机械工程控制基础知识点
- 格式:doc
- 大小:39.00 KB
- 文档页数:9
大一机械工程基础知识点机械工程是一门涉及设计、制造和维护机械系统的学科。
作为大一机械工程学生,了解并掌握一些基础知识点是非常重要的。
本文将介绍一些大一机械工程的基础知识点,帮助你更好地理解和学习这门学科。
1. 机械工程概论机械工程是工程学的重要分支之一,它涉及设计、制造和控制机械系统。
机械工程师需要了解材料力学、热力学、流体力学等相关学科,为工程问题提供有效的解决方案。
2. 基本机械元件机械工程中常见的基本机械元件包括轴、轮、齿轮、轴承等。
轴是用来传递力和扭矩的机械元件,轮是带有齿的圆盘,齿轮用于传递力和运动,轴承用于支撑旋转轴。
3. 机械力学机械力学是机械工程中最基础和重要的学科。
它包括静力学和动力学两个部分。
静力学研究物体处于平衡状态下的力学性质,动力学研究物体在运动状态下的力学性质。
4. 流体力学流体力学是研究流体在静态和动态条件下的运动规律的学科。
机械工程师需要了解流体的流动特性,以设计和分析流体传动系统,如液压和气动系统。
5. 热力学热力学是研究热能转化和能量传递的学科。
机械工程师需要了解热力学的基本原理,以设计和分析热力系统,如发动机和热交换器。
6. 材料力学材料力学研究材料的力学性质,如强度、刚度和塑性等。
机械工程师需要了解不同材料的性质,以选择合适的材料并设计结构以满足特定的要求。
7. 机械设计基础机械设计是机械工程中最核心的任务之一。
机械工程师需要了解机械设计的基本原理和方法,包括设计流程、工程制图、尺寸与公差、装配等。
8. 自动控制原理自动控制原理是研究如何设计和分析控制系统的学科。
机械工程师需要了解自动控制的基本原理,以设计和分析机械系统的控制部分。
9. CAD/CAM技术CAD(计算机辅助设计)和CAM(计算机辅助制造)技术在机械工程中得到广泛应用。
机械工程师需要掌握CAD/CAM软件的使用,以完成机械设计和制造的工作。
10. 制造工艺基础制造工艺是指将设计好的产品转化为实际产品的方法和过程。
第五章简介:本章介绍了单输入单输出控制系统稳定性的定义及其判定依据。
对于不同的系统,稳定性的定义不同。
系统的稳定性指标是控制系统设计过程中需要考虑的众多性能指标中最重要的指标,不稳定的系统是无法使用的。
主要包括赫尔维茨判据、劳斯判据、幅角原理、奈奎斯特稳定性判据等概念.重点是赫尔维茨稳定性判据和劳斯稳定性判据及其在系统分析中的应用.难点是应用复变函数的幅角原理推导奈奎斯特稳定性判据和对稳定裕度的理解。
随堂测试:一、知识点名称1:控制系统稳定性的基本概念1。
是保证控制系统正常工作的先决条件。
()A.稳定性B.快速性C.准确性D.连续性正确答案:A解析:不稳定的系统是无法使用的。
2。
是控制系统最重要的性能指标。
()A.稳定性B.快速性C.准确性D.连续性正确答案:A解析:稳定性是控制系统最重要的性能指标知识点名称2:单输入单输出控制系统稳定的条件1.单输入单输出控制系统稳定的条件为()A 特征方程根具有副实部B特征方程根具有副实部C极点位于复平面的右半部D极点位于虚轴上正确答案:A解析:单输入单输出控制系统稳定的充分必要条件为特征方程根全部具有副实部2。
某单位反馈系统的开环传递函数为,则该系统稳定的K值范围为() A.K〉0 B。
K>1 C。
0〈K<10 D K〉-1正确答案:A解析:其特征方程为,根据二阶螺丝准则和朱里准则,该系统稳定条件为;所以的K的取值范围为K〉0知识点名称3:赫尔维茨稳定性判据1。
赫尔维茨矩阵的各项主子式行列式的值全部为正,是线性系统稳定的条件。
()A.充分 B 必要C充要 D 即不充分也不必要正确答案:C解析:线性系统稳定的充要条件赫尔维茨矩阵的各项主子式行列式的值全部为正。
2。
如果满足主子式前提下,若所有次顺序赫尔维茨矩阵的主子式为正,则所有次顺序赫尔维茨矩阵的主子式为正。
()A BC D正确答案:B解析:如果满足条件,若所有奇次顺序赫尔维茨矩阵的主子式为正,则所有偶次顺序赫尔维茨矩阵的主子式必为正;反之亦然。
大学机械工程必考知识点大全一、机械工程的概述机械工程是一门应用科学,涉及工程设计、制造、操作和维护各种机械装置和系统。
它是现代工程学科中最广泛的领域之一,对于培养工程师的实践能力和创新能力至关重要。
二、力学1. 牛顿定律:质点静力学、运动学和动力学的基础2. 力的合成与分解3. 力矩及其平衡条件4. 万有引力定律5. 动力学方程6. 力学性能参数的计算和分析方法三、材料学1. 材料的分类和性质2. 材料的力学行为3. 弹性与塑性4. 线性和非线性材料5. 疲劳和断裂力学四、热力学1. 热力学基本概念2. 热力学系统和过程3. 热力学第一、第二定律4. 等温、等熵和等焓过程5. 热机效率6. 热机循环五、流体力学1. 流体的基本性质2. 流体静力学3. 流体动力学4. 流体的黏性5. 流体的压力和速度分布6. 流体力学方程六、传热学1. 传热的基本概念和机制2. 传热的方式(传导、传导和对流)3. 热传导方程4. 边界条件和传热系数5. 对流传热和辐射传热的计算方法七、动力学1. 运动学和动力学的基本概念2. 运动学方程3. 动力学方程4. 动力学的应用:速度、加速度和力的分析5. 原动机和传动系统的工作原理和分析方法八、控制工程1. 控制系统的基本概念和分类2. 控制系统的数学模型3. 控制系统的稳定性分析4. 比例、积分和微分控制器5. 反馈控制系统和前馈控制系统的设计和分析九、机械设计1. 机械设计的基本概念和原则2. 零件的设计和选择3. 机械结构的设计和分析4. 机械部件的装配和安装5. 机械设计中的材料选择和加工工艺十、制造工艺学1. 制造工艺的基本原理和分类2. 传统制造工艺和先进制造工艺的比较3. 制造过程的规划和控制4. 制造工艺的经济性和可行性分析5. 先进制造技术的应用和发展趋势十一、工程力学1. 静力学和动力学的基本概念和原理2. 物体的受力分析3. 应力和应变的计算和分析4. 弹性体的力学行为5. 非弹性体的力学行为十二、机械振动1. 振动的基本概念和特性2. 一维和多维振动3. 自由振动和受迫振动4. 振动的幅频特性和相频特性5. 振动控制和减振的方法和技术综上所述,以上列举的大学机械工程必考知识点对于学习机械工程和成为一名合格的机械工程师至关重要。
