导数压轴题十种构造方法大全以及解题方法导引
- 格式:docx
- 大小:1.42 MB
- 文档页数:34
合理“巧设”,轻松应对函数与导数压轴题函数与导数的交汇问题经常出现在压轴题(包括客观题和主观题中的压轴题)位置.解决这类问题时,往往会遇到某些难以确定的根、交点、极值点或难以计算的代数式.倘若迎难而上,往往无功而返;这时,放弃正面求解所需要的量,先设它为某字母,再利用其满足的条件式实行整体代换以达到消元或化简的效果.下面通过介绍几种具体的“设”的方法来解决这类难题.一、根据函数的单调性,巧设自变量【例1】(2013四川卷理)设函数()f x =,a R e ∈为自然对数的底数),若曲线sin y x =上存有点()00,x y ,使得00(())f f y y =,则a 的取值范围是( ).A. []1,eB. 11,1e -⎡⎤-⎣⎦C. []1,1e +D. 11,1e e -⎡⎤-+⎣⎦【解析】 易知()f x =.设0()f t y =……… ①,又00()()y f f y =,由单调性则0()t f y =……… ②. 下面证明0t y =.若0t y ≠,由单调性则0()f t y ≠,则()00()f y f y ≠与已知矛盾,.所以必有0t y =. 代入②即00()f y y =.曲线sin y x =上存有点()00,x y ,使得00()f y y =x 在[]0,1上存有解.即2x e x x a +-=在[]0,1x ∈上有解.设2()x h x e x x =+-,则()12x h x e x '=+-.在[]0,1x ∈上12x e +≥,22x ≤,所以()120x h x e x '=+-≥,则()h x 在[]0,1上单调递增,所以1(0)()(1)h h x h e =≤≤=.故[]1,a e ∈. 故选A.【评注】由()f x 的单调性可知, 对于00(())f f y y =,则必存有唯一的自变量t ,使得0()f t y =,从而有0()t f y =.这样方便表达.【变式1】(2015·石家庄高三教学检测一)设函数()2x f x e x a =+-(,a R e ∈为自然对数的底数),若曲线sin y x =上存有点()00,x y ,使得00(())f f y y =,则a 的取值范围是( ).A. 11,1e e -⎡⎤-+⎣⎦ B. []1,1e + C. [],1e e + D. []1,e【答案】易知()2x f x e x a =+-为单调递增函数.同例1,有00()f y y =.曲线sin y x =上存有点()00,x y ,使得00()f y y =,等价为:()2x f x e x a x =+-=在[]1,1-上存有解.即x e x a +=在[]1,1x ∈-上有解.设()x h x e x =+,()10x h x e '=+>,则()h x 在[]1,1-上单调递增,所以11(1)()(1)1h h x h e e -=-≤≤=+.故11,1a e e ⎡⎤∈-+⎢⎥⎣⎦. 故选A. 【变式2】(2016届广雅中学高三开学测试)已知()f x 是定义在()0,+∞上的单调函数,且对()0,x ∀∈+∞,都有2(()log )3f f x x -=,则方程()()2f x f x '-=的实数解所在的区间是( ).A. 10,2⎛⎫ ⎪⎝⎭B. 1,12⎛⎫⎪⎝⎭C. ()1,2D. ()2,3【答案】因为()f x 是定义在()0,+∞上的单调函数,所以存有唯一0x ,使得0()3f x = ①. 又2(()log )3f f x x -=,故有20()log f x x x -=,解得20()log f x x x =+.用0x 代替x ,则有0200()log f x x x =+ ②.由①②解得02x =.将02x =代入化简()()2f x f x '-=,得21log 0ln 2x x -=⋅.令21g()log ln 2x x x =-⋅,因为1g(1)0ln 2=-<,1g(2)102ln 2=->,又g()x 在()1,2上单调递增,故g()x 在()1,2上存有唯一零点,即方程()()2f x f x '-=的实数解所在的区间是()1,2.故选C.二、根据两个函数的图象,巧设交点的横坐标【例2】(2015·四川卷理)已知函数()2x f x =,2()()g x x ax a R =+∈.对于不相等的实数12,x x ,设12121212()()()(),f x f x g x g x m n x x x x --==--.现有如下命题:○1对于任意不相等的实数12,x x ,都有0m >;○2对于任意的a 及任意不相等的实数12,x x ,都有0n >; ○3对于任意的a ,存有不相等的实数12,x x ,使得m n =; ○4对于任意的a ,存有不相等的实数12,x x ,使得m n =-.