巧用力的三角形分析力的动态平衡
- 格式:doc
- 大小:75.00 KB
- 文档页数:3
动态平衡三角形法-概述说明以及解释1.引言1.1 概述概述动态平衡三角形法是一种应用于工程领域的平衡技术,通过对物体的重心和惯性中心进行调整,使其在运动过程中保持平衡。
该方法结合了动态平衡和三角形法的原理,能够有效地解决物体在高速旋转或振动过程中出现的失衡现象。
本文将详细介绍动态平衡三角形法的概念、基本原理和应用,通过案例分析和实践经验,探讨其在工程领域中的优势和发展前景。
希望通过本文的阐述,读者能更深入地了解这一平衡技术,并在实际工程中加以运用和推广。
1.2文章结构文章结构部分将主要包括引言、正文和结论三个部分。
在引言中我们将对动态平衡三角形法进行概述,并介绍文章的结构和目的。
在正文部分,我们将详细讨论动态平衡的概念、三角形法的基本原理以及动态平衡三角形法的应用。
最后在结论部分,我们将总结动态平衡三角形法的优势,展望未来在工程领域的发展,并提出结论和建议。
通过这样的结构,读者将能够全面了解动态平衡三角形法的相关概念和应用,以及对未来研究方向的展望和建议。
1.3 目的:本文的主要目的是介绍动态平衡三角形法这一工程技术方法,并探讨其在各种工程领域的应用。
通过深入分析动态平衡的概念和三角形法的基本原理,我们将阐明动态平衡三角形法在解决机械设备不平衡问题中的有效性和性能优势。
同时,我们还将总结这一方法的优势,并展望其在未来在工程领域中的发展趋势。
最终,我们将通过结论和建议部分提出对于动态平衡三角形法在工程实践中的应用和推广建议,以期能够为工程领域的发展和进步做出贡献。
2.正文2.1 动态平衡的概念动态平衡是指在机械系统中,通过调整系统内部的结构或参数,使整个系统在运转过程中减小或消除振动或不平衡现象的过程。
在实际工程中,动态平衡是非常重要的,因为振动或不平衡会导致机械系统的不稳定性,影响系统的性能和寿命。
动态平衡在许多领域中都有着广泛的应用,特别是在旋转机械设备中更为突出。
例如,汽车发动机、风力发电机、离心风扇等都需要进行动态平衡处理,以确保设备在运转时保持稳定且减小能量消耗。
动态平衡中的三力问题专题方法一:三角形图解法。
特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?答案:F 2先减小后增大,F 1随β增大而始终减小。
例2.如图所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?答案:绳上张力减小,斜面对小球的支持力增大专题训练1.半圆形支架BAD 上悬着两细绳OA 和OB ,结于圆心O ,下悬重为G 的物体,使OA 绳固定不动,将OB 绳的B 端沿半圆支架从水平位置缓慢移到竖直位置C 的过程中(如图),分析OA 绳和OB绳所受力的大小如何变化。
2.如图,电灯悬挂于两墙之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时( )A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大3.如图,用细绳将重球悬挂在竖直光滑墙上,当绳伸长时( )A .绳的拉力变小,墙对球的弹力变大B .绳的拉力变小,墙对球的弹力变小C .绳的拉力变大,墙对球的弹力变小D .绳的拉力变大,墙对球的弹力变大4.在共点力的合成实验中,如图,使弹簧秤b 按图示的位置开始顺时针方向缓慢转90角,在这个过程中,保持O 点位置不动,a 弹簧秤的拉伸方向不变,则整个过程中关于a 、b 弹簧的读数变化是( )A .a 增大,b 减小B .a 减小,b 减小C .a 减小,b 先减小后增大D .a 先减小后增大5.如图所示,把球夹在竖直墙AC 和木板BC 之间,不计摩擦,球对墙的压力为F N 1,球对板的压力为F N 2.在将板BC 逐渐放至水平的过程中,下列说法中,正确的是( )A .F N 1和F N 2都增大B .F N 1和F N 2都减小C .F N 1增大,F N 2减小D .F N 1减小,F N 2增大6.(2012·山东理综·17)如图所示,两相同轻质硬杆OO 1、OO 2可绕其两端垂直纸面的水平轴O 、O 1、O 2转动,在O 点悬挂一重物M ,将两相同木块m 分别紧压在竖直挡板上,此时整个系统保持静止.F f表示木块与挡板间摩擦力的大小,F N 表示木块与挡板间正压力的大小.若挡板间的距离稍许增大后,系统仍静止且O 1、O 2始终等高,则 ( )A .F f 变小B .F f 不变C .F N 变小D .F N 变大7. 