重要组成部分,其参数设置直接影响着车辆的舒适性和悬挂系统的稳定性。
减震器设置包括阻尼力和回复力两方面。
阻尼力指的是减震器对于弹簧压缩和伸展过程中的减震能力,决定了车辆在不同路况下的阻尼强度。
回复力则是减震器在压缩后回复到原始位置的能力,影响着车辆的稳定性和悬挂系统的响应速度。
合理的减震器设置能够提供良好的平稳性和悬挂控制,使行车更加稳定和舒适。
三、悬挂高度悬挂高度是指车辆离地面的距离,也是悬挂系统中的重要参数之一。
悬挂高度的设置直接影响着车辆的通过性和稳定性。
较高的悬挂高度在通过不平路面时会有更好的通过性,但会增加车辆的重心高度,降低行驶稳定性。
较低的悬挂高度则可以提供更好的操控性能和行驶稳定性,但容易造成底盘部件的损坏。
车辆制造商会根据车型的用途和性能要求来合理设置悬挂高度,以达到最佳的平衡。
四、悬挂类型悬挂系统有多种类型,常见的包括独立悬挂、非独立悬挂和半独立悬挂等。
独立悬挂是指每个车轮都有独立的悬挂装置,可以独立运动。
非独立悬挂是指左右两个车轮之间通过横梁或弹簧连接,悬挂运动不独立。
半独立悬挂则是介于独立悬挂和非独立悬挂之间。
不同类型的悬挂系统对于车辆的行驶性能和操控感受有着不同的影响。
独立悬挂可以提供更好的悬挂控制和操纵性能,而非独立悬挂则相对简单和便宜,适用于经济型车辆。
汽车主动悬架控制策略综述 摘 要 首先介绍了主动悬架的发展情况和应用情况,然后引入了作性能分析所需的车辆主动悬架动力学模型,以1/4动力学模型为基础,得出了运动微分方程以及控制状态方程组。最后,介绍了现在流行的主动悬架控制策略,包括PID控制、鲁棒控制、神经网络控制、滑模变控制、模糊控制和自适应控制。 关键词:主动悬架;控制策略 Automotive Active Suspension Control Strategies
Abstract: Firstly, introducing active development and application of suspension, then introduced as the performance required for the analysis of vehicle active suspension dynamics model, through 1/4 kinetic model, derived differential equations of motion and control state equations . At last, Introduced the now popular active
suspension control strategy, including PID control, robust control, neural network control, sliding mode control, fuzzy control and adaptive control. Keywords: Active Suspension; Control Strategy
0 引言 传统的被动悬架的刚度和阻尼是按经验或优化设计的方法确定的,在汽车行驶过程中其性能是不变的,也是无法进行调节的。虽然随着近年来,悬架在设计和工艺上得到不断改善,实现了低成本、高可靠性的目标,但无法彻底解决平顺性和操纵稳定性之间的矛盾。20世纪50年代提出了全主动悬架的概念,主动悬架就是根据汽车的运动和路面的状况,适时地调节悬架的刚度和阻尼系数,使其处于最佳的减振状态。从20世纪80年代以来,世界各大汽车公司和生产厂家都在竞相研制开发这种新型的悬架系统。丰田、洛特斯、沃尔沃等汽车公司,已在汽车上进行了较成功的实验。[1] 1 汽车主动悬架动力学模型 建立如图所示的具有2自由度的1 / 4车辆动力学模型,该主动悬架装置主要包括弹簧和执行器两大部分,执行器通常为作动器,并通过对作动器力的控制来实现悬架系统的性能优化。[2] 图1 主动悬架动力学模型 系统的运动微分方程如下: ()()0()()()0ssssussuduussussudturmxkxxcxxFmxkxxcxxFkxx
汽车悬架系统综述
现代汽车中的悬架有两种,一种是从动悬架,另一种是主动悬架。
从动悬架即传统式的悬架,是由弹簧.减振器(减振筒).导向机构等组成,它的功能是减弱路面传给车身的冲击力,衰减由冲击力而引起的承载系统的振动。
其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动。
由于这种悬架是由外力驱动而起作用的,所以称为从动悬架。
而主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。
由于这种悬架能够自行产生作用力,因此称为主动悬架。
主动悬架是近几年发展起来的,由电脑控制的一种新型悬架,具备三个条件:(1)具有能够产生作用力的动力源;
(2)执行元件能够传递这种作用力并能连续工作;(3)具有多种传感器并将有关数据集中到微电脑进行运算并决定控制方式。
因此,主动悬架汇集了力学和电子学的技术知识,是一种比较复杂的高技术装置。
例如装置了主动悬架的法国雪铁龙桑蒂雅,该车悬架系统的中枢是一个微电脑,悬架上有5 种传感器,分别向微电脑传送车速.前轮制动压力.踏动油门踏板的速度.车身垂直方向的振幅及频率.转向盘角度及转向速度等数据。
电脑不断接收这些数据并与预
先设定的临界值进行比较,选择相应的悬架状态。
同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候.任何车轮上产生符合要求的悬架运动。
因此,桑蒂雅桥车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的“正常”或“运动”按钮,轿车就会自动设置在最佳的悬架状态,以求最好的舒适性能。
另外,主动悬架具有控制车身运动的功能。
当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬架会产生一个与惯力相对抗的力,减少车身位置的变化。
例如德国奔驰2000 款CL 型跑车,当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬架上,使车身的倾斜减到最小。
汽车主动悬架悬架结构。
悬架作用悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。
从外表上看,轿车悬架仅是由一些杆.筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”.加速“抬头”以及左右侧倾严重
的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。
因此,如果悬架结构设计不当,就会大大影响汽车产品的使用性能(如转向沉重.摆振.轮胎偏磨.影响轮胎使用寿命等)。
7。