机械基础重要知识点作为机械工程师,掌握一定的机械基础知识是非常重要的。
在日常工作中,机械基础知识是必须要掌握的,它们是你能否有效地解决问题,在生产和设计中起到至关重要的作用。
下面列出了一些机械基础知识点,以供大家参考。
1.材料力学材料力学是机械工程师必须掌握的基础知识之一。
力学涉及到材料的强度和刚度,对于机械中的传递力量非常重要。
材料力学是机械机构设计的基础,机械工Engineering可以使用这种知识来选择合适的材料,设计出最佳的材料配置以达到高强度、高效率的目的。
2.机械设计机械设计是机械工程师的主要职责之一,因此掌握机械设计的相关知识也是必不可少的。
机械设计涉及到机械部件、装置和机器的设计,此外,机械设计还涉及到计算机辅助设计软件的使用等。
一名优秀的机械工程师必须掌握三维模型设计、CAD、CAM 等软件的使用。
3.机械制造机械制造是指将机械设计转化为实体,具体包括材料加工、零件加工、车削、铣削、焊接、钻孔、曲线切割等。
机械制造是机械基础(原理)中难度较大的一部分,需要掌握正确的材料切削和加工的技术以及把机械设计转化为可实施的制造方案的能力。
4.机器控制以及感知技术机器控制和感知技术是当今机械设备中重要的一环。
机器人、机械臂和智能工具已经成为现今工业界不可或缺的一部分。
机器控制把具体的行为或任务输入到机器程序中,感知技术则是机械机器人感知周围环境的能力。
这些是提高机器灵活性和操作能力不可或缺的技能。
5.工程制图工程制图是机械设计的重要基础,机械工程师必须熟练掌握。
工程制图作为机械设计的表现形式之一,它将机械设计以平面形式展现出来,包括细节图、装配图以及施工图等。
合理掌握工程制图和图片处理软件的使用,能够更好地进行机械设计和制造。
6.铁路车辆、飞机和汽车机械原理针对研究铁路车辆、飞机和汽车的机械结构,掌握与实际工作相关的理论知识,特别是安全性和可靠性方面的知识。
研究对应机械方面的特性、原理与过程,并掌握设计流程、模型、模拟和实现的知识。
《控制工程基础》课程考核知识点:第1章绪论考核知识点:(一)机械工程控制的基本含义1.控制论与机械工程控制的关系;2.机械工程控制的研究对象。
(二)系统中信息、信息传递、反馈及反馈控制的概念1.系统信息的传递、反馈及反馈控制的概念;2.系统的含义及控制系统的分类。
第2章控制系统的数学模型考核点:(一)数学模型的概念1.数学模型的含义;2.线性系统含义及其最重要的特征——可以运用叠加原理;3.线性定常系统和线性时变系统的定义;4.非线性系统的定义及其线性化方法。
(二)系统微分方程的建立1.对于机械系统,运用达朗贝尔原理建立运动微分方程式;2对于电气系统运用克希霍夫电流定律和克希霍夫电压定律,建立微分方程式;3.简单液压系统微分方程式的建立。
(三)传递函数1.传递函数的定义;2.传递函数的主要特点:(1)传递函数反映系统本身的动态特性,只与本身参数和结构有关,与输入无关;(2)对于物理可实现系统,传递函数分母中S的阶数必不少于分子中S的阶次;(3)传递函数不说明系统的物理结构,不同的物理系统只要它们的动态特性相同,其传递函数相同;3.传递函数零点和极点的概念。
(四)方块图及系统的构成1.方块图的表示方法及其构成;2.系统的构成(1)串联环节的构成及计算;(2)并联环节的构成及计算;(3)反馈环节的构成及计算;3.方块图的简化法则(1)前向通道的传递函数保持不变;(2)各反馈回路的传递函数保持不变;4.画系统方块图及求传递函数步骤。
(五)机、电系统的传递函数1.各种典型机械网络传递函数的计算及表示方法;2.各种典型电网络及电气系统传递函数的计算及表示方法;3.加速度计传递函数计算;4.直流伺服电机驱动进给系统传递函数计算。
.第3章控制系统的时域分析考核知识点:(一)时间响应1.时间响应的概念;2.瞬态响应和稳态响应的定义。
(二)脉冲响应函数1.脉冲响应函数的定义;2.脉冲响应函数与传递函数的关系;3.如何利用脉冲响应函数求系统在任意输入下的响应。
《机械控制工程基础》考试知识点需掌握的课程基本内容和具体要求(一)控制系统的基本概念(1)控制的任务,被控制对象、输入量、输出量、扰动量的概念。
(2)开环控制系统、闭环控制系统及反馈的概念。
(3)控制系统的组成、分类、基本环节及对控制系统的基本要求。
(4)三种基本控制方式及特点。
(二)控制系统的数学模型(1)拉氏变换与拉氏反变换的概念,拉氏变换的性质(2) 拉氏变换、与反变换的应用(3)数学模型概念。
简单机、电元件及系统(包括无源和有源电网络)列写微分方程式的方法。
(4) 传递函数的定义、性质,从控制系统的微分方程建立传递函数,求取控制系统开环传递函数、闭环传递函数。
(3)典型环节的传递函数及瞬态(动态)特性。
(4)系统方框图描述及闭环传递函数推导。
系统结构图绘制方法及简化原则,串联、并联、反馈连接时传递函数的求法。
用方框图简化方法求系统的传递函数。
(三)控制系统时域分析(1)时间响应概念(2)—阶系统的瞬态响应与性能指标。
(3)二阶系统的瞬态响应,欠阻尼二阶系统响应的性能指标计算。
(四)控制系统的频域分析(1)频率特性基本概念。
(2)频率特性的表示方法:极坐标图、对数频率特性图。
(3)典型环节(放大、积分、微分、惯性、—阶微分、二阶振荡环节)频率特性,(4)系统开环频率特性曲线(极坐标图、对数频率特性图)绘制方法。
(5) 最小相位系统、非最小相位系统的概念(6) 已知最小相位系统的幅频特性曲线,求传递函数(7) 几个闭环频域性能指标的定义:零频值、谐振频率、谐振峰值、截止频率、截止带宽等,及它们与时域性能指标的定性关系。