如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F 1、半球面对小球的支持力F 2的变化情况正确的是 ( )A .F 1增大,F 2减小B .F 1增大,F 2增大C .F 1减小,F 2减小D .F 1减小,F 2增大8.如图所示,小球用细绳系住放在倾角为 的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将:A .逐渐变大B .逐渐变小C .先增大后减小D .先减小后增大9.如图所示,两个质量都是m 的小球A 、B 用轻杆连接后斜放在墙上处于平衡状态。
做题技巧:高中物理受力分析(动态平衡问题一般有三种做法,一种是用矢量三角形也是本次专题所讲解的内容,另外两种分别是用相似三角形和动态圆,我们下次讲解)动态平衡(矢量三角形)的做法分为以下几步:1、找一个大小和方向都不改变的力(一般为重力)2、找另外一个力(方向不变,大小在改变)3、第三个力,可以看这个力是怎样转动的,或者看这个力与水平方向上或者竖直方向上的夹角怎么改变。
因为是受到三个力,三个力平移到一个三角形里面满足首尾相连的矢量三角形,故边长边长则力变大,否则反之。
三、单选题(共15小题)1.如图所示,保持θ不变,将B点向上移,则BO绳的拉力将:A.逐渐减小B.逐渐增大C.先减小后增大D.先增大后减小例如:1、保持重力的大小方向不变,画出F1(OC方向上的力)2、保持角度θ不变,即AO方向上的力的方向不变3、B点上移,即BO与竖直方向上夹角变小接下来只需要构建矢量三角形即可,得出边长的变化关系进而得出力的变化关系2.如图,用两根等长轻绳将木板悬挂在竖直木桩上的等高的两点,制成一简易秋千.某次维修时将两绳各剪去一小段,但仍保持等长且悬挂点不变.木板静止时,F1表示木板所受合力的大小,F2表示单根轻绳对木板拉力的大小,则维修后()A.F1不变,F2变大B.F1不变,F2变小C.F1变大,F2变大D.F1变小,F2变小3.将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图所示.用力F拉小球b,使两个小球都处于静止状态,且细线Oa与竖直方向的夹角保持θ=60°,则F的最小值为()A. B.mgC.D.4.如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上.现用水平力F拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动.则在这一过程中,环对杆的摩擦力F f和环对杆的压力F N的变化情况是()A.F f不变,F N不变B.F f增大,F N不变C.F f增大,F N减小D.F f不变,F N减小5.如图所示,一小球用轻绳悬于O点,用力F拉住小球,使悬线保持偏离竖直方向60°角,且小球始终处于平衡状态.为了使F有最小值,F与竖直方向的夹角θ应该是()A. 90°B. 45°C. 30°D. 0°6.如图所示,在倾角为α的斜面上,放一质量为m的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是()A.mg cosαB.mg tanαC.D.mg7.一个挡板固定于光滑水平地面上,截面为圆的柱状物体甲放在水平面上,半径与甲相等的光滑圆球乙被夹在甲与挡板之间,没有与地面接触而处于静止状态,如图所示.现在对甲施加一个水平向左的力F,使甲沿地面极其缓慢地移动,直至甲与挡板接触为止.设乙对挡板的压力F1,甲对地面的压力为F2,在此过程中()A.F1缓慢增大,F2缓慢增大B.F1缓慢增大,F2不变C.F1缓慢减小,F2不变D.F1缓慢减小,F2缓慢增大8.如图所示,一定质量的物体通过轻绳悬挂,结点为O.人沿水平方向拉着OB绳,物体和人均处于静止状态.若人的拉力方向不变,缓慢向左移动一小段距离,下列说法正确的是()A.OA绳中的拉力先减小后增大B.OB绳中的拉力不变C.人对地面的压力逐渐减小D.地面给人的摩擦力逐渐增大9.如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是()A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大10.如图所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上.