汽车悬架系统
- 格式:doc
- 大小:1.48 MB
- 文档页数:22
汽车典型悬架结构汽车的悬架系统是指连接车身和车轮之间的一系列部件。
它的主要功能是支撑车身、减震、保持车轮与地面接触的稳定性,并保证车辆的舒适性和操控性能。
目前市面上的汽车悬架系统有多种不同的结构,以下是一些典型的悬架结构。
1. 独立悬架系统(Independent Suspension)独立悬架系统是当前汽车悬架系统中最常见的结构之一、它是指每个车轮都有独立的悬挂系统,当一个车轮遇到不平的路面时,它的运动不会对其他车轮产生影响。
独立悬架系统可以提高车辆的稳定性、操控性和舒适性,因此被广泛应用于各种乘用车和跑车上。
2. 力臂式悬架系统(Wishbone Suspension)力臂式悬架系统也是一种常见的悬架结构。
它使用了一个或多个力臂来连接车轮和车体,将车轮的垂直运动转化为力臂的旋转运动,从而吸收道路上的冲击。
力臂式悬架可以提供较高的操控性能和平稳性,因此被广泛用于运动型汽车和高档乘用车中。
3. 麦弗逊悬架系统(MacPherson Suspension)麦弗逊悬架系统是一种简单而常见的独立悬架结构。
它由一个悬架支柱、一个支撑杆和一个减震器组成。
麦弗逊悬架系统的主要优点是结构简单、成本低廉,并且能够提供较好的悬架效果。
因此,它被广泛应用于大多数小型和中型乘用车中。
4. 多连杆悬架系统(Multi-link Suspension)多连杆悬架系统是一种复杂且高性能的独立悬架结构。
它由多个连杆、弹簧和减震器组成,能够提供更大的悬挂行程和更高的悬挂刚度。
多连杆悬架系统在提供较好悬挂效果的同时,还能够保持车辆的平稳性和操控性能。
因此,在高档乘用车和跑车中较为常见。
除了上述几种典型的悬架结构外,市面上还有其他少数的悬架系统,如扭力束悬架、半独立悬架和螺旋弹簧悬架等。
每种悬架结构都有其独特的优点和适用范围,汽车制造商会根据车辆类型和性能要求来选择合适的悬架系统。
总之,汽车的悬架系统是确保车辆稳定性、舒适性和操控性的重要部件之一、当前市场上存在多种不同类型的悬架系统,如独立悬架系统、力臂式悬架系统、麦弗逊悬架系统和多连杆悬架系统等。
汽车悬架名词解释汽车悬架是指汽车的底盘和车轮之间的一系列连接和支撑机构。
它可分为前悬架和后悬架两部分。
悬架系统对于汽车车身的稳定性、操控性以及舒适性都有着至关重要的作用。
1. 悬架系统的组成部分汽车悬架系统包括:弹簧(或空气悬架)、减震器(或阻尼器)、悬挂臂、转向节、支撑轴承、悬架桥、稳定杆、调节杆、上下臂等多个部分。
每个部分都有着不同的作用,它们共同协作,完成悬架系统的功能。
2. 悬架系统的作用(1) 提高车辆的稳定性:悬架系统能使车身保持稳定,避免出现剧烈颠簸、弯曲或其他违规行为,同时还能使汽车经过高低起伏的道路时车身不会晃动过度。
(2) 改善操控性:悬架系统能够防止车辆在高速行驶时出现闪动问题,从而可以更好地进行方向控制,使汽车的操纵更为流畅和舒适。
(3) 提升乘坐舒适性:悬架系统通过缓解路面的颠簸,使乘车过程更为平稳,同时减少了人体在承受路面颠簸时所受的伤害。
3. 悬架系统的种类目前常见的悬架系统有以下几种。
(1) 前置悬挂系统:将车的发动机、变速器等置于车轮前部,主要用在前轮驱动车型上,适用于高速公路行驶。
(2) 后置悬挂系统:将车的发动机、变速器等置于车轮后部,主要用于后轮驱动车型,并较好地完成发动机的降噪和振动消除。
(3) 独立悬挂系统:采用四个独立的悬挂系统,各自负责控制自身轮胎,适用于性能车型。
(4) 拖架悬挂系统:将车轮通过拖架与车架相连,用于一些大型的负载车辆和拖车。
4. 悬架系统的维护每种悬架系统都有建议的保养周期,需要按时进行维护。
保养涉及到一系列内容,如:检查弹簧是否变形、调整减震器(或阻尼器)的硬度、检查安全带是否损坏等等。
这些操作可以检查和维护各个部分的工作状态,延长悬架系的使用寿命。
总之,汽车悬架系统是保证车辆安全、高效行驶的重要部分。
适当的悬架系统不仅可以提高车辆的操作性和乘坐舒适度,还能保护车辆的各个部分免受磨损和损伤。