其中的真命题有 (写出所有真命题的序号).【解析】对于○1,由()2x f x =的单调递增的性质可知,1212()()0f x f x m x x -=>-,故○1准确.对于○2,由2()()g x x ax a R =+∈先单调递减再递增的性质可知,存有1212()()0f x f x m x x -=<-的情形,故○2不准确. 对于○3,m n =等价于1212()()()()f x f x g x g x -=-,即1222112222x x x ax x ax -=+--,即1222112222x x x ax x ax --=--.设2()2x h x x ax =--,则()()2ln 22x h x x a '=-+.此时由2ln 2y x =和2y x a =+的图象(如下图)可知,调整合适的a 可使2y x a =+的图象全在2ln 2y x =的图象之下,这时()()2ln 220x h x x a '=-+>恒成立,所以2()2x h x x ax =--单调递增. 据此分析可知:存有a ,使得对于不相等的实数12,x x ,不可能有1222112222x x x ax x ax --=--,即不可能有m n =,故○3不准确.对于○4,m n=-等价于()1212()()()()f x f x g x g x -=--,即()1222112222x x x ax x ax -=-+--,即1222112222x x x ax x ax ++=++. 设2()2x h x x ax =++,则()()2ln 22x h x x a '=---.此时由2ln 2y x =和2y x a =--的图象(如下图)可知,两者必有交点,设交点横坐标为0x .由简图可知,当()0,x x ∈-∞时,2ln 22x x a <--,则()0h x '<,()h x 单调递减;()0,x x ∈+∞y xy=2x+a y=2x ln2时,2ln 22x x a >--,则()0h x '>,()h x 单调递增.于是,对于任意的a ,由单调性可知:存有不相等的实数12,x x ,使得1222112222x x x ax x ax ++=++,即m n =-成立.故○4准确. 综上,所给命题中的真命题有○1、○4.【评注】当导函数为超越函数时,有时我们无法直接求得零点,即便二次求导也难以奏效.这时不妨将其转化为研究两个简单函数的图象的交点问题.由图象可直观获得两图象的高低情况(对应函数值的大小比较),从而轻松判断导函数的正负情况.为了方便表述,可设两图象的交点的横坐标为0x .【变式3】(2015·郑州市质量预测节选)给定方程:1sin 102xx ⎛⎫+-= ⎪⎝⎭,探究该方程在(),0-∞唯一交点. ()0,x x ∈-∞减;(0,0x x ∈递增.所以()h x结合(0)h 如下,根属于区间(【例3(1(2)证明:当0a >时,2()2ln f x a a a≥+.【解析】(1)2()2(0)x af x e x x '=->.当0a ≤时,因为()0f x '>,所以()f x '没有零点;当0a >时,令2()()2(0)x ah x f x e x x'==->,因为22()40x a h x e x '=+>,所以()h x 在()0,+∞上单调递增.当0x →时,又0x >,所以2()2x ah x e x=-→-∞,结合2()210a h a e =->,可得()h x 即()f x '在()0,+∞上存在唯一零点.(2)证明:由(1)可知,当0a >时,(f '设该零点为0x ,则有0200()20x af x e x '=-=.○1 此时由22x y e =和a y x =的图象可2()20x af x e x'=-<,()f x 单调递减;(0x x ∈22x a e x>, 则2()20x af x e x'=->,()f x 单调递增. 所以()f x 在0x 处取得最小值020()x f x e =-由○1得0202x ae x =0020020()ln ln 22x x a a f x e a x a x e =-=-0022a ax x =+所以当0a >时,2()2ln f x a a a≥+.【评注】当我们研究函数的极值大小时,经常遇到一些较难确定大小的代数式(如0200()ln x f x e a x =-),而0x 又是一个无法算得的数值,这时我们利用极值点处的导数为零这一条件(如0200()20x af x e x '=-=),消去某些式子,得到较为简单的代数式(如0002()2ln 2a f x ax a x a=++),使研究更为简便. 