等离子体-原子发射光谱总结
- 格式:ppt
- 大小:4.74 MB
- 文档页数:64
等离子体光谱是指等离子体从红外到VUV发射的电磁辐射光谱。
资源它包含了大量关于等离子体复杂原子过程的信息。
利用光谱原理、实验技术和等离子体理论模型对等离子体光谱进行测量和分析具有重要意义。
包括等离子体光谱主要是线性的和连续的。
当等离子体中的中性原子和离子从高能能级的激发态转移到低能能级时,会产生线性谱;②在电子从高能能级跃迁到低能能级逃逸出等离子体之前光子的再吸收量被重新吸收。
然而,谱线的总强度与电子和离子的密度和温度有关,每一条谱线都有其强度分布规律。
因此,结合光谱模型中的理论模型和原子数据,通过测量谱线的强度,可以得到电子和离子的密度和温度。
根据多普勒效应,等离子体的宏观速度可以由谱线波长的偏移来确定。
当电子在其他粒子的势场中加速或减速时,就会产生连续的谱。
连续谱强度测量也可获得电子密度和温度的数据。
改变随着等离子体温度的升高,当达到10℃以上时,原子的外部电子逐渐剥离形成各种离子态的离子,如C IV、CV、O VI、n V、Fe Xi x、Ti Xi x(I为中性原子,II,III,IV损失1,2,3)的一个电子外层。
这些高电离离子的线性谱主要在远紫外波段。
在连续谱情况下,当温度升高时,最大发射强度向短波方向移动;对于聚变高温等离子体,其工作物质为氢,同位素为氘和三种,但不可避免地会含有一些杂质,如C、O、Fe,Ti、Mo、W等元素的温度已达到10度以上。
这些杂质离子的光谱大多在真空紫外和X射线波段。
分析时间非常重要。
比较了高阶重杂质电离线的位置和位置。
他们的强度。
研究等离子体参数的测量、传输过程和在如此高的温度下的辐射损耗是非常重要的。
特别是分析氢离子和氦离子的线强度更为有用,因为这些离子的原子数据相对完整。
形状等离子体光谱的另一个重要方面是光谱线的形状或轮廓。
谱线不是“线”,而是具有一定宽度的等高线。
在等离子体光谱中,线展宽的机理非常复杂。
多普勒效应和斯塔克效应是影响多普勒效应的两个重要因素。
2021电感耦合等离子体原子发射光谱法研究综述范文 前言 原子发射光谱法(AtomicEmission Spectrometry,简称AES)是通过测量目标分析物气态原子(或离子)受激发后所发射的特征谱线的波长或强度进行定性或定量分析的方法,由于ICP光源较火花、电弧等传统光源放电稳定性更好、激发能力更强、基体效应小、线性范围宽、背景小等优点,因此常被用做原子发射光谱的光源。
一、进样技术 对于ICP-AES而言,目标样品的引入方式及样品传输过程对分析方法检出限、精密度和准确度起着至关重要的作用,因而对其进样技术的研究一直是分析学者的研究重点,主要体现在不断改进进样装置和研究各种样品分离富集前处理技术[1]。
与其它各种进样方式(固体进样、气体进样、超临界流体进样等)相对比,样品经过处理后以溶液方式引入等离子体具有操作简单、测试结果稳定等优点,因而溶液进样一直是ICP-AES最常用的进样方法。
然而,随着分析工作人员对电热原子吸收光谱法(ET-AAS)中的气相空间研究兴趣的不断增大,电热蒸发(ETV)作为一种重要的进样技术理所当然地被广泛应用于ICP-AES中,与溶液进入雾化器形成气溶胶喷雾进样相比,ETV的最大优点是分析物利用效率增加,样品测定灵敏度提高不少。
另外,使用电热蒸发进样还可以分析有机溶剂介质的样品或可溶固体总量很高而溶液气溶胶喷雾不易分析准确的复杂样品。