现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力F、环与杆的摩擦力F f和环对杆的压力F N的变化情况是()A.F逐渐增大,F f保持不变,F N逐渐增大B.F逐渐增大,F f逐渐增大,F N保持不变C.F逐渐减小,F f逐渐增大,F N逐渐减小D.F逐渐减小,F f逐渐减小,F N保持不变11.如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是()A.F1先增大后减小,F2一直减小B.F1先减小后增大,F2一直减小C.F1和F2都一直减小D.F1和F2都一直增大12.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是()A.F1增大,F2减小B.F1增大,F2增大C.F1减小,F2减小D.F1减小,F2增大13.如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中() A.F N1始终减小,F N2始终增大B.F N1始终减小,F N2始终减小C.F N1先增大后减小,F N2始终减小D.F N1先增大后减小,F N2先减小后增大14.半圆柱体P放在粗糙的水平地面上,其右端有固定放置的竖直挡板MN.在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图所示是这个装置的纵截面图.若用外力使MN保持竖直,缓慢地向右移动,在Q落到地面以前,发现P始终保持静止.在此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C.P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大15.如图所示,用OA、OB两根轻绳将物体悬于两竖直墙之间,开始时OB绳水平.现保持O点位置不变,改变OB 绳长使绳端由B点缓慢上移至B′点,此时绳OB′与绳OA之间的夹角θ<90°.设此过程中绳OA、OB的拉力分别为FOA、FOB,下列说法正确的是()A.FOA逐渐增大B.FOA逐渐减小C.FOB逐渐增大D.FOB逐渐减小答案解析1.【答案】C【解析】结点O在三个力作用下平衡,受力如图甲所示,根据平衡条件可知,这三个力必构成一个闭合的三角形,如图乙所示,由题意知,OC绳的拉力F3大小和方向都不变,OA绳的拉力F1方向不变,只有OB绳的拉力F2大小和方向都在变化,变化情况如图丙所示,则只有当OA⊥OB时,OB绳的拉力F2最小,故C选项正确.2.【答案】A【解析】木板静止,所受合力为零,所以F1不变,将两轻绳各减去一小段,木板再次静止,两绳之间的夹角变大,木板重力沿绳方向的分力变大,故F2变大,正确选项A.3.【答案】B【解析】以两个小球组成的整体为研究对象,分析受力,作出F在三个方向时整体的受力图,根据平衡条件得知:F与F T的合力与重力总是大小相等、方向相反,由力的合成图可知,当F与绳子oa垂直时,F有最小值,即图中2位置,F的最小值根据平衡条件得:F=2mg sin 60°=mg;故选B.4.【答案】B【解析】以结点O为研究对象进行受力分析如图(a).由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a).由图可知水平拉力增大.以环,绳和小球构成的整体作为研究对象,作受力分析图如图(b).由整个系统平衡可知:F N=(mA+mB)g;F f=F.即F f增大,F N不变,故B正确.5.【答案】C【解析】如图所示,小球受三个力而处于平衡状态,重力mg的大小和方向都不变,绳子拉力F T方向不变,因为绳子拉力F T和外力F 的合力等于重力,通过作图法知,当F的方向与绳子方向垂直时,由于垂线段最短,所以F最小,则由几何知识得θ=30°.故C正确,A、B、D错误.6.【答案】B【解析】法一(正交分解法):对小球受力分析如图甲所示,小球静止,处于平衡状态,沿水平和竖直方向建立坐标系,将F N2正交分解,列平衡方程为F N1=F N2sinα,mg=F N2cosα可得:球对挡板的压力F N1′=F N1=mg tanα,所以B正确.法二(力的合成法):如图乙所示,小球处于平衡状态,合力为零.F N1与F N2的合力一定与mg平衡,即等大反向.解三角形可得:F N1=mg tanα,所以,球对挡板的压力F N1′=F N1=mg tanα.所以B正确.法三(三角形法则):如图所示,小球处于平衡状态,合力为零,所受三个力经平移首尾顺次相接,一定能构成封闭三角形.