【例4】设函数2()ln(1)f x x a x =++有两个极值点1x ,2x ,且12x x <. (1)求实数a 的取值范围; (2)求2()f x 的取值范围.【解析】(1)求导得()2122()2111x x a f x x a x x x++'=+=>-++.令函数2()22g x x x a =++,则由函数()f x 有两个极值点1x ,2x 可知,1x ,2x 必为方程()0g x =在()1,-+∞上的两个不等根,又注意到函数()g x 图像的对称轴为12x =-,所以只需480(1)0a g a ∆=->⎧⎨-=>⎩,解得102a <<.故实数a 的取值范围是1(0,)2.(2)2x 为2()220g x x x a =++=的根,则有222222220,22x x a a x x ++==--即 ()2222222()22ln(1)f x x x x x =-++.由(1)可知,(0)0g a =>,而对称轴12x =-,故有21,02x ⎛⎫∈- ⎪⎝⎭. 设()22()22ln(1)h x x x x x =-++,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()21()242ln(1)22221ln(1)01h x x x x x x x x x'=-++-+=-++>+. 所以()h x 在1,02x ⎛⎫∈- ⎪⎝⎭上单调递增,则112ln 2()(),(0),024h x h h -⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭.故2()f x 的取值范围是12ln 2(,0)4-.【评注】2x 为函数2()ln(1)f x x a x =++极值点,若直接求解2x ,再代入2()f x ,显然运算量较大.不妨由2222222()=01x x af x x ++'=+,求得22222a x x =--,将2222()ln(1)f x x a x =++中的a 消去即可迅速求解.【变式4】(2013·新课标全国卷Ⅱ节选)已知函数()ln(2)x f x e x =-+,证明()0f x >. 【答案】易知函数1()2x f x e x '=-+在(2,)-+∞单调递增.由(1)(0)0f f ''-⋅<知()0f x '=在(1,0)-有唯一实根0x .当()02,x x ∈-时,()0f x '<,故()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,故()f x 单调递增.故()f x 取得最小值0()f x .由0()0f x '=得0001()02x f x e x '=-=+即0012x e x =+,则002x e x -=+即00ln(2)x x +=-. 所以02000000(1)1()ln(2)022x x f x e x x x x +=-+=+=>++,则有min 0()()()0f x f x f x ≥=>.得证. 【变式5】(2013·惠州二模第21题节选)已知函数()ln |f x ax x x b =++是奇函数,且图像在点(,())e f e 处的切线斜率为3 (e 为自然对数的底数). (1)求实数,a b 的值; (2)若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 的最大值. 【答案】(1)由题意易得1,0a b ==.(2)当1x >时,由()1f x k x <-恒成立,得min ()()1f x k x <-. 当1x >时,设()ln ()11f x x x xg x x x +==--,则22ln '()(1)x xg x x --=-. 设()2ln h x x x =--,则1'()10h x x=->,()h x 在(1,)+∞上是增函数. 因为(3)1ln 30h =-<,(4)2ln 40h =->,所以0(3,4)x ∃∈,使0()0h x =.0(1,)x x ∈时,()0,'()0h x g x <<,即()g x 在0(1,)x 上为减函数;同理()g x 在0(,)x +∞上为增函数.故min 0()()g x g x =.由000()2ln 0h x x x =--=得00ln 2x x =-. 于是,000000min 0000ln (2)()()11x x x x x x g x g x x x x ++-====--,所以min 0()(3,4)k g x x <=∈,又k Z ∈,故k 的最大值为3.【变式6】( 2012·新课标全国卷文节选)设函数()2x f x e ax =--. (1) 求()f x 的单调区间;(2)若1,a k =为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.