(五)控制系统的稳定性分析(1)稳定性的概念,系统闭环稳定的充要条件(2)判别系统闭环稳定性的判据——劳斯稳定判据、Nyquist判据、Bode判据及其应用。
(5)控制系统的相对稳定性:相角裕量、幅值裕量定义及计算方法。
(六)稳态误差分析(1)稳态误差的定义、静态误差系数的定义、误差传递函数的含义(2)稳态误差分析计算——典型输入下的稳态误差、扰动输入下的稳态误差。
机械基础必学知识点1.力学:力学是研究物体的运动和受力的学科。
机械工程师需要了解力的概念、受力状态、力的平衡以及力的作用效果等基本概念。
2.静力学和动力学:静力学研究力的平衡问题,动力学研究物体运动的原因和规律。
机械工程师需要了解力的平衡条件以及静力学和动力学之间的关系。
3.静力学中的力矩和力矩平衡:力矩是力对物体产生转动效果的能力。
机械工程师需要了解力矩的概念、计算方法以及力矩平衡的条件。
4.工程材料力学性质:机械工程师需要了解各种材料的力学性质,如弹性模量、抗拉强度、屈服强度等,以便在设计中选择合适的材料。
5.刚体力学:刚体力学研究刚体的运动和受力问题。
机械工程师需要了解刚体的概念,刚体的平衡条件以及与刚体相关的运动学和动力学。
6.液体静力学和动力学:机械工程师需要了解液体在静态和动态条件下的受力和运动规律,以便设计和分析液压系统、液压机械等。
7.热力学基础:热力学研究物质的能量转化和传递规律。
机械工程师需要了解热力学基本概念,如热力学系统、热平衡、热力学过程等。
8.工程流体力学:工程流体力学研究流体在管道、泵站、水轮机等工程设备中的运动和力学性质。
机械工程师需要了解流体的性质、流体运动的方程和常用流体力学实验方法。
9.振动学:振动学研究物体在周期性力的作用下的振动规律。
机械工程师需要了解振动的基本概念、振动的分类、振动的表征参数以及振动的控制方法。
10.控制工程基础:控制工程研究如何使系统按照既定要求运行。
机械工程师需要了解控制工程的基本概念、控制系统的组成和功能以及常用的控制方法。
第一章常用机构一、零件、构件、部件零件,是指机器中每一个最基本的制造单元体。
在机器中,由一个或几个零件所构成的运动单元体,称为构件。
部件,指机器中由若干零件所组成的装配单元体。
二、机器、机构、机械机器具有以下特征:(一)它是由许多构件经人工组合而成的;(二)构件之间具有确定的相对运动;(三)用来代替人的劳动去转换产生机械能或完成有用的机械功。
具有机器前两个特征的多构件组合体,称为机构。
机器和机构一般总称为机械。
三、运动副使两构件直接接触而又能产生一定相对运动的联接称为运动副。
四、铰链四杆机构由四个构件相互用铰销联接而成的机构,这种机构称为铰链四杆机构。
四杆机构的基本型式有以下三种:(一)曲柄摇杆机构两个特点:具有急回特性,存在死点位置。
(二)双曲柄机构(三)双摇杆机构铰链四杆机构基本形式的判别:a+d≤b+ca+d>b双曲柄机构曲柄摇杆机构双摇杆机构双摇杆机构最短杆固定与最短杆相邻的杆固与最短杆相对的杆固任意杆固定定定注:a—最短杆长度;d—最长杆长度;b、c—其余两杆长度。
五、曲柄滑块机构曲柄滑块机构是由曲柄、连杆、滑块及机架组成的另一种平面连杆机构。
六、凸轮机构(一)按凸轮的形状分:盘形凸轮机构,移动凸轮机构,圆柱凸轮机构。
(二)按从动杆的型式分:尖顶从动杆凸轮机构,滚子从动杆凸轮机构,平底从动杆凸轮机构。
七、螺旋机构螺旋机构的基本工作特性是将回转运动变为直线移动。
螺纹的导程和升角:螺纹的导程L与螺距P及线数n的关系是L = n P根据从动件运动状况的不同,螺旋机构有单速式、差速式和增速式三种基本型式。
第二章常用机械传动装置机械传动装置的主要功用是将一根轴的旋转运动和动力传给另一根轴,并且可以改变转速的大小和转动的方向。
常用的机械传动装置有带传动、链传动、齿轮传动和蜗杆传动等。
一、带传动带传动的工作原理:带传动是用挠性传动带做中间体而靠摩擦力工作的一种传动。
带传动的速比计算公式为:i=n1/n2=D2/D1主要失效形式为打滑和疲劳断裂。
机械工程基础知识点汇总机械工程是一门涵盖了广泛领域的工程学科,包括了机械设计、力学、材料科学、热学、流体力学、传热学等等。
下面是机械工程的一些基础知识点的汇总:1.机械设计:机械设计是机械工程的核心领域之一,涉及到机械产品的设计、制造和优化。
机械设计师需要掌握材料力学、摩擦、磨损、噪音、振动等知识,以及CAD软件的使用。
2.力学:在机械工程中,力学是一门非常重要的学科。
它涉及到物体的运动、力和能量的转化。
强调力学的关键概念有牛顿三定律、动量和能量的守恒等。
3.材料科学:机械工程师需要了解不同材料的特性和适用性,以便在设计中选择合适的材料。
材料科学涉及到金属、塑料、陶瓷、纤维等材料的结构、特性和加工方法。
4.热学:热学是关于热量传递和能量转化的学科。
机械工程师需要了解热力学、热传导、热对流和热辐射等概念,在设计中考虑热量的传递和控制。
5.流体力学:流体力学研究物质的运动和力学性质,主要涉及气体和液体的流动。
机械工程师需要了解流体力学的基本原理,包括流体静力学、流体动力学和流体边界层等。
6.传热学:传热学研究热量如何传递和分布。
机械工程师需要了解传热的基本机理和传热方式,以便在设计中考虑热传递效率和热管理。
7.控制工程:控制工程涉及到对机械系统的控制与优化。
机械工程师需要了解控制系统的设计和调整,以确保机械系统的稳定性和性能。
8.机械制造工艺:机械工程师需要了解机械制造的基本工艺和方法,包括数控加工、焊接、锻造、注塑等。
这些工艺对于制造高质量和精确度的机械零件至关重要。
9.结构力学:结构力学研究物体的力学性质和变形。
机械工程师需要了解结构分析和设计的基本原理,以确保机械结构的强度和可靠性。
10.机械振动:机械振动是指机械系统中产生的周期性的运动。