由三角形解得:F N1=mg tanα,故挡板受压力F N1′=FN1=mg tanα.所以B正确.7.【答案】C【解析】先以小球为研究对象,分析受力情况,当柱状物体向左移动时,F N2与竖直方向的夹角减小,由图甲看出,柱状物体对球的弹力F N2与挡板对球的弹力F N1均减小.则由牛顿第三定律得知,球对挡板的弹力F1减小.再对整体受力分析如图乙所示,由平衡条件得知,F=F N1,推力F变小.地面对整体的支持力F N=G总,保持不变.则甲对地面的压力不变.故C正确.A、B、D错误.8.【答案】D【解析】将重物的重力进行分解,当人的拉力方向不变,缓慢向左移动一小段距离,则OA与竖直方向夹角变大,OA的拉力由图中1位置变到2位置,可见OA绳子拉力变大,OB绳拉力逐渐变大;OA拉力变大,则绳拉力水平方向分力变大,根据平衡条件知地面给人的摩擦力逐渐增大;人对地面的压力始终等于人的重力,保持不变.9.【答案】D【解析】对小球受力分析如图(重力mg、支持力F N,绳的拉力F T)画出一簇平行四边形如图所示,当F T方向与斜面平行时,F T最小,所以F T先减小后增大,F N一直增大,只有选项D正确.10.【答案】D【解析】物体在3个力的作用下处于平衡状态,根据矢量三角形法,画出力的矢量三角形,如图所示.其中,重力的大小和方向不变,力F的方向不变,绳子的拉力F T与竖直方向的夹角θ减小,由图可以看出,F随之减小,F f 也随之减小,D正确.11.【答案】B【解析】小球受力如图甲所示,因挡板是缓慢移动,所以小球处于动态平衡状态,在移动过程中,此三力(重力G、斜面的支持力F N、挡板的弹力F)组合成一矢量三角形的变化情况如图乙所示(重力大小方向均不变,斜面对其支持力方向始终不变),由图可知此过程中斜面对小球的支持力不断减小,挡板对小球弹力先减小后增大,再由牛顿第三定律知B对.12.【答案】B【解析】作出球在某位置时的受力分析图,如图所示,在小球运动的过程中,F1的方向不变,F2与竖直方向的夹角逐渐变大,画力的动态平行四边形,由图可知F1、F2均增大,选项B正确.13.【答案】B【解析】对小球受力分析,如图所示,根据物体在三个共点力作用下的平衡条件,可将三个力构建成矢量三角形,随着木板顺时针缓慢转到水平位置,球对木板的压力F N2逐渐减小,墙面对球的压力F N1逐渐减小,故B对.14.【答案】B【解析】对圆柱体Q受力分析如图所示,P对Q的弹力为F,MN对Q的弹力为F N,挡板MN向右运动时,F和竖直方向的夹角逐渐增大,如图所示,而圆柱体所受重力大小不变,所以F和F N的合力大小不变,故D选项错误;由图可知,F和F N都在不断增大,故A、C两项都错;对P、Q整体受力分析知,地面对P的摩擦力大小就等于F N,所以地面对P的摩擦力也逐渐增大.故选B.15.【答案】B【解析】以O点为研究对象,进行受力分析,其中OA绳拉力方向不变,OA绳、OB绳拉力的合力方向竖直向上,大小等于物体的重力,始终不变,根据力的矢量三角形定则可知,FOA逐渐减小,FOB先减小后增大,如图所示,选项B正确,A、C、D错误.。
专题 动态平衡中的三力问题 图解法分析动态平衡在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题.解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动"。
根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下。
方法一:三角形图解法。
特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了.例1.1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F 1的方向不变,但方向不变,始终与斜面垂直。
F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。
由此可知,F 2先减小后增大,F 1随β增大而始终减小。
同种类型:例1。
2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)方法二:相似三角形法。
动态平衡受力分析在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。