因此,对悬架系统的选择和正确的维护至关重要。
线控悬架系统的工作原理一、引言线控悬架系统是一种高级的汽车悬架系统,它可以通过电子控制单元(ECU)精确地调整每个车轮的悬挂高度和硬度,从而提高汽车的稳定性、舒适性和安全性。
本文将详细介绍线控悬架系统的工作原理。
二、线控悬架系统的组成线控悬架系统由以下几个部分组成:1. 气压供应系统:为悬架系统提供气体压力,通常使用气泵或压缩机。
2. 线控阀组:用于调节气体进出每个气囊,从而调整每个车轮的悬挂高度和硬度。
3. 传感器:用于测量汽车的姿态、加速度和路面情况等参数,以便ECU能够根据这些数据做出正确的调整。
4. 电子控制单元(ECU):负责接收传感器数据,并根据预设参数来调整每个车轮的悬挂高度和硬度。
三、线控阀组的工作原理线控阀组是线控悬架系统中最重要的部分之一。
它由多个电磁阀组成,每个电磁阀都控制着一个气囊的进气和排气。
当ECU接收到传感器数据后,它会根据预设参数来控制每个电磁阀的开关,从而调整每个车轮的悬挂高度和硬度。
具体来说,当ECU需要提高悬架高度时,它会打开相应的电磁阀,使气压进入气囊内部。
这样就可以使车轮上升,从而提高汽车的离地高度。
反之,当ECU需要降低悬架高度时,它会关闭相应的电磁阀,使气囊内部的气体排出。
这样就可以使车轮下降,从而降低汽车的离地高度。
同时,在调整悬架硬度方面,线控阀组也起到了重要作用。
当ECU需要增加悬架硬度时,它会打开相应的电磁阀,并将一部分气体排出到外界。
这样就可以减少气囊内部的空间,并增加悬架硬度。
反之,当ECU需要减少悬架硬度时,则会关闭相应的电磁阀,并让更多的气体进入到气囊内部。
四、传感器的工作原理传感器是线控悬架系统中另一个重要的组成部分。
它们负责测量汽车的姿态、加速度和路面情况等参数,以便ECU能够根据这些数据做出正确的调整。
具体来说,传感器通常包括以下几种类型:1. 加速度传感器:用于测量汽车在加速、刹车和转弯时的加速度。
2. 倾角传感器:用于测量汽车在水平面上的倾斜角度。
汽车悬置系统设计标准有哪些
汽车悬架系统设计标准包括以下几个方面:
1. 载重能力:设计标准要求悬架系统能够承受车辆整备质量及额定载荷,并确保悬架系统在运行过程中不会失效或损坏。
2. 舒适性:悬架系统应具备良好的减震能力,能够有效地减少车辆在行驶过程中的颠簸感,提供乘坐舒适性。
3. 稳定性:悬架系统设计要求在车辆急转弯、行驶过程中具有良好的稳定性,能够保持车辆的姿态,并避免侧倾或失控。
4. 控制性:悬架系统设计要求能够使车辆具备良好的操控性能,能够快速、准确地响应驾驶员的操作,提供良好的操控感。
5. 可靠性:悬架系统设计要求能够在各种复杂的路况下正常工作,并保持长时间的稳定性和可靠性。
6. 安全性:悬架系统设计要求能够确保车辆在紧急制动或避让情况下稳定,避免侧滑、打滑或翻车等危险情况。
7. 经济性:悬架系统设计要求要考虑成本和效益,尽可能减少材料和零部件的使用,提高整体系统的寿命,降低维护和保养成本。
8. 环保性:悬架系统设计要求考虑所使用的材料和技术对环境的影响,尽可能减少对自然资源的消耗和环境污染。
总之,汽车悬架系统设计标准旨在提高汽车悬架系统的性能、可靠性、安全性和经济性,为车辆提供良好的行驶稳定性和乘坐舒适性。
同时,还要考虑环境因素,减少对自然资源的消耗和环境的污染。
这些标准是汽车制造行业必须遵守的基本规范,确保汽车悬架系统的质量和性能达到国际标准。
主动悬架系统的工作原理主动悬架系统是一种高级的汽车悬架系统,它可以根据路面情况和驾驶员的需求自动调整车辆的悬架硬度和高度,从而提高车辆的稳定性、舒适性和操控性。
主动悬架系统的工作原理是通过传感器和控制器来监测车辆的运动状态和路面情况,然后根据这些信息来调整悬架的工作方式。
主动悬架系统的传感器通常包括加速度计、陀螺仪、压力传感器、高度传感器等。
这些传感器可以测量车辆的加速度、角速度、车身姿态、路面高度等参数,从而提供给控制器一个全面的车辆运动状态的信息。
控制器是主动悬架系统的核心部件,它根据传感器提供的信息来计算出车辆的运动状态和路面情况,并根据预设的悬架工作模式来控制悬架的工作方式。