机械工程师需要了解振动的原因、振动分析和振动控制方法,以减少振动对机械系统的影响。
以上只是机械工程的一些基础知识点的概述,每个领域都非常庞大,还有很多细节和深入的学习内容。
机械控制工程基础时域分析机械控制工程是研究机械系统的动力学和控制原理的学科,包括传感器、执行器、控制器等方面的研究。
时域分析是机械控制工程的基础,它通过分析系统的时域响应,来理解和优化机械系统的性能。
本文将从时域分析的基本概念、应用和分析方法等方面进行讨论。
时域分析是指通过观察系统的输出响应随时间的变化情况,来分析系统的动态特性和性能。
在机械控制工程中,常见的时域分析方法有时域响应分析、稳态分析和瞬态分析等。
时域响应分析是指分析系统在给定输入条件下的输出响应特性。
通过对系统的输入和输出信号进行采样和分析,可以得到系统的幅频特性、相频特性和时滞特性等。
时域响应分析是机械控制工程设计和调试的重要工具,可以帮助工程师了解系统的稳定性、响应速度和抗干扰能力等。
稳态分析是指分析系统在稳定状态下的响应特性。
在机械控制系统中,常用的稳态分析方法有频率响应法和根轨迹法等。
频率响应法是通过改变输入信号的频率来观察系统的输出响应,从而确定系统的稳定性和响应特性。
根轨迹法是通过分析系统的特征方程的根的运动轨迹来判断系统的稳定性和响应情况,可以帮助工程师优化系统的控制效果。
瞬态分析是指分析系统在短时间内的响应特性。
在机械控制系统中,常见的瞬态分析方法有单位脉冲响应法和阶跃响应法等。
单位脉冲响应法是通过输入单位脉冲信号,观察系统的输出响应来分析系统的瞬态响应特性。
阶跃响应法是通过输入阶跃信号,观察系统的输出响应来分析系统的瞬态响应速度和稳定性。
除了以上介绍的几种常见的时域分析方法外,还有一些其他方法可以用于机械控制系统的时域分析,如幅度裕度法、帕斯卡尔等效法等。
这些方法都有其适用的场合和优缺点,工程师在实际应用时需要根据系统的特点和需求来选择合适的方法。
时域分析是机械控制工程的基础,它在机械系统的设计、调试和优化中起着重要的作用。
通过对机械系统的时域响应进行分析,可以帮助工程师了解系统的动态特性和性能,并提供改进系统控制效果的依据。
机械基础必考知识点总结一、力学基础1. 机械基础的力学基础是牛顿力学,重点包括牛顿三定律、力的合成与分解、力矩等内容。
2. 牛顿三定律:包括第一定律(惯性定律),第二定律(运动定律)和第三定律(作用与反作用定律)。
3. 力的合成与分解:力的合成包括平行力的力合成和共点力的合成,力的分解可分为平行力的分解和共点力的分解两种情况。
4. 力矩:力矩的概念,力矩的计算公式,平衡条件下的力矩。
5. 运动学基础:直线运动、曲线运动、角速度、角加速度等。
二、材料力学1. 材料力学是研究材料在外力作用下的变形与破坏规律的学科。
2. 主要内容包括:拉伸、压缩、剪切、弯曲等。
3. 长度变化:拉力导致的长度变化计算,弹性模量,杨氏模量。
4. 压缩变形:材料压缩应力应变关系,体积应变。
5. 剪切变形:剪切应力应变关系,剪切模量。
6. 弯曲变形:弯矩与曲率之间关系,梁的挠度计算。
三、机械制图1. 机械制图是机械工程中的基础课程,它包括正投影与倾斜投影、平行投影与中心投影、尺度比例、视图的选择与构图等内容。
2. 阅读:机械制图的阅读,包括正投影图与倾斜投影图的阅读方法,平行投影图与中心投影图的阅读方法。
3. 绘图:机械零件的一二三视图绘制,轴测图的绘制。
4. 投影:机械制图的正投影与倾斜投影,平行投影与中心投影。
四、机械设计基础1. 机械设计基础是机械工程专业的核心课程,包括零件的设计、联接件的设计、轴的设计、机构的设计等内容。
2. 零件的设计:机械零件设计的基本要求,设计的步骤与方法,尺寸和公差。
3. 联接件设计:联接件的类型和分类,常用联接件的设计原则,键连接、销连接、螺纹连接的设计计算。
4. 轴的设计:轴的分类及选择原则,轴的强度计算,轴的刚度计算。
5. 机构的设计:机构的分类、机构的设计步骤,机构的运动分析。
五、机械传动1. 机械传动是研究机械零部件之间的动力传递关系的学科,包括平面机构、空间机构、齿轮传动、带传动、链传动等内容。
机械工程控制基础知识点●控制论的中心思想:它抓住一切通讯和控制系统所共有的特点,站在一个更概括的理论高度揭示了它们的共同本质,即通过信息的传递、加工处理和反馈来进行控制。
机械工程控制论:是研究机械工程技术为对象的控制论问题。
(研究系统及其输入输出三者的动态关系)。
机械控制工程主要研究并解决的问题:(1)当系统已定,并且输入知道时,求出系统的输出(响应),并通过输出来研究系统本身的有关问题,即系统分析。
(2)当系统已定,且系统的输出也已给定,要确定系统的输入应使输出尽可能符合给定的最佳要求,即系统的最佳控制。
(3)当输入已知,且输出也是给定时,确定系统应使得输出金肯符合给定的最佳要求,此即●最优设计。
(4)当系统的输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型,此即系统识别或系统辨识。
(5)当系统已定,输出已知时,以识别输入或输入中得有关信息,此即滤液与预测。
●信息:一切能表达一定含义的信号、密码、情报和消息。
信息传递/转换:是指信息在系统及过程中以某种关系动态地传递。
信息的反馈:是把一个系统的输出信号不断直接地或经过中间变换后全部或部分地返回,再输入到系统中去。
如果反馈回去的讯号(或作用)与原系统的输入讯号(或作用)的方向相反(或相位相差180度)则称之为“负反馈”;如果方向或相位相同,则称之为“正反馈”。
●系统:是指完成一定任务的一些部件的组合。
控制系统:是指系统的输出,能按照要求的参考输入或控制输入进行调节的。
开环系统:系统的输出量对系统无控制作用,或者说系统中无反馈回路的。
闭环系统:系统的输出量对系统有控制作用,或者说,系统中存在反馈的回路。