基础知识必备方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加B.F N2一直减小,F N1先增加后减小C.F N1先减小后增加,F N2一直减小D.F N1一直减小,F N2先减小后增加答案C【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中()A.绳上张力先增大后减小B.绳上张力先减小后增大C.劈对小球支持力减小D.劈对小球支持力增大答案D方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。
高考物理高频考点力的动态平衡问题力的动态平衡一共有四种解题方法,掌握以下四种解题方式,能满足高考需要。
方法一:平行四边形法则(动态三角形法)。
特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:1、分别找出“变”和“不变”的量。
2、根据上一条的限制,画出所有可能的力的三角形示意图。
例题:滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?如图1所示,一个重力G的匀质球放在光练习:小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)方法二:相似三角形法。
特点:受力与实物物体的指向有关,可以找到力构成的矢量三角形相似的几何三角形的问题解题技巧:找实物三角形和受力三角形的对应关系,是否相似。
例:一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。
现将细绳缓慢往左拉,使杆BO与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )A .F N 先减小,后增大B .F N 始终不变C .F 先减小,后增大 D.F 始终不变解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对应边成比例可得:(如图2-2所示,设AO 高为H ,BO 长为L ,绳长l ,)l F L F H G N ==,式中G 、H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。
高三受力分析动态平衡模型总结(解析版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN动态平衡受力分析在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。
基础知识必备方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加B.F N2一直减小,F N1先增加后减小C.F N1先减小后增加,F N2一直减小D.F N1一直减小,F N2先减小后增加答案 C【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中()A.绳上张力先增大后减小B.绳上张力先减小后增大C.劈对小球支持力减小D.劈对小球支持力增大答案 D方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。
图1-2 图1-4 G 1F图1-5动态平衡的图解分析法在力学中,经常遇到处于动态平衡的物体其所受诸力变化趋势判断问题。
这种判断如果用平衡方程作定量分析往往很繁琐,而采用力三角形图解讨论则清晰、直观、全面。
我们知道,当物体受三个共点力作用而处于平衡时,必有表示三力关系的矢量图呈闭合三角形,即三个力矢量(有向线段)依次恰好能首尾相接。
当物体所受三力有所变化而又维持着平衡关系时,这闭合三角形总是存在而仅仅是形状发生改变。
比较不同形状的力三角形各几何边、角情况,相应的每个力大小、方向的变化及其相互间的关系将一目了然。
所以,作出物体动态平衡时所受三个共点力矢量可能构成的一簇闭合三角形,是力三角形图角法的关键。
动态平衡的力三角形图解通常有三类情况。
类型一:三力中有一个力确定(大小、方向均不变),另一个力方向确定(方向不变)、大小待定,第三个力的大小、方向变化情况均待定例1:如图1-1所示,小球用细绳系住放在倾角为θ的光滑斜面上,当细绳由水平方向逐渐向上偏移时,细绳上的拉力将( ) A 、逐渐变大 B 、逐渐变小 C 、先变大后变小 D 、先变小后变大分析与解:当绳AB 向上偏移时,使小球有一系列可能的准静态平衡,以小球为研究对象,如图1-2所示,它受绳AB 的拉力T ,小球的重力G ,斜面对小球的支持力N 作用下处于平衡,三力中,小球的重力不变,斜面的支持力方向不变,大小待定,而绳AB 的拉力大小、方向均待定。