主动悬架系统的工作模式通常包括舒适模式、运动模式、高度调节模式等。
在舒适模式下,主动悬架系统会自动调整悬架的硬度和高度,使车辆在行驶过程中尽可能地平稳舒适。
在运动模式下,主动悬架系统会自动调整悬架的硬度和高度,使车辆在高速行驶和急转弯时更加稳定和灵活。
在高度调节模式下,主动悬架系统可以根据驾驶员的需求来调整车辆的高度,以适应不同的路面情况和驾驶场景。
主动悬架系统的工作原理可以通过以下步骤来简单描述:1. 传感器测量车辆的运动状态和路面情况,将数据传输给控制器。
2. 控制器根据传感器提供的数据计算出车辆的运动状态和路面情况,并根据预设的悬架工作模式来控制悬架的工作方式。
3. 控制器向悬架执行器发送指令,调整悬架的硬度和高度,以适应当前的路面情况和驾驶场景。
4. 悬架执行器根据控制器的指令调整悬架的工作方式,使车辆在行驶过程中保持平稳、舒适和稳定。
总之,主动悬架系统是一种高级的汽车悬架系统,它可以根据路面情况和驾驶员的需求自动调整车辆的悬架硬度和高度,从而提高车辆的稳定性、舒适性和操控性。
主动悬架系统的工作原理是通过传感器和控制器来监测车辆的运动状态和路面情况,然后根据这些信息来调整悬架的工作方式。
长城汽车悬架系统目录一、悬架系统基础知识二、弹性元件三、减振器四、导向装置及套筒五、横向稳定杆六、常见故障一、悬架系统基础知识悬架系统概述:舒适性是乘用车最重要的使用性能之一。
舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。
所以,汽车悬架是保证乘坐舒适性的重要部件。
同时,汽车悬架做为车架 ( 或车身 ) 与车轴 ( 或车轮 ) 之间作连接的传力机件,又是保证汽车行驶安全的重要部件。
由于人体所习惯的垂直振动频率约为1~1.6Hz, 所以车身振动的固有频率应接近或处于人体所适应的范围。
悬架的功用:1、连接车桥和车架(车身); 2、传递各种力和力矩; 3、缓冲、减振、导向及稳定。
悬架的结构组成:弹性元件:承受垂直载荷,缓和冲击;减振器:减振;导向装置:传力、导向;横向稳定器:辅助弹性元件,以防横向倾斜。
悬架的分类:1.主动式悬架与被动式悬架:目前多数汽车上都采用被动悬架,也就是汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。
主动悬架可以自动地控制垂直振动及其车身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。
采用主动式悬架后,汽车对侧倾、俯仰、横摆跳动和车身的控制都能更加迅速、精确,汽车高速行驶和转弯的稳定性提高,车身侧倾减少。
制动时车身前俯小,启动和急加速可减少后仰。
即使在坏路面,车身的跳动也较少,轮胎对地面的附着力提高。
1) 主动式液压悬架:电子控制的主动式液压悬架能根据悬架的质量和加速度等,利用液压部件主动地控制汽车的振动。
主动式液压悬架在汽车重心附近安装有纵向、横向加速度和横摆陀螺仪传感器,用来采集车身振动、车轮跳动、车身高度和倾斜状态等信号,这些信号被输入到控制单元ECU,ECU根据输入信号和预先设定的程序发出控制指令,控制伺服电机并操纵前后四个执行油缸工作。
2) 主动式空气悬架:在电子控制的主动式空气悬架系统中,微机根据传感器送来的信号和驾驶员给予的控制模式经过运算分析后向悬架发出指令,悬架可以根据微机给出的指令改变悬架的刚度和阻尼系数,使车身在行驶过程中保持良好的稳定性能,并且将车身的振动响应控制在允许的范围内。
一般说来,主动式空气悬架的控制内容包括车身高度、减振器衰减力、弹簧弹性系数等三项。
2.非独立悬架与独立悬架:非独立悬架特点是两侧车轮安装于一整体式车桥上,2 3双纵臂式悬挂系统的两个摆臂一般做成等长的,形成一个平行四杆结构,这样,当车轮上下跳动时主销的后倾角保持不变。
双纵臂式悬挂系统多应用在转向轮上。
5)麦弗逊式与烛式独立悬架:烛式和麦克弗逊式形状相似,两者都是将螺旋弹簧与减振器组合在一起,但因结构不同又有重大区别。
烛式采用车轮沿主销轴方向移动的悬架形式,形状似烛形而得名。