开环系统与闭环系统的区别:开环系统构造简单,不存在不稳定问题、输出量不用测量,开环系统对系统悟空制作用;闭环系统有反馈、控制精度高、结构复杂、设计时需要校核稳定性,对系统有控制作用。
线性系统:系统的数学模型表达式是线性的系统。
线性的定常系统:用线性常微分方程描述的系统。
机械电子工程考研复习指南自动控制原理重点知识点整理机械电子工程考研复习指南:自动控制原理重点知识点整理导言:自动控制原理是机械电子工程中的重要学科,涉及到信号与系统、控制理论、电路与电子技术等多个方面的知识。
在考研准备过程中,有针对性地整理和复习自动控制原理的重点知识点,对考生备考至关重要。
本文将针对自动控制原理的重点知识点进行详细整理,以帮助考生系统地复习。
一、信号与系统1. 时域与频域的关系:信号可以分为时域信号和频域信号。
时域信号是指信号随时间变化的情况,频域信号是指信号在频率上的分布。
2. 傅里叶级数展开:任意周期信号都可以用正弦信号和余弦信号的叠加来表示。
3. 傅里叶变换:将信号从时域转换到频域,通过傅里叶变换可以得到信号的频谱信息。
4. 拉普拉斯变换:从时域转换到复频域,拉普拉斯变换常用于线性时不变系统的分析与设计。
二、控制理论1. 系统基本概念:控制系统由输入、输出和系统本身组成。
输入是控制器的输出,输出是系统的输入,系统是控制器和被控对象的组合。
2. 时域分析方法:利用微分方程和差分方程对控制系统进行分析,包括传递函数和状态空间两种表示方法。
3. 频域分析方法:利用频域技术对控制系统进行分析,包括频率响应和根轨迹两种表示方法。
4. PID控制器:PID控制器是一种常用的控制器,由比例控制器、积分控制器和微分控制器组成。
5. 高级控制方法:包括模糊控制、神经网络控制、自适应控制等,用于处理非线性、时变系统的控制问题。
三、电路与电子技术1. 电路理论:包括电路基本定律、电路元件的特性等内容。
2. 放大电路:包括放大器的分类和特性,如共射放大器、共基放大器、共集放大器等。
3. 稳态与暂态响应:稳态响应是指电路中各元件参数稳定后的响应情况,暂态响应是指电路在初始状态发生变化时的响应情况。
4. 滤波器:用于对输入信号进行滤波处理,包括低通滤波器、高通滤波器、带通滤波器等。
5. 信号调理电路:用于对输入信号进行增强或处理,如放大电路、满足特定要求的电路等。
机械工程控制基础知识点总结一、概述机械工程控制是指通过各种控制手段,对机械设备进行控制和调节,以达到要求的工作状态。
机械工程控制基础知识点包括电气、电子、自动化等多个学科的内容,涉及到传感器、执行器、控制器等多个方面。
二、传感器传感器是用于将物理量转换为电信号的装置,常用于测量温度、压力、流量等参数。
常见的传感器包括热电偶、压力传感器、流量计等。
在机械工程中,传感器可以用于测量机械设备的运行状态,如温度变化、压力波动等。
三、执行器执行器是指能够将电信号转换为机械运动的装置,常用于控制阀门、泵等设备。
常见的执行器包括电动阀门、液压缸等。
在机械工程中,执行器可以用于调节机械设备的运行状态,如开启或关闭阀门调节流量。
四、控制器控制器是指对传感器和执行器进行控制和调节的装置,可通过编程实现自动化操作。
常见的控制器包括PLC、单片机等。
在机械工程中,控制器可以用于实现对机械设备的自动化控制,如自动调节阀门开度、自动调节泵的流量等。
五、电气电气是机械工程控制中不可或缺的一部分,涉及到电路原理、电器元件等知识点。
在机械工程中,电气可以用于设计和维护各种控制系统。
六、电子电子是指应用于半导体材料和器件的技术和学科,包括集成电路、传感器等内容。
在机械工程中,电子可以用于设计和实现各种控制系统。
七、自动化自动化是指通过各种手段实现对生产过程或其他过程的自动化控制和管理。
在机械工程中,自动化可以用于提高生产效率和质量,并减少人力成本。
八、总结机械工程控制基础知识点包括传感器、执行器、控制器等多个方面,涉及到电气、电子、自动化等多个学科的内容。
了解这些知识点对于设计和维护各种机械设备都具有重要意义。
机械基础知识点总结机械工程是现代工程领域中最重要、最基础的学科之一,它涉及到了许多重要的知识点。
本文将对机械基础知识点进行总结,帮助读者了解和理解机械工程的基本概念和原理。
1. 材料学材料学是机械工程中非常重要的基础学科,它涉及到材料的物性、力学性质、热学性质和化学性质等。
在机械设计过程中,选择合适的材料对于产品的性能和寿命具有至关重要的影响。
2. 工程制图工程制图是机械设计的必备技能之一,它用于传达设计意图和沟通设计细节。
掌握工程制图的基本规则和符号,能够帮助机械工程师准确表达设计要求和技术细节。
3. 机械构造与设计机械构造与设计是机械工程中最核心的内容之一。
它包括机械零部件的设计原理、构造形式和装配要求等。
掌握机械构造与设计的基本原理,能够设计出满足要求的机械产品。
4. 机械制造工艺机械制造工艺是实现机械设计的重要环节,它包括机械零部件的加工、成型、焊接、装配等各个环节。
了解不同的机械制造工艺能够帮助机械工程师优化设计和提高制造效率。
5. 机械力学机械力学是机械工程中最基础的力学学科,它研究力、力偶和力系统等的作用和效果。
掌握机械力学的基本概念和主要原理,能够进行机械结构的静力学和动力学分析。
6. 机械工程热力学机械工程热力学是机械工程中的重要学科,它研究了能量的转换和传递方式。
了解机械工程热力学的基本知识,能够进行热功学分析和热工过程的计算。
7. 机械振动与噪声控制机械振动与噪声控制是机械工程中的专门学科,它研究了机械系统振动和噪声产生的原因和控制方法。
了解机械振动与噪声控制的基本原理,有助于减少机械系统的振动和噪声问题。
8. 机器人技术机器人技术是机械工程中的前沿领域,它涉及到机器人的控制、感知、路径规划和机械设计等方面。
了解机器人技术的基本原理,有助于开发和应用新型机器人系统。
总之,上述是机械工程中的一些基础知识点的总结。