【答案】(1)易得若0,()a f x ≤在R 上单调递增;若0,()a f x >在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)当1a =时,()()1()(1)10x x k f x x x k e x '-++=--++>等价于1(0)1x x k x x e +<+>-.令1()1x x g x x e +=+-,则min ()k g x <. 221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--,由(1)可知,函数()2x h x e x =--在()0,+∞上单调递增,同时(1)(2)0h h ⋅<,则()h x 在()1,2上存在唯一零点a ,即()g x '在()1,2上存在唯一零点a ,即()1,2a ∈.当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>,所以min 1()()1a a g x g a a e +==+-. 因为 ()0g a '=,即20a e a --=. 将2a e a =+代入()g a 得11()1211aa a g a a a a a e ++=+=+=++--. 由()1,2a ∈得()()2,3g a ∈.因为()k g a <,故整数k 的最大值为2.。
破解导数压轴题中的函数构造问题的七大策略问题提出通过对以函数与导数为核心命制的压轴题的分析与研究,发现大多数需构造辅助函数才能顺利解决,构造辅助函数对学生的创造性与创新性思维能力的要求较高,那么辅助函数的构造有规律可循吗?构造辅助函数解决压轴题的具体策略有哪些呢?策略一观察分析构造观察是科学研究的重要方法,也是数学解题的首要心理活动,更是构造辅助函数最为直接的策略.例1 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f (x)的两个零点,证明:x1+x2<2.整体思路是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,把某些式子或图形看成一个整体,进行有目的、有意识的整体处理.整体构造辅助函数就是立足这一思想来解决函数综合题的一种策略.例2 (2017·全国Ⅱ)已知函数f (x)=ax2-ax-x ln x,且f (x)≥0.(1)求a;(2)证明:f (x)存在唯一的极大值点x0,且e-2<f (x0)<2-2.若问题的整体结构比较复杂,使得正面解决很困难时,可以考虑将复杂的整体看成几个部分,实施局部构造辅助函数,从局部突破,从而达到解决问题的目的.例3 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -a x 2(x >0)有最小值.设g (x )的最小值为h (a ),求h (a )的值域.点评 此道压轴题g (x )的导函数结构比较复杂,于是从局部实施突破,构造辅助函数.这种构造方式比较常见,如2016年江苏卷19题,2013年陕西卷理科压轴题等.有时第一次构造辅助函数并不能解决问题,还需要第二次甚至更多次的构造才能解决问题.例4 (2017·全国Ⅲ)已知函数f (x)=ln x+ax2+(2a+1)x.(1)讨论f (x)的单调性;(2)当a<0时,证明f (x)≤-34a-2.和差法常用于比较大小、构造对偶式等,其实也可用来构造辅助函数.例5 设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ; (3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x.点评 和差构造辅助函数的方法在每年高考压轴题中运用广泛,如2016年四川理科压轴、2013年辽宁理科压轴题等.策略六变参分离构造若条件中含有参数,要探究参数的取值范围,此时可以考虑将参数与其他变量分离,然后构造辅助函数求解参数的取值范围.例6 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)略点评此题将主元与参数变参分离后构造辅助函数,再对辅助函数求导探究单调性或最值,参数的范围便自然得到.策略七综合运用例7 已知函数f (x)=1-x1+x2e x.(1)求f (x)的单调区间;(2)证明:当f (x1)=f (x2)(x1≠x2)时,x1+x2<0.点评此道压轴题的压轴问要证的不等式本质上是极值右偏问题,解答时需要灵活的将作差构造和局部构造两种方法综合运用才能顺利解决.