胡斌等[2]采用聚四氟乙烯作为化学改性剂,采用原位分离和电热蒸发-电感耦合等离子体原子发射光谱法(ETV-ICP-AES)的方法测定含有微量杂质的高纯氧化钕,在该领域作了较深入的应用研究,激光剥蚀作为一种固体微量采样技术具有无需溶样、检出限低、样品需要量少以及测定简单快速等一系列优点,在ICP-AES应用中也一直倍受关注。
由于激光剥蚀进样的激光脉冲通常情况下的持续时间在10-9~10-6s内,与样品蒸发速率相对慢得多的电热蒸发相比,很大程度上阻止了样品的空间选择性蒸发,极大的提高了样品利用率。
等离子发射光谱引言等离子发射光谱是一种用于分析材料成分和确定元素含量的重要分析技术。
该技术基于等离子态的原子或离子在激发态下放出的光谱信号。
等离子发射光谱已经被广泛应用于材料科学、地球化学、环境监测、冶金学等领域。
本文将介绍等离子发射光谱的基本原理、仪器设备以及应用场景。
基本原理等离子态等离子态是指原子或分子失去或获得一个或多个电子后形成的带电粒子。
等离子态可以分为电子束,阳极火花和感应耦合等离子体等不同形式。
激发态当原子或离子吸收能量后,它们的电子将跃迁到更高的能级,形成激发态。
激发态是不稳定的,电子倾向于返回基态,并放出能量,通常以光子的形式释放。
光谱信号当激发态的原子或离子返回基态时,放出的光子具有特定的波长,并形成光谱信号。
等离子发射光谱的分析基于这些特定的波长,通过测量光谱信号来分析材料的成分。
仪器设备等离子发射光谱需要使用特定的仪器设备来进行分析。
以下是常用的等离子发射光谱仪器设备:电感耦合等离子体发射光谱仪(ICP-OES)ICP-OES 是一种常用的等离子发射光谱仪器。
它使用电感耦合等离子体源产生等离子体,然后通过光谱仪测量光谱信号。
电感耦合等离子体质谱仪(ICP-MS)ICP-MS 是一种结合了质谱分析技术的等离子发射光谱仪器。
它使用电感耦合等离子体源产生等离子体,并通过质谱分析仪器测量光谱信号。
针式等离子体发射光谱仪(LIBS)LIBS 是一种便携式的等离子体发射光谱仪器。
它使用激光脉冲将样品表面激发成等离子体,并通过光谱仪测量光谱信号。
应用场景等离子发射光谱在许多领域中有广泛的应用。
以下是几个典型的应用场景:材料科学等离子发射光谱可用于分析材料的成分,帮助科学家了解材料的结构和性质。
例如,可以使用等离子发射光谱来分析合金中的元素含量,以确定材料的性能。
地球化学地球化学研究材料和岩石的成分,以了解地球的构成和演化过程。
等离子发射光谱可用于分析地球样品中的元素含量,并提供与地球化学研究相关的信息。
等离子体发射光谱法等离子体发射光谱法,又称原子发射光谱法,是一种广泛应用的光谱分析技术。
它基于原子或分子内部能态的电子跃迁过程,利用激发能将样品中原子或分子中的电子激发到高电子能态,再由高电子能态跃迁到低电子能态时所释放的光能进行分析。
该技术具有高分辨率、灵敏度高、适用范围广、无需前处理等优点,广泛应用于材料检测、环境监测、医学诊断等领域。
等离子体发射光谱分析主要分为电弧放电、射频感应等离子体、电感耦合等离子体(ICP)发射光谱法。
电弧放电法是最早应用的等离子体发射光谱法之一。
该方法将样品放置在一对电极间,通过电弧放电的方式激发样品原子,利用分析样品所产生的光谱来确定其中元素的存在和含量。
该方法简便易行,但存在容易形成烟雾、易污染仪器的缺点。
射频感应等离子体法是一种非接触式等离子体发射光谱法,它通过射频电磁场在样品中产生等离子体,使样品原子或分子激发并发射光谱信号。
该方法具有射频感应器简单、样品可以传送等优点,但对于高浓度盐类或有机物质等强吸收样品存在分析复杂度较高的缺点。