掌握这些基础知识点,能够帮助机械工程师更好地理解和应用机械设计原理,提高工作效率和成果质量。
机械工程专业知识点总结机械工程是一门应用科学,涉及设计、制造、使用和维护机械系统的原理和技术。
在这篇文章中,我们将总结机械工程的一些重要知识点,以帮助读者更好地了解这个领域。
1. 力学和材料学力学是机械工程的基础,包括静力学、动力学和强度学。
静力学研究物体在平衡状态下的力学性质,动力学研究物体在运动状态下的力学性质,强度学研究材料的强度和刚度。
材料学涉及不同材料的力学性质和使用特性,如金属、塑料和复合材料等。
2. 热力学热力学研究能量的转换和传递,以及物质的性质和行为。
在机械工程中,热力学用于设计和优化热能转换系统,如内燃机、蒸汽轮机和制冷系统等。
3. 流体力学流体力学研究液体和气体的运动和行为。
在机械工程中,流体力学用于设计和优化液压系统、风力系统和涡轮机械等。
4. 控制工程控制工程研究如何使系统按照预定的要求运行。
在机械工程中,控制工程用于设计和优化自动化系统,如机器人、自动化生产线和飞行器导航系统等。
5. 设计和制造设计和制造是机械工程的核心领域。
机械工程师使用计算机辅助设计软件和先进的制造技术,如数控机床和3D打印,来设计和制造各种机械系统和零部件。
6. 维护和可靠性维护和可靠性是机械工程中至关重要的方面。
机械系统的正常运行和故障排除需要定期维护和检修。
可靠性工程研究如何提高机械系统的可靠性和寿命,以减少故障和停机时间。
7. 自动化和智能化随着科技的不断发展,自动化和智能化在机械工程中扮演着越来越重要的角色。
自动化技术和人工智能的应用使机械系统更加智能化和高效。
总结起来,机械工程涉及力学、材料学、热力学、流体力学、控制工程、设计和制造、维护和可靠性以及自动化和智能化等多个领域。
这些知识点相互关联,共同构成了机械工程的基础和核心。
对于学习机械工程的人来说,掌握这些知识点是至关重要的。
通过不断学习和实践,我们可以不断提升自己在机械工程领域的能力和水平。
机械控制工程基础公式
机械控制工程涉及的基础公式有很多,涵盖了力学、动力学、控制理论等多个领域。
以下是一些常见的基础公式:
1. 速度公式,v = s/t.
其中,v表示速度,s表示位移,t表示时间。
2. 力的公式,F = ma.
其中,F表示力,m表示物体的质量,a表示加速度。
3. 动能公式,KE = 0.5 m v^2。
其中,KE表示动能,m表示物体的质量,v表示速度。
4. 动量公式,p = m v.
其中,p表示动量,m表示物体的质量,v表示速度。
5. 控制理论中的传递函数公式,G(s) = Y(s) / U(s)。
其中,G(s)表示系统的传递函数,Y(s)表示系统的输出,
U(s)表示系统的输入。
6. PID控制器的输出公式,u(t) = Kp e(t) + Ki ∫e(t)dt + Kd de(t)/dt.
其中,u(t)表示PID控制器的输出,Kp、Ki、Kd分别表示比例、积分和微分系数,e(t)表示误差,t表示时间。
以上只是机械控制工程中的一部分基础公式,实际涉及的公式还有很多,涉及到不同的子领域和具体的应用场景。
希望以上回答能够满足你的需求。
机械工程基础知识点机械工程是工程技术的一个重要分支,是指开发、设计、制造、维护和修理机械设备的学科。
在现代工业制造中,机械工程的应用非常广泛。
不管是工厂中的自动化生产线,还是产品的研发和创新,都需要机械工程师的技术支持。
因此,机械工程师需要掌握一定的机械工程基础知识,才能更好地完成工作任务。
1. 机械力学机械力学是机械工程的基础学科之一,也是最基本的学科。
它研究物体的运动和平衡,涉及力、运动和物体的形状等基本概念。
机械力学有静力学、动力学、弹性力学、热力学等分支。
静力学是指研究物体在静止状态下平衡的学科。
静力学的基本定理是牛顿第一、第二、第三定律,即物体在静止状态下,受到的合力为0;物体受到的合力等于其质量乘以加速度;作用力和反作用力大小相等、方向相反。
动力学是研究物体的运动状态的学科。
动力学的基本定理是质点的牛顿第二定律,即物体的加速度与物体受到的合力成正比,与物体质量成反比。
物体在运动中的动能和动量的守恒定律也是动力学的重要内容。
弹性力学是研究弹性体在受力作用下变形、设置复原以及有关弹性能及弹性极限等问题的学科。
弹性力学的基本定理是胡克定律,即在弹性限度内,弹性形变与弹性应力成正比。
热力学是研究热现象及其相互关系的学科,它涉及温度、压力、热功、热能等基本概念。
热力学分为热力学第一定律和热力学第二定律两个部分。
热力学第一定律是热能守恒定律,热力学第二定律是热能不可逆性原理和热传递中的“热从高温物体向低温物体传递”的不可违背性。
2. 机械设计机械设计是机械工程中最重要的分支之一,它是将机械力学及其他相关学科的理论知识应用于机械产品的设计、制造、评价和维护方面的学科。
机械设计的主要内容包括产品的设计原则、功能分析、制造工艺、工艺装备、材料科学、检验技术等。
在机械设计中,常常需要运用种类繁多的机械零部件,如齿轮、传动装置、轴承、液压系统、传感器等。
机械设计的过程通常包括以下几个方面:确定设计要求和目标,开展市场和技术研究,进行产品概念设计,进行详细设计,进行计算机辅助设计与工程和技术流程组织。
机械工程专业的基础知识点总结机械工程是工程学的一个重要分支,涉及到机械设备的设计、制造、运行和维护等方面。
作为机械工程专业的学生,掌握基础知识点对于日后的学习和工作至关重要。
本文将对机械工程专业的基础知识点进行总结,帮助读者快速了解和掌握这些内容。
一、力学力学是机械工程的基础学科,包括静力学、动力学和弹性力学等内容。
在力学中,我们需要了解力的概念、力的作用点、力的合成与分解、力的平衡条件等基本概念和原理。
此外,还需要学习刚体的平衡条件、运动学和动力学方程等内容。
二、材料力学材料力学是研究材料性能和材料力学行为的学科。
在机械工程中,我们需要了解材料的力学性质,包括材料的弹性、塑性、疲劳和断裂等方面。