掌握数学就意味着必须要善于解题,中学数学教学的首要任务之一就是要加强解题训练,而人的高明之处在于当他碰到一个不能直接克服的障碍时,他就会绕过去,当原来的问题看起来似乎不好解时,就会想出一个合适的辅助问题去解决原问题,这种方法正是解决高考函数综合问题的良策与通法,通过构造辅助函数统一的处理这些问题时,其实我们已经站在了更高的层面,不再仅仅追求千奇百怪“诡异”的解法,而是理解了这些问题的共性.在统一解决的同时,给人一种思维清晰、神清气爽的良好教学感觉.破解导数压轴题中的函数构造问题的七大策略问题提出通过对以函数与导数为核心命制的压轴题的分析与研究,发现大多数需构造辅助函数才能顺利解决,构造辅助函数对学生的创造性与创新性思维能力的要求较高,那么辅助函数的构造有规律可循吗?构造辅助函数解决压轴题的具体策略有哪些呢?策略一观察分析构造观察是科学研究的重要方法,也是数学解题的首要心理活动,更是构造辅助函数最为直接的策略.例1 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f (x)的两个零点,证明:x1+x2<2.(1)解a的取值范围为(0,+∞);(2)证明求导得f′(x)=(x-1)(e x+2a),由(1)知a>0.所以函数f (x)的极小值点为x=1.结合要证结论x1+x2<2,即证x2<2-x1.若2-x1和x2属于某一个单调区间,那么只需要比较f (2-x1)和f (x2)的大小,即探求f (2-x)-f (x)的正负性.于是通过上述观察分析即可构造辅助函数F (x)=f (2-x)-f (x),x<1,代入整理得F (x)=-x e-x+2-(x-2)·e x.求导得F′(x)=(1-x)(e x-e-x+2).即x<1时,F′(x)<0,则函数F (x)是(-∞,1)上的单调减函数.于是F (x)>F (1)=0,则f (2-x)-f (x)>0,即f (2-x)>f (x).由x1,x2是f (x)的两个零点,并且在x=1的两侧,所以不妨设x1<1<x2,则f (x2)=f (x1)<f (2-x1),即f (x2)<f (2-x1).由(1)知函数f (x )是(1,+∞)上的单调增函数,且x 2,2-x 1∈(1,+∞),所以x 2<2-x 1. 故x 1+x 2<2得证.点评 此题的压轴问以函数零点为依托,看似证明不等式,实则是极值右偏问题,解决的核心是通过观察分析构造辅助函数F (x )=f (2-x )-f (x ),建立抽象不等式“f (x 2)<f (2-x 1)”,再由函数的单调性去解决.策略二 整体构建整体思路是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,把某些式子或图形看成一个整体,进行有目的、有意识的整体处理.整体构造辅助函数就是立足这一思想来解决函数综合题的一种策略.例2 (2017·全国Ⅱ)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.(1)解 a =1;(2)证明 由(1)知f (x )=x 2-x -x ln x ,求导得f ′(x )=2x -2-ln x .整体构造辅助函数g (x )=2x -2-ln x ,求导得g ′(x )=2-1x. 当g ′(x )>0时,x ∈⎝ ⎛⎭⎪⎫12,+∞; 当g ′(x )<0时,x ∈⎝ ⎛⎭⎪⎫0,12.即函数g (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,12上单调递减. 又g (e -2)>0,g ⎝ ⎛⎭⎪⎫12<0,g (1)=0,所以g (x )在⎝ ⎛⎭⎪⎫0,12内有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞内有唯一零点1,且当x ∈(0,x 0)时,g (x )>0;当x ∈(x 0,1)时,g (x )<0;当x ∈(1,+∞)时,g (x )>0.因为f ′(x )=g (x ),所以x =x 0是f (x )的唯一极大值点.由f ′(x )=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0).又由x 0∈⎝ ⎛⎭⎪⎫0,12得f (x 0)<14. 又因为x =x 0是f (x )在(0,1)上的最大值点,结合e -1∈(0,1),f ′(e -1)≠0,得f (x 0)>f (e -1)=e -2.所以e -2<f (x 0)<2-2.策略三 局部构造若问题的整体结构比较复杂,使得正面解决很困难时,可以考虑将复杂的整体看成几个部分,实施局部构造辅助函数,从局部突破,从而达到解决问题的目的.例3 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -a x 2(x >0)有最小值.