电感耦合等离子体发射光谱法是目前广泛应用的一种光谱分析技术,该方法使用射频辐射场激励样品,将样品原子或分子离子化,形成等离子体,由此提供较高的分辨率和灵敏度,同时可以扩展到更广泛的化学元素范围,并具有较低的背景信号和较高的重现性等优点。
ICP还可以与质谱仪结合,形成ICP-MS系统,进一步提高检测的极限和精度。
在等离子体发射光谱分析中,还经常使用样品前处理技术来提高检测结果的准确性。
如氧化、还原、燃烧、溶解、虑滤等处理方法,以及结合色谱和电化学分析等技术。
等离子体发射光谱法是一种重要的光谱分析技术,具有广泛应用的前景,在工业检测、环境检测、医药等行业的研究中发挥着重要作用。
在环境监测领域,等离子体发射光谱法可以用于测定地下水、土壤和大气中各种元素的含量,以评估环境污染状况。
利用ICP-OES测定土壤中的重金属含量,可以确定污染源和污染程度,为环境治理决策提供了有力的数据支持。
电感藕合等离子体原子发射光谱等离子体原子发射光谱是一种基于电感藕合的原子发射光谱技术,该技术广泛应用于分析各种材料和样品中的元素成分。
此种技术具有灵敏度高、分析速度快、检测限低、精度高等特点,已经成为现代分析化学和材料科学领域中的重要工具之一。
电感藕合等离子体原子发射光谱的原理基于等离子体的产生和激发原子产生自发辐射的现象。
等离子体是由高温气体或等离子体火花产生,其中包含具有高能量电子的离子或原子。
当这些离子或原子通过电磁场在等离子体中运动时,它们的激发态级别升高,产生自发辐射的能量。
这些辐射的波长与产生它们的原子的元素和能量有关,可以用于确定元素成分和测定其浓度。
电感藕合等离子体原子发射光谱的检测系统由电感藕合等离子体源、光谱仪和控制计算机系统组成。
样品通过加热和气化,将产生的原子引入电感藕合等离子体源中,其中加入了辅助气体。
在等离子体源中,产生高温、高密度等离子体,原子进入高能态,激发状态:产生自发光。
这些光通过光纤传输到光谱仪,光谱仪将不同波长的光谱解析并记录下来。
光谱仪将结果发送给计算机,计算机根据已知光谱库对其进行解析,最终确定元素成分和浓度。
电感藕合等离子体原子发射光谱应用于各种材料和样品的分析,包括金属、半导体、化合物、生物和环境样品等。
在金属和半导体行业,它可用于分析贵金属和有害金属的含量。
在化工和制药行业,该技术可以用于分析有机化合物和药物的元素含量。
在环境科学中,该技术可用于监测土壤、水和空气中的元素浓度,以及污染源的追溯。
由于电感藕合等离子体原子发射光谱具有灵敏度高、准确性、分析速度快等特点,已成为现代分析化学和材料科学领域的重要工具之一。
随着技术的不断发展和应用的拓展,相信电感藕合等离子体原子发射光谱在更多领域中会发挥更加重要的作用。
电感藕合等离子体原子发射光谱在分析化学中有着广泛的应用。
在十分低的浓度下,这种技术也能准确地分析出元素成分和浓度。
在实际应用中,样品的制备和前处理也非常重要。
等离子体原子发射光谱仪的优缺点分析光谱仪工作原理等离子体原子发射光谱仪的优缺点分析:优点:1. 多元素同时检出本领。
可同时检测一个样品中的多种元素。
一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。
2. 分析速度快。
试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用等离子体原子发射光谱仪,则可在几分钟内同时作几十个元素的定量测定。
3. 选择性好。
由于光谱的特征性强,所以对于一些化学性质极相像的元素的分析具有特别紧要的意义。