此外,还需要学习材料的应力应变关系、杨氏模量、泊松比等基本概念和计算方法。
三、热力学热力学是研究能量转化和能量传递的学科,对于机械工程专业来说尤为重要。
在热力学中,我们需要了解能量的各种形式、热力学系统和热力学过程的基本概念。
此外,还需要学习热力学定律、热力学循环和热力学性质等内容。
四、流体力学流体力学是研究流体运动规律的学科,对于机械工程专业来说也是必不可少的知识点。
在流体力学中,我们需要了解流体的基本性质、流体的运动方程和流体的流动规律。
此外,还需要学习流体的流量、压力、速度和阻力等相关概念和计算方法。
五、机械设计机械设计是机械工程专业的核心内容,涉及到机械产品的设计和制造。
在机械设计中,我们需要了解机械零件的设计原理、机械传动系统的设计和机械结构的设计等方面。
此外,还需要学习机械设计的基本原则和方法,以及使用计算机辅助设计软件进行机械设计的技巧。
六、自动控制自动控制是机械工程中的重要学科,主要研究机械系统的自动化控制原理和方法。
在自动控制中,我们需要了解控制系统的基本组成、反馈控制原理和控制器的设计等内容。
此外,还需要学习控制系统的稳定性分析和性能指标的评价等相关知识。
以上是机械工程专业的一些基础知识点的总结。
机械工程控制基础知识点●控制论的中心思想:它抓住一切通讯和控制系统所共有的特点,站在一个更概括的理论高度揭示了它们的共同本质,即通过信息的传递、加工处理和反馈来进行控制。
机械工程控制论:是研究机械工程技术为对象的控制论问题。
(研究系统及其输入输出三者的动态关系)。
机械控制工程主要研究并解决的问题:(1)当系统已定,并且输入知道时,求出系统的输出(响应),并通过输出来研究系统本身的有关问题,即系统分析。
(2)当系统已定,且系统的输出也已给定,要确定系统的输入应使输出尽可能符合给定的最佳要求,即系统的最佳控制。
(3)当输入已知,且输出也是给定时,确定系统应使得输出金肯符合给定的最佳要求,此即●最优设计。
(4)当系统的输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型,此即系统识别或系统辨识。
(5)当系统已定,输出已知时,以识别输入或输入中得有关信息,此即滤液与预测。
●信息:一切能表达一定含义的信号、密码、情报和消息。
信息传递/转换:是指信息在系统及过程中以某种关系动态地传递。
信息的反馈:是把一个系统的输出信号不断直接地或经过中间变换后全部或部分地返回,再输入到系统中去。
如果反馈回去的讯号(或作用)与原系统的输入讯号(或作用)的方向相反(或相位相差180度)则称之为“负反馈”;如果方向或相位相同,则称之为“正反馈”。
●系统:是指完成一定任务的一些部件的组合。
控制系统:是指系统的输出,能按照要求的参考输入或控制输入进行调节的。
开环系统:系统的输出量对系统无控制作用,或者说系统中无反馈回路的。
闭环系统:系统的输出量对系统有控制作用,或者说,系统中存在反馈的回路。
开环系统与闭环系统的区别:开环系统构造简单,不存在不稳定问题、输出量不用测量,开环系统对系统悟空制作用;闭环系统有反馈、控制精度高、结构复杂、设计时需要校核稳定性,对系统有控制作用。
线性系统:系统的数学模型表达式是线性的系统。
线性的定常系统:用线性常微分方程描述的系统。
线性时变系统:描述系统的线性微分方程的系数为时间的函数。
非线性系统:用非线性方程描述的系统。
线性系统与非线性系统的区别:线性系统可以运用叠加原理,而非线性系统不能运用叠加原理。
系统的稳定性能主要取决于系统的型次和开环增益,而系统的瞬态性能主要取决于系统零点、极点分布。
●拉氏变换的线性性质:它是一个线性变换,若有常数KK,函数f(t1),f(t2),则L[K1f1(t)+K2f2(t)]=K1L[f1(t)]+K2L[f2(t)]=K1F1(s)+K2F2(s)。
●终值定理的应用条件:若函数f(t)及其一阶导数都是可拉氏变换的,并且除在原点处唯一的极点外,sF(s)在包括含jw轴的右半s平面内是解析的,这就意味着当t趋近与无穷时f(t)趋于一个确定的值,则函数f(t)的终值为limf(t)=limF(s)。
求拉氏反变换的方法:(1)查表法;(2)有理函数法;(3)部分分式法。
在单输入—单输出系统的瞬态响应分析或频率响应分析中,采用的是传递函数标识的数学模型,另一方面,在现代控制理论中,数学模型则采用状态空间表达式。
●数学模型:是系统动态特性的数学表达式。
建立数学模型是分析、研究一个动态特性的前提。
一个合理的数学模型应以最简化的形式,准确地描述系统的动态特性。
建立系统的数学模型的方法:分析法和实验法。
●叠加原理:是系统在几个外加作用下所产生的响应,等于各个外加作用单独作用的响应之和。
●机械运动的三要素:质量、阻尼和弹簧。
直线运动的三要素:质量、弹簧和粘性阻尼。
●基尔霍夫电流定律:若电路有分支路,它就有节点,则汇聚到某节点的所有电流之代数和应等于零(即所有流出节点的电流之和等于所有流进节点的电流之和)。
基尔霍夫电压定律:电网络的闭合回路中电势的代数和等于沿回路的电压降的代数和。
●传递函数:线性定常系统的传递函数,是初始条件为零时,系统输出的拉氏变换比输入的拉氏变换。
传递函数的主要特点:(1)传递函数反映系统本身的动态特性,只与系统本身的参数有关,与外界输入无关;(2)对于物理可实现系统,传递函数分母中s的阶次n必不少于分子中s 的阶次m,即n》m;(3)传递函数的量纲是根据输入量和输出量来决定。
传递函数相同可以是不同类型的系统的原因:传递函数不说明系统的物理结构,不同的物理结构系统,只要其动态特性类同,可以用同一类型的传递函数来描述。
传递函数的典型环节:(1)比例环节K;(2)积分环节1/s;(3)微分环节s;(4)惯性环节1/(Ts+1);(5)一阶微分环节Ts+1;(6)振荡环节1/(T2s2+2ζTs+1);(7)二阶微分环节T2s2+2ζTs+1;(8)延时环节e-τs。