设g (x )的最小值为h (a ),求h (a )的值域.解 (1)略;(2)对g (x )求导得g ′(x )=x +2x 3·⎝ ⎛⎭⎪⎫x -2x +2e x +a . 局部构造辅助函数h (x )=x -2x +2e x +a ,即h (0)=a -1<0,h (2)=a ≥0.由零点定理及第(1)问结论知h (x )在(0,2]上有唯一零点x =m .所以函数g (x )在(0,m )上单调递减,在(m ,+∞)上单调递增.于是x =m 为函数g (x )的极小值点,也为最小值点.即当a ∈[0,1)时,函数g (x )有最小值g (m ).由于m -2m +2e m +a =0,即a =-m -2m +2e m . 所以当a ∈[0,1)时,有m ∈(0,2],于是函数g (x )的最小值g (m )=e m -⎝ ⎛⎭⎪⎫-m -2m +2e m ·(m +1)m 2=e m m +2. 再次引入辅助函数r (m )=e mm +2(m ∈(0,2]),求导得 r ′(m )=m +1(m +2)2e m>0. 所以函数r (m )在(0,2]上单调递增,因此可求得函数h (a )的值域.故函数g (x )的最小值的取值范围为(r (0),r (2)],即⎝ ⎛⎦⎥⎤12,14e 2. 点评 此道压轴题g (x )的导函数结构比较复杂,于是从局部实施突破,构造辅助函数.这种构造方式比较常见,如2016年江苏卷19题,2013年陕西卷理科压轴题等. 策略四 多次构造有时第一次构造辅助函数并不能解决问题,还需要第二次甚至更多次的构造才能解决问题.例4 (2017·全国Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2. (1)解 f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x. 当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎪⎫0,-12a 单调递增, 在⎝ ⎛⎭⎪⎫-12a ,+∞单调递减. (2)证明 第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a+2≤0. 由(1)知,当a <0时,f (x )max =f ⎝ ⎛⎭⎪⎫-12a . 即证ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0 不妨设t =-12a>0,则证ln t -t +1≤0, 令h (t )=ln t -t +1,求导得h ′(t )=1t-1. h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a-2. 策略五 和差构造和差法常用于比较大小、构造对偶式等,其实也可用来构造辅助函数.例5 设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ; (3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x.解 (1),(2)略(3)作差构造辅助函数g (x )=c x -(c -1)x -1, x ∈(0,1),要证原不等式成立,即证g (x )<0.对g (x )求导得g ′(x )=c x·ln c -(c -1)=ln c ·⎝ ⎛⎭⎪⎫c x -c -1ln c . 由c >1,得ln c >0,再根据第(2)问知1<c -1ln c<c . 所以g ′(0)<0且g ′(1)>0,结合g ′(x )是单调递增函数和零点定理可知g ′(x )在区间(0,1)上有唯一零点.所以函数g (x )在区间(0,1)上先单调递减,再单调递增,又g (0)=g (1)=0,从而在区间(0,1)上g (x )<0,故原不等式得证.点评 和差构造辅助函数的方法在每年高考压轴题中运用广泛,如2016年四川理科压轴、2013年辽宁理科压轴题等.策略六 变参分离构造若条件中含有参数,要探究参数的取值范围,此时可以考虑将参数与其他变量分离,然后构造辅助函数求解参数的取值范围.例6 已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(1)求a 的取值范围;(2)略解 (1)显然x =1不是函数f (x )的零点.当x ≠1时,方程f (x )=0变参分离为a =2-x (x -1)2·e x . 引入辅助函数g (x )=2-x (x -1)2·e x , 求导得g ′(x )=-e x·x 2-4x +5(x -1)3. 所以函数g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.