如铌和钽、铣和铪、十几种稀土元素的分析用其他方法都很困难,而对AES来说是毫无困难之举。
4. 检出限低。
一般可达0.1~1ugg-1,值可达10-8~10-9g。
用电感耦合等离子体(ICP)新光源,检出限可低至数量级。
5. 用ICP光源时,精准度高,标准曲线的线性范围宽,可达4~6个数量级。
可同时测定高、中、低含量的不同元素。
因此ICP -AES已广泛应用于各个领域之中。
6. 样品消耗少,适于整批样品的多组分测定,尤其是定性分析更显示出独特的优势。
缺点:1. 在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显着,所以对标准参比的组分要求较高。
2. 含量(浓度)较大时,精准度较差。
3. 只能用于元素分析,不能进行结构、形态的测定。
4. 大多数非金属元素难以得到灵敏的光谱线。
1 由于工作时需要消耗大量Ar气,所以运转费用高。
2 因目前的仪器价格尚比较高,所以前期投入比较大。
3 等离子体原子发射光谱仪假如不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。
直读光谱仪的使用要点直读光谱仪是比较常用的光谱仪类型,在铸造、钢铁、电力、化工等领域有广泛应用。
那么,关于直读光谱仪的使用要点,本文我们来共享下。
直读光谱仪在接通电源开关前,必需先接通氩气。
分光仪的内部温度需要达到稳定,一般情况下测控系统昼夜连续工作,一旦关闭电源,再次打开仍须预热。
等离子体原子发射光谱仪的优缺点等离子体原子发射光谱仪(Inductively coupled plasma atomic emission spectroscopy,ICP-AES)是一种常用于化学分析的仪器。
它利用了等离子体的高温和高能量特性,可以对样品中的元素进行分析。
下面将对等离子体原子发射光谱仪的优缺点进行详细探讨。
优点:1. 高灵敏度:等离子体原子发射光谱仪的灵敏度非常高,通常在<10 ppb的水平上进行分析。
这使得它成为一种非常适合跟踪元素和微量元素测定的技术。
2.宽线性范围:等离子体原子发射光谱仪具有宽广的线性范围,通常为6-7个数量级。
这意味着可以在一个仪器中同时测量低浓度和高浓度样品,无需进行稀释和稀释。
3.高选择性:等离子体原子发射光谱仪通过选择合适的谱线进行分析,因此具有高选择性。
这意味着它可以忽略潜在的干扰,从而得到准确的分析结果。
4.多元素分析:等离子体原子发射光谱仪具有多元素分析的能力,可以分析周期表中大多数元素。
这简化了实验室的流程,并提高了分析效率。
5.快速分析:等离子体原子发射光谱仪具有较快的分析速度,通常每个样品的分析时间不超过几分钟。
这对于需要快速分析大量样品的实验室非常有效。
6.低检出限:由于等离子体原子发射光谱仪的高灵敏度和低背景噪音,它具有很低的检出限。
这对于需要检测极低浓度的样品非常重要。
缺点:1.仪器复杂:等离子体原子发射光谱仪是一种复杂的仪器,需要高度熟练的操作人员才能操作和维护。
这使得对仪器的操作和维护成本较高。
2.昂贵的设备:等离子体原子发射光谱仪是昂贵的设备,成本较高。
这对于一些实验室来说可能是一个挑战,尤其是对于财务限制比较严格的实验室。
3.依赖于标准曲线:等离子体原子发射光谱仪的准确性和精确度依赖于使用标准曲线进行校准。
如果标准曲线不准确或校准过程出现问题,可能会导致测量结果的误差。
4.不适用于非金属元素:等离子体原子发射光谱仪由于其基于光谱测量的原理,通常不适用于非金属元素的分析。