●方块图:是系统中各环节的功能和信号流向的图解表示方法。
方块图的简化法则:(1)前向通道的传递函数保持不变;(2)各反馈回路的传递函数保持不变。
●响应时间响应:机械工程系统在外加作用激励下,其输出量随时间变化的函数关系称之为系统的时间响应,通过时间响应的分析可以揭示系统本事的动态特性。
任一系统的时间响应都是由瞬态响应和稳态响应两部分组成。
瞬态响应:系统受到外加作用激励后,从初始状态到最终状态的响应过程。
稳态响应:时间趋于无穷大时,系统的输出状态。
频率响应:是系统对正弦输入的稳态响应。
系统时间响应的瞬态响应和稳态响应反映的性能:瞬态响应反映了系统的稳定性和响应的快速性等方面的性能,而稳态响应反映了系统响应的准确性。
定义系统瞬态响应(过渡过程)的性能指标的前提:(1)系统在单位阶跃信号作用下的瞬态响应;(2)初始条件为零。
即在单位阶跃输入作用前,系统处于静止状态,输出量及其各阶跃导数均等于零。
一阶系统的单位阶跃响应曲线中的T指的是系统的输出由0上升到稳态值某百分数时所需的时间。
一阶系统的时间常数T是重要的特征参数,它表征了系统过渡过程的品质,T愈小,则系统响应愈快,即很快达到稳定值。
二阶系统的单位阶跃响应:(1)欠阻尼情况(0<ζ<1);(2)临界阻尼情况(ζ=1);(3)过阻尼情况(ζ>1);无阻尼情况(ζ=0)。
典型二阶系统(当0<ζ<1, ζ=0, ζ>1或=1时)在单位阶跃输入信号作用下的输出响应的特性:0<a<1时,输出响应为衰减振荡过程,稳态值为1;a=0时,为不衰减振荡过程;a>0或=1时,为非周期过程。
●机械工程系统的性能要求:稳定性、准确性及灵敏性。
系统的性能指标:(1)时域性能指标,它包括瞬态性能指标(即延迟时间td、上升时间tr、峰值时间tp、最大超调量Mp、调整时间ts)和稳态性能指标(即稳态误差ess)。
(2)频域性能指标,它包括相位裕量γ、幅值裕量Kg、截止频率ωb及频宽(简称带宽)0~ωb、谐振频率ωr及谐振峰值Mr。
参量ζ,ωn与各性能指标间的关系:(1)若保持ζ不变而增大ωn则不影响超调量Mp,但延迟时间td,峰值时间tp及调整时间ts均会减小。
(2)若保持ωn不变而改变ζ,减少ζ,虽然td,tr和tp均会减小,但超调量Mp和调整时间ts(在ζ<0.7范围内)却会增大,灵敏性好但相对稳定性差,ζ过于大,ζ>1,则tr,ts均会增大,系统不灵敏。
(3)当ζ=0.7时,Mp,ts均小,这时Mp=4.6%,=0.7为最佳阻尼比。
二阶欠阻尼系数a,wn与性能指标Mp(超调量)、ts(调整时间)的关系:二阶欠阻尼系统若a 不变,增大或减小wn,则超调量Mp不变,调整时间ts减小(或增大);若wn不变,增大(或减小)a,则超调量Mp减小(或增大),调整时间ts减小(增大)。
●系统的误差:即H(s)=1时,输入信号与输出信号之差,Eˊ(s)=R(s)—C(s)。
稳态误差:是误差信号的稳态分量,用ess表示。
影响系统稳态误差的因素:系统的类型λ、开环增益K和输入信号R(s)。
欲降低由输入和干扰信号引起的稳态误差,采用的措施有何不同:欲降低由输入信号引起的稳态误差,应提高系统开环放大倍数或在系统中增加积分环节(提高系统型次);欲降低由于干扰信号引起的稳态误差,应在干扰信号作用点之前的前通道中增加放大倍数或增加积分环节。
●系统分析:当系统已定,并且输入知道时,求出系统的输出(响应),并且通过输出来研究系统本身的有关问题,即系统分析。
●机械系统的动柔度和动刚度:若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的动柔度;机械系统的频率特性的倒数就是机械系统的动刚度。
●频率特性的图形表示方法:(1)传递函数或称伯德图(2)极坐标图或称乃奎斯特图(3)对数幅-相图。
频率特性和传递函数的关系:若系统的传递函数为G(s),则相应系统的频率特性为G(jw),即将传递函数中得s用jw代替。
系统频率特性的截止频率:是指系统闭环频率特性的幅值下降到其零频率幅值以下3dB时的频率。
控制系统开环频率特性的三个频段,各自反映系统的性能:一般将系统开环频率特性的复制穿越频率wc看成是频率响应的中心频率,把w《wc的频率范围称为低频段;把wc附近的频率范围称为中频段;把w》wc的频率范围称为高频段。
开环频率特性的低频段反映了控制系统的稳态性能;中频段反映了控制系统的动态性能;高频段反映了控制系统的抗高频干扰性能和系统的复杂性。
●对数坐标图的主要优点:(1)可以将幅值相乘转化为幅值相加,便于绘制多个环节串联组成的系统的对数频率特性图。
(2)可采用渐近线近似的作用方法绘制对数幅频图,简单方便,尤其是在控制系统设计、校正及系统辨识等方面,优点更为突出。
(3)对数分度有效地扩展了频率范围,尤其是低频段的扩展,对工程系统设计具有重要意义。
●绘制系统的伯德图的一般步骤:(1)由传递函数求出频率特性并将其化为若干典型环节频率特性相乘的形式;(2)求出各典型环节的转角频率、阻尼比a等参数;(3)分别画出各典型环节的幅频曲线的渐近线和相频曲线;(4)将各环节的对数幅频曲线的渐近线进行叠加得到系统幅频曲线的渐近线并对其进行修正;(5)将各环节相频曲线叠加,得到系统的相频曲线。
●系统类型和对数幅频曲线之间的关系:在频域中,系统的类型确定了系统对数幅频曲线低频段的斜率,即静态误差系数描述了系统的低频性能。
●乃奎斯特图的特点:(1)当ω=0时,乃奎斯特图的起始点取决于系统的型次。
(2)当ω=∞时,若n>m,乃奎斯特图以顺时针方向收敛于原点,即幅值为零,相位角与分母和分子的阶次之差有关。
(3)当G(s)含有零点时,其频率特性G(jω)的相位将不随ω增大单调减,乃奎斯特图会产生“变形”或“弯曲”,具体画法与G(jω)各环节的时间常数有关。
●最小相位系统:传递函数G(s)的所有零点和极点均在S平面的左半平面上的系统。