用代表这三个力的有向线段作出一簇闭合三角形,如图1-2所示。
方法总结:按受力图1-3,⑴首先画出恒力(大小方向都不变的力),⑵然后在箭头处画出方向不变的力,⑶再次画出表示待定力的一条有向线段,并使它组成一个闭合三角形,⑷最后再补上几条有向线段,⑸并用曲箭头标明变化趋势。
由图可知,随着绳AB 趋于竖直,,其上的拉力先减小后增大,斜面的支持力减小,故正确答案为选项D练习:如图1-4所示,小球放在光滑的墙与装有铰链的光滑薄板之间,当墙与薄板之间的夹角α缓慢地增大到900的过程中( ) A 、小球对薄板的正压力增大B 、小球对墙壁的正压力减小F 2C 、小球对墙的压力先减小,后增大D 、小球对木板压力不可能小于球的重力 答案:如图1-5所示,正确答案为选项BD ① ① ②① ② ③ ① ②③ ③ ① ② 图1-3图1-1类型二:三力中有一个力确定(大小、方向均不变),另一个力大小确定,方向待定,第三个力的大小、方向变化情况均待定例2:如图2-1所示,质量为m 的小球,用一细线悬挂在点O 处.现用一大小恒定的外力F (F <mg )慢慢将小球拉起,在小球可能的平衡位置中,细线最大的偏角θ是多少?分析与解:力F 慢慢将小球拉起时,小球可在一系列不同位置处于准静态平衡,以小球为研究对象,如图2-2所示,小球受重力G ,外力F ,细线的拉力T ,三力中,重力恒定(大小、方向均不变),外力大小恒定,方向待定,细线上拉力大小、方向均待定,三力关系由一系列闭合的矢量三角形来描述,如图2-2所示。
受力分析中的动态平衡问题方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
【例1】如图所示,三段绳子悬挂一物体,开始时OA 、OB 绳与竖直方向夹角=,现使O 点保持不动,把OB 绳子的悬点移到竖直墙与O 点在同一水平面的C 点,在移动过程中,则关于OA 、OB 绳拉力的变化情况,正确的是( )A .OA 绳上的拉力一直在增大B .OA 绳上的拉力先增大后减小C .OB 绳上拉力先减小后增大,最终比开始时拉力大D .OB 绳上拉力先减小后增大,最终和开始时相等【练习】如图所示,一定质量的物体通过轻绳悬挂,结点为O 。
人沿水平方向拉着OB 绳,物体和人均处于静止状态。
若人的拉力方向不变,缓慢向左移动一小段距离,下列说法正确的是( )A .OA 绳中的拉力先减小后增大B .OB 绳中的拉力不变C .人对地面的压力逐渐减小D .地面对人的摩擦力逐渐增大方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题【例】一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图所示。
现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )A .F N 先减小,后增大B .F N 始终不变C .F 先减小,后增大D .F 始终不变【练习】如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( )A .N 变大,T 变小B .N 变小,T 变大C .N 变小,T 先变小后变大D .N 不变,T 变小方法三:解析法特点:解析法适用的类型为一根绳挂着光滑滑轮,三个力中其中两个力是绳的拉力,由于是同一根绳的拉力,两个拉力相等,另一个力大小、30方向不变的问题。
专题2.5 动态平衡问题的分析方法1.动态平衡:指通过控制某些物理量使物体的状态发生缓慢变化。
在这个过程中物体始终处于一系列平衡状态中。
2. 动态平衡特征:一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。
3. 平衡物体动态问题分析方法:解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。
方法一:三角形图解法。
特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。
【典例1】如图所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?【答案】见解析【解析】取球为研究对象,如图甲所示,球受重力G、斜面支持力F1、挡板支持力F2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F1的方向不变,但方向不变,始终与斜面垂直。