实验32 电感耦合等离子体原子发射光谱分析一、实验目的1.了解等离子体原子发射光谱仪的基本构造、原理与方法。
2.了解等离子体原子发射光谱分析过程的一般要求和主要操作步骤。
3.掌握等离子体原子发射光谱对样品的要求及制样方法。
4.掌握等离子体原子发射光谱定量分析与数据处理方法。
二、实验内容1.巩固电感耦合等离子体(ICP)原子发射光谱分析法的理论知识。
2.掌握ICP-AES光谱仪的基本构成及使用方法。
3.掌握用ICP-AES法测定样品中Hg2+的方法。
三、实验仪器设备与材料CAPQ等离子体发射光谱仪,见图32-1所示;含Hg2+溶液。
四、实验原理技术指标:1.灵敏度:①轻质量元素:Li> 50 Mcps/ppm;②中质量数元素:In>220 Mcps/ppm;③高质量数元素:U>300 Mcps/ppm。
2.仪器检出限:①轻质量元素:<0.5 ppt;②中质量数元素:<O.l ppt;③高质量数元素:<0.1 ppt。
3.稳定性:①短期稳定性(RSD):<3016;②长期稳定性(RSD):<4%(2h);③质谱校正稳定性:<0.05 amu/8 h。
4.随机背景<cps(4.S),标准模式下,仪器信噪比>150 M(l ppm中质量元素溶液,灵敏度/随机背景),氧化物离子( CeO+/Ce+) <2%5.优良的真空系统:阀门关闭状态:<6×10-8 Torr,工作状态:<6×10-7Torr.从大气压开始抽至可工作的真空度的时间<15 min.6.离子透镜:将待分析离子方向偏转90度,彻底与未电离的中性粒子和光子分离;离子透镜彻底免维护.7.计算机及打印机:不低于双核2G处理器,2G内存,160G硬盘,(35×50) cm显示器等,HP激光打印机。
8.可拆卸式石英矩管,计算机控制X、y、Z方向自动调谐,可自由拆装清洗及维护,后期维护费用较低。
电感耦合高频等离子体原子发射光谱分析(ICP—AES)本章要求:电感耦合高频等离子体原子发射光谱法是以电感耦合等离子焰炬为激光源的一类新型光谱分析方法(Inductively Coupled Plasma—Atomic Emission Spectrometry,简称ICP—AES)。
由于该法具有检出限较低、准确度及精密度高、分析速度快和线性范围宽等许多独特的优点,因此在国外ICP—AES法已发展成为一种极为普遍、适用范围极广的常规分析方法,并广泛用于环境试样、岩石矿物、生物医学以及金属与合金中数十种元素的分析测定。
在国内ICP—AES法的研究工作始于1974年,现已有上千个科研单位、大专院校、工厂以及环境监测等部门拥有了此种分析手段,ICP—AES法已成为近年来我国分析测试领域中发展最快的测试方法之一。
为了使这种新型分析技术在环境监测中得到普及,环境监测人员必须对ICP—AES法有所了解,在学习中应掌握以下几方面的知识。
1、电感耦合等离子体(ICP)光谱技术的发展概况。
2、ICP光源的理论基础。
3、ICP所用的高频电源。
4、ICP所需的进样装臵。
5、ICP炬管及工作气体。
6、ICP仪器的分光、测光装臵。
7、ICP-AES法的分析技术。
8、ICP-AES法的应用。
9、有机试液的ICP光谱分析。
10、ICP-AES法和其他分析技术的比较。
参考文献1、光谱学与光谱分析编辑部,《ICP光谱分析应用技术》,1982年,北京大学出版社。
2、蔡德,《光谱分析辞典》,1987年,光谱实验室编辑部。
3、陈新坤,《电感耦合等离子体光谱法原理和应用》,1987年,南开大学出版社。