特点是主销位置和前轮定位角不随车轮的上下跳动而变化,有利于汽车的操纵性和稳定性。
麦克弗逊式是绞结式滑柱与下横臂组成的悬架形式,减振器可兼做转向主销,转向节可以绕着它转动。
特点是主销位置和前轮定位角随车轮的上下跳动而变化,这点与烛式悬架正好相反。
这种悬架构造简单,布置紧凑,前轮定位变化小,具有良好的行驶稳定性。
麦弗逊的一个最大的设计特点就是结构简单,结构简单能带来两个直接好处那就是:悬挂重量轻和占用空间小。
我们知道,汽车悬挂属于运动部件,运动部件越轻,那么悬挂响应速度和回弹速度就会越快,所以悬挂的减震能力也就越强;而且悬挂质量减轻也意味着弹簧下质量减轻,那么在车身重量一定的情况下,舒适性也越好。
占用空间小带来的直接好处就是设计师能在发动机仓布置下更大的发动机,而且发动机的放置方式也能随心所欲。
1.2.气体弹簧:气体弹簧主要有空气弹簧和油气弹簧两种。
气体弹簧是以空气做弹性介质,即在一个密闭的容器内装入压缩空气(气压为0.5 ~ 1MPa ),利用气体的可压缩性实现弹簧的作用。
这种弹性元件叫空气弹簧,它分为囊式和膜式空气弹簧。
空气弹簧在轿车上有采用尤其在主动悬架中被采用。
这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧压力也随空气压力减少而下降,因而这种弹簧有其理想的弹性特性。
囊式空气弹簧:由夹有帘线的橡胶组成的气囊和密闭在其中的压缩空气构成。
气囊外展由耐油橡胶制成单节或多节,节数越多弹簧越软,节与节之间围有钢质腰环,防止两节之间摩擦。
气囊上下盖板将空气封于室内。
膜式空气弹簧:它由橡胶模片和金属压制件组成。
它比囊式空气弹簧的弹性曲线更为理想,固有频率更低些,且尺寸小,便于布置因而多用于轿车上,但造价贵,寿命较短。
油气弹簧以气体(氮-惰性气体)作为弹性介质,用油液作为传力介质。
油气弹簧类型有带隔膜式油气弹簧,不带隔膜式的油气弹簧。
带隔膜式油气弹簧,它将气体和液体分开,便于充气并防油液乳化。
如下图右侧所示是带反压气室式油气弹簧,它有一个反压气室,相当于在简单油气弹簧上加上一个方向相反的小筒单油气弹簧,用以提高空载时弹簧刚度,使空载满载自然振动频率变化不大。
目前此种弹簧多用于重型车和部分小客车上。
三、减振器由于汽车行驶中四个车轮在垂直方向上会受到不同力的作用,悬架系统中的弹性元件受冲击会相应产生振动,因此需要在悬架中与弹性元件并联安装减振器。
在汽车悬架中广泛采用的液力减振器是液压筒式减振器。
由于其在压缩与伸张行程中均能起减振作用,又称为双向作用式减振器。
另外,有些车型的悬架系统采用充气式减振器和阻尼可调式减振器。
其重量较轻,可靠性较强。
液压减振器的工作原理:当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。
此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。
在油液通道截面等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增,并与油液粘度有关。
对减振器阻尼力的要求(1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。
这时,弹性元件起主要作用。
(2)在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。
(3)当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。
双向作用筒式减振器示意图:1. 活塞杆;2. 工作缸筒;3. 活塞;4. 伸张阀;5. 储油缸筒;6. 压缩阀;7. 补偿阀; 8. 流通阀; 9. 导向座; 10. 防尘罩; 11. 油封双向作用筒式减振器工作过程:在压缩行程时,减振器受压缩。
此时减振器内活塞 3 向下移动,活塞下腔室的容积减少,油压升高。
油液流经流通阀 8 到活塞上面的腔室(上腔)。