F2的大小、方向均改变,随着挡板逆时针转动时,F2的方向也逆时针转动,动态矢量三角形图乙中一画出的一系列虚线表示变化的F2。
巧用力的三角形分析力的动态平衡
江苏省新沂市第三中学 唐宝扩
解决力的动态平衡问题通常有两个方法:解析法和图解法。
图解法直观、简便,能快捷判断各力的大小、方向变化情况。
图解法一般适用于物体受到三个共点力的情况。
根据平衡条件,三力首尾相连构成一封闭三角形,再由动态力的三角形各边长度变化及角度变化确定力的大小及方向的变化情况。
这里举两例说明力的矢量三角形的简单巧用。
一、在结构三角形上画力的矢量三角形
【例1】半径为R 的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1所示。
现缓慢地拉绳,在使小球由A 沿球面运动到B 的过程中,半球对小球的支持力F N 和绳对小球的拉力F T 的大小变化的情况是
A 、F N 变大,F T 变小
B 、F N 变小,F T 变大
C 、F N 变小,F T 先变小后变大
D 、F N 不变,F T 变小
【一般解法】对小球进行受力分析,画出受力示意图,如图2所示。
由平衡条件可知,将三个力首尾相连,可形成如图3所示的封闭三角形。
这三个力与ΔAOO ′的三个边始终平行,即力的三角形与结构ΔAOO ′相似,故有
L
F R F h R mg T N ==+ 其中,mg 、R 、h 均不变,L 逐渐减小,则由上式可知,F N 不变,F T 变小。
故D 正确。
【巧妙解法】如图2所示,因为重力方向竖直向下,把表示重力的线段移到OO′位置,画跟OO′一样长。
同理,把F N 移到半径A O′位置,画跟A O′一样长;把F T 直接延长跟AO 一样长,如图4所示。
这样就画出了小球初始的受力矢量三角形,这个三角形与结构ΔO O′A 重合。
OO′表示重力,A O′表示F N ,AO 表示F T 。
在小球由A 运动到B 的过程中,这个结构三角形变扁,半径不变,AO 变短,
F N
G
F T
O
图
2 O′ F T
G
F N
图3
图1
O′ O
图4 O′ G F N
F T
O
所以F N 不变,F T 变小。
故D 正确。
上述分析,也不要根据力的三角形跟结构三角形相似列相似比方程。
要列的话,对应的边一目了然。
熟练情况下,不画图2的受力图,直接画图4的力三角形,快捷方便。
在结构三角形上画力的矢量三角形,多数情况都适用。
有时结构三角形不明显,可以通过延长线段或作辅助线构建出结构三角形。
要先明确什么是不变的,再分析变化的。
比如,重力大小和方向不变,就要让表示重力的边不变。
又如,若斜面的支持力方向不变,则要保证表示支持力的边方向不变。
二、四力平衡的力三角形
【例2】水平地面上有一木箱,木箱与地面间的动摩擦因数为μ(0<μ<1)。
现对木箱施加一拉力F ,使木箱做匀速直线运动。
设F 的方向与水平地面的夹角为θ,如图5所示,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则
A 、F 先减小后增大
B 、F 一直增大
C 、F 一直减小
D 、F 先增大后减小
【一般解法】木箱受力如图6所示,正交分解力F ,由平衡条件,有
0sin N =-+mg F F θ,0cos f =-F F θ
其中
N f F F μ=
联立,解得:θ
μθμsin cos +=
mg
F
由数学知识可知)cos(12
αθμμ-+=mg
F ,其中μα=tan
当μαθarctan ==时,F 最小,则θ从0逐渐增大到90°的过程中,F 先减小后增大。
故选A 。
【巧妙解法】因为F f =μF N ,所以F f 与F N 成正比,F f 和F N 的合力方向不变,
设F f 和F N 的合力为F 合,F 合与竖直方向夹角为β,如图7所示。
由F f =μF N 可知,tan β=μ。
图5
F N
F
G F f
F 合 θ
β
图7
F N
F
G F f θ
图6
F F 合
G β
图8
根据平衡条件,将重力G、拉力F和F
三个力按顺序首尾相连,可形成如
合
的方向始终与竖直方向图8所示的力的矢量三角形,其中重力G保持不变,F
合
成β角。
当θ从0逐渐增大到90°的过程中,F先减小后增大。
且当θ=β=arctanμ,即F与垂直F
时,F最小。
故选A。
合
若物体受到三个以上的力的作用,可将某些力的合力求出来,或者合力大小虽然变化,但方向确定时,多力动态平衡也可以等效为三力平衡,仍可应用力的三角形图解法。