4、不破敬一郎,《ICP发射光谱分析》,1987年,化学工业出版社。
5、辛仁轩,《电感耦合等离子体光源—原理、装臵和应用》,1984年,光谱实验室编辑部。
6、《分析技术辞典,发射光谱分析》,1980年,科学出版社。
7、高铮德,《光谱分析常识》,1985年,光谱实验室编辑部。
原子发射光谱实验报告篇一:电感耦合等离子体发射光谱实验报告电感耦合等离子体发射光谱法1.基本原理1.1概述原子发射光谱分析(atomic emission spectrometry,AES)是一种已有一个世纪以上悠久历史的分析方法,原子发射光谱分析的进展,在很大程度上依赖于激发光源的改进。
到了60年代中期,Fassel和Greenfield分别报道了各自取得的重要研究成果,创立了电感耦合等离子体(inductively coupled plasma,ICP)原子发射光谱(ICP-AES)新技术,这在光谱化学分析上是一次重大的突破,从此,原子发射光谱分析技术又进入一个崭新的发展时期。
1.2方法原理原子发射光谱是价电子受到激发跃迁到激发态,再由高能态回到较低的能态或基态时,以辐射形式放出其激发能而产生的光谱。
原子发射光谱法的量子力学基本原理如下:(1)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;(2)当处于基态的气态原子或离子吸收了一定的外界能量时,其核外电子就从一种能量状态(基态)跃迁到另一能量状态(激发态),设高能级的能量为E2,低能级的能量为E1,发射光谱的波长为λ(或频率ν),则电子能级跃迁释放出的能量△E与发射光谱的波长关系为△E= E2- E1=hν=hc/λ(3)处于激发态的原子或离子很不稳定,经约10-8秒便跃迁返回到基态,并将激发所吸收的能量以一定的电磁波辐射出来;(4)将这些电磁波按一定波长顺序排列即为原子光谱(线状光谱);(5)由于原子或离子的能级很多并且不同元素的结构是不同的,因此,对特定元素的原子或离子可产生一系列不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。
半定量是对样品中一些元素的浓度进行大致估算。
一种半定量的方法是对许多元素进行一次曲线校正,并将标准曲线储存起来。
然后在需要进行半定量时,直接采用原来的曲线对样品进行测试。
结果会因仪器的飘移而产生误差或因样品基体的不同而产生误差,但对于半定量来说,可以接受。
微波等离子体(mp)原子发射光谱法
微波等离子体(MP)原子发射光谱法是一种分析技术,它可以
用来测量物质的组成成分。
它是一种非常有效的分析技术,可以
用来测量物质的组成成分,以及物质的结构和性质。
它的原理是,当物质被离子化时,它会发出特定的光谱,这些光谱可以用来测
量物质的组成成分。
MP原子发射光谱法的优势在于它可以快速准确地测量物质
的组成成分,而且可以在低温下进行测量,这使得它可以用于测
量温度敏感的物质。
此外,它还可以用来测量物质的结构和性质,从而更好地了解物质的组成成分。
MP原子发射光谱法的应用非常广泛,它可以用于分析各种
物质,包括金属、非金属、有机物和无机物。
它还可以用于环境
监测,可以用来检测空气中的有毒物质,以及水中的有害物质。
总之,MP原子发射光谱法是一种非常有效的分析技术,它
可以用来测量物质的组成成分,以及物质的结构和性质,并且可
以用于各种应用,包括环境监测。
等离子体原子发射光谱分析常见问题1、影响等离子体温度的因素有:载气流量:流量增大,中心部位温度下降;载气的压力:激发温度随载气压力的降低而增加;频率和输入功率:激发温度随功率增大而增高,近似线性关系,在其他条件相同时,增加频率,放电温度降低;第三元素的影响:引入低电离电位的释放剂(如T1)的等离子体,电子温度将增加。