上腔被活塞杆 1 占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀 6 ,流回贮油缸5 。
由于这些阀对油的节流而形成悬架受压缩运动的阻尼力。
在伸张行程时,减振器受拉伸。
这时减振器的活塞向上移动。
活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀 4 流入下腔。
由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,而使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。
由于这些阀的节流作用对悬架在伸张运动时起到阻尼作用。
由于伸张阀弹簧的刚度和预紧力设计的大于压缩阀,在同样压力作用下,伸张阀及相应的常通缝隙的通道载面积总和小于压缩阀及相应常通缝隙通道截面积总和。
这使得减振器的伸张行程产生的阻尼力大于压缩行程的阻尼力,达到迅速减振的要求。
伸张阀弹簧的刚度和预紧力比压缩阀的大,在同样油压作用下,伸张行程产生阻尼力远大于压缩行程的阻尼力。
四、导向装置及套筒1.导向机构:在汽车行驶过程中控制车轮的运动方向,提高行驶稳定性,同时还起到传递各种力的作用。
2.套筒:套筒是悬架支点的支撑,允许其上部件的的运动, 同时套筒保持对中性不变。
套筒可用金属、橡胶、尼龙制成。
金属套筒通常用于钢板弹簧上的钩环销的套筒, 需要润滑。
橡胶套筒能隔离噪声、减除不必要的震动, 不必润滑。
五、横向稳定杆现代轿车悬架很软,即固有频率很低,为提高悬架的侧倾角刚度,减小横向倾斜,常在悬架中添设横向稳定器(杆),保证良好操纵稳定性。
1. 支杆;2. 套筒;3. 杆;4. 弹簧支座横向稳定杆的工作原理:当两则悬架变形相同时,横向稳定器不起作用。
当两侧悬架变形不等时,车身相对路面横向倾斜时,车架一侧移近弹簧支座,稳定杆的同侧末端就相对车架向上移动,而另一侧车架远离弹簧座,相应横向稳定杆的末端相对车架下移,横向稳定杆中部对于车架没有相对运动,而稳定杆两边的纵向部分向不同方向偏转,于是稳定杆被扭转。
弹性的稳定杆产生扭转内力矩就阻碍悬架弹簧的变形,减少了车身的横向倾斜和横向角振动。
横向稳定杆工作示意图:长城车系中,PICKUP\SUV\CUV\RUV前悬架均采用双横臂式独立悬架,轿车与MPV前悬架采用麦弗逊式独立悬架;后悬架都为非独立悬架。
依据车型不同,弹性元件有所不同。
六、常见故障分析1.减振器故障分析:减振器是汽车使用过程中的易损配件,减振器工作好坏,将直接影响汽车行驶的平稳性和其他机件的寿命,因此我们应使减振器经常处于良好的工作状态。
可用下列方法检验减振器的工作是否良好。
1)使汽车在道路条件较差的路面上行驶10公里后停车,用手摸减振器外壳,如果不够热,说明减振器内部无阻力,减振器不工作。
2)用力按下保险杠,然后松开,如果汽车有 2-3 次跳跃,则说明减振器工作良好。
3)当汽车缓慢行驶而紧急制动时,若汽车震动比较剧烈,说明减振器有问题。
4)拆下减振器将其直立,并把下端连接环夹于台钳上,用力拉压减震杆数次,此时应有稳定的阻力,往上拉的阻力应大于向下压时的阻力,如阻力不稳定或无阻力,可能是减振器内部缺油或阀门零件损坏。
5)减振器在实际使用中可能会出现发出响声,这主要是由于减振器钢板弹簧、车架或轴相碰撞,胶垫损坏或脱落以及减振器防尘筒变形,油液不足等原因引起。
减振器故障判定:1)减振器漏油判定漏油判定标准:所有减振器在正常工作时允许连杆表面附着一层薄油膜,以便润滑油封。
在行驶中,该油膜会受到外来物的污染。
如:道路上的灰尘和土。
减振器的油封设计是防尘的,在压缩行程时除去污染的油膜,从而产生油泥。
所有减振器在规定的使用寿命内,减振器在外壳上会形成一层油泥,大约覆盖减振器2/3的长度。
这层膜是正常的,不会对减振器的功能造成影响。
漏油判定方法:在不拆卸减振器的情况下擦干净外表面油污,接着行驶5公里,如没有新的油污形成(不超过50mm),视为减振器正常。
行驶5公里后,目视减振器上端有大面积新油污形成(超过50mm)且有油液滞留时,可判定为减振器漏油。