2、电离干扰的消除和抑制:原子在火焰或等离子体的蒸气相中电离而产生的干扰。
它使火焰中分析元素的中性原子数减少,因而降低分析信号。
在标准和分析试样中加入过量的易电离元素,使火焰或等离子体中的自由电子浓度稳定在相当高的水平上,从而抑制或消除分析元素的电离。
此外,由于温度愈高,电离度愈大,因此,降低温度也可减少电离干扰。
3、试剂酸度对ICP-AES法的干扰效应主要表现在哪些方面?提升率及其中元素的谱线强度均低于水溶液;随着酸度增加,谱线强度显著降低;各种无机酸的影响并不相同,按下列顺序递增:HCl HNO3 HClO4 H3PO4 H2SO4;谱线强度的变化与提升率的变化成正比例。
4、ICP-AES法中的光谱干扰主要存在的类型:谱线干扰;谱带系对分析谱线的干扰;连续背景对分析谱线的干扰;杂散光引起的干扰。
5、ICP-AES法分析中灵敏度漂移的校正:在测定过程中,气体压力改变会影响到原子化效率和基态原子的分布;另外,毛细管阻塞、废液排泄不畅,会使溶液提升量和雾化效率受到影响;以及电压变化等诸多因素都会使灵敏度发生漂移,其校正方法可每测10个样品加测一个与样品组成接近的质控样,并根据所用仪器的新旧程度适当缩短标准化的时间间隔。
6、ICP分析中如何避免样品间的互相沾污?测量时,不要依次测量浓度悬殊很大的样品,可把浓度相近的样品放在一起测定,测定样品之间,应用蒸馏水或溶剂冲洗之。
7、ICP-AES法中,用来分解样品的酸,必须满足的条件:尽可能使各种元素迅速、完全分解;所含待测元素的量可忽略不计;分解样品时,待测元素不应损失;与待测元素间不形成不溶性物质;测定时共存元素的影响要小;不损伤雾化器、炬管等。
电感耦合等离子体原子发射光谱法实验报告
电感耦合等离子体原子发射光谱(ICP-AES)法是当今分析化学中使用最广泛的原子发射
光谱技术。
它是利用电感耦合等离子体(ICP)作为原子离子源进行原子发射光谱分析,
并将原子发射射线测定术(AES)和离子化学分析术相结合,是一项精密,准确,可靠,
重复性好的分析技术。
电感耦合等离子体原子发射光谱(ICP-AES)法实验旨在使用ICP-AES进行超含氧量检测,以判断和表征样品中超含氧元素(如Si, Al, Ba等)的浓度。
实验用到的主要仪器是Perkin Elmer 400系列电感耦合等离子体发射光谱仪,其具有极好的稳定性和低的噪声。
实验从粉末样品中提取一定的量,放入带有细堵子的橄榄小瓶中,
将样品中的超含氧元素分解为离子流,
再由电管入口处的离子,经电感耦合等离子体发生器高能电场和电离过程,转化为原子态,并具有应变释放效应,将原子发射成发射射线,
经电光箱校正和滤波后,而穿过DDL D正电子探测器被检测出来,与吸光度计样品出口
上的流出比较,来获得超含氧元素的浓度,每种元素的吸光度下降的程度可以反映其含量大小。
本实验采用的是0.1mol/L的氯化铵溶液,其浓度稳定、持续不变,温度为低于200℃时
是稳定的。
根据试样中元素浓度的高低,可以选择合适的采样灵敏度,
以保证对元素的精准测定。
高浓度时,可以选择低灵敏度,反之,则可以选择高灵敏度,
以保证实验数据的准确性和稳定性。
实验采用Perkin Elmer 400系列电感耦合等离子体发射光谱仪进行实验,取得的结果良好,准确可靠,反映了超含氧元素在各种样品中浓度大小的变化,为对样品中构成进行全面研究及进一步应用奠定基础。