因为函数g (x )在(-∞,1)上的取值范围是(0,+∞),而在(1,+∞)上的取值范围是(-∞,+∞).所以当a >0时,函数f (x )有两个零点,故a 的取值范围为(0,+∞).点评 此题将主元与参数变参分离后构造辅助函数,再对辅助函数求导探究单调性或最值,参数的范围便自然得到.策略七 综合运用例7 已知函数f (x )=1-x 1+x 2e x . (1)求f (x )的单调区间;(2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.(1)解 函数f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞).(2)证明 由f (x )=1-x 1+x 2e x ,易知x <1时,f (x )>0;x >1时,f (x )<0. 因为f (x 1)=f (x 2)(x 1≠x 2),不妨设x 1<x 2,结合(1)知x 1∈(-∞,0),x 2∈(0,1). 要证x 1+x 2<0,即证x 1<-x 2,于是作差构造辅助函数F (x )=f (x )-f (-x ),代入化简得F (x )=11+x 2⎣⎢⎡⎦⎥⎤(1-x )e x -1+x e x . 再次局部构造辅助函数G (x )=(1-x )e x -1+x e x ,求导得G ′(x )=-x e -x (e 2x -1).当x ∈(0,1)时,G ′(x )<0,即G (x )是(0,1)上的单调减函数.于是G (x )<G (0)=0,则F (x )<0. 即F (x )=f (x )-f (-x )<0.所以x ∈(0,1)时,f (x )<f (-x ).由x 2∈(0,1),则f (x 2)<f (-x 2).又f (x 1)=f (x 2),即得f (x 1)<f (-x 2). 根据(1)知f (x )是(-∞,0)上的单调增函数,而x 1∈(-∞,0),-x 2∈(-∞,0), 所以x 1<-x 2,故x 1+x 2<0得证.点评 此道压轴题的压轴问要证的不等式本质上是极值右偏问题,解答时需要灵活的将作差构造和局部构造两种方法综合运用才能顺利解决.掌握数学就意味着必须要善于解题,中学数学教学的首要任务之一就是要加强解题训练,而人的高明之处在于当他碰到一个不能直接克服的障碍时,他就会绕过去,当原来的问题看起来似乎不好解时,就会想出一个合适的辅助问题去解决原问题,这种方法正是解决高考函数综合问题的良策与通法,通过构造辅助函数统一的处理这些问题时,其实我们已经站在了更高的层面,不再仅仅追求千奇百怪“诡异”的解法,而是理解了这些问题的共性.在统一解决的同时,给人一种思维清晰、神清气爽的良好教学感觉.。
导数压轴题-----题型解法归纳一、导数在高考中旳地位:常作为压轴题来考察,尤其是解答题,至少占到14分;当然在选择题或者是填空题里也会出现1~2道,因此高考试卷中它占到了20分左右旳比重二、导数可以结合考察旳知识点:1、数列;2、不等式与方程;3、函数;4、解析几何其中最常见旳就是和函数、不等式旳结合,处理此类题目旳汉族到思想是构造新函数,运用导数求解单调性,进而证明不等式或者最值又或者是参数旳范围等等。
三、题型归纳:(新题、难题、考察知识点总结)(一)基础题目小试身手1.(不等式、函数旳性质)已知函数mxx x f ++=21ln )((Ⅰ)为定义域上旳单调函数,求实数旳取值范围;)(x f m (Ⅱ)当时,求函数旳最大值;1-=m )(x f (Ⅲ)当时,且,证明:1=m 10≤<≤a b 2)()(34<--<ba b f a f 2.(不等式恒成立问题)设函数.),10(3231)(223R b a b x a ax x x f ∈<<+-+-=(Ⅰ)求函数f (x )旳单调区间和极值;(Ⅱ)若对任意旳不等式恒成立,求旳取值范围],2,1[++∈a a x a x f ≤)('a 3.(导数旳简朴应用)已知函数xx f ln )(= (Ⅰ)若,求旳极大值;)()()(R a xa x f x F ∈+=)(x F (Ⅱ)若在定义域内单调递减,求满足此条件旳实数kx x f x G -=2)]([)(旳取值范围k 4.(不等式旳证明)已知函数.x x x f -+=)1ln()((1)求函数旳单调递减区间;(2)若,求证:≤≤)(x f 1->x 111+-x )1ln(+x x5、(不等式、存在性问题)已知,,)0,[),ln()(e x x ax x f -∈--=xx x g )ln()(--=其中是自然常数,e Ra ∈(1)讨论时, 旳单调性、极值;1-=a )(x f (2)求证:在(1)旳条件下,21)()(+>x g x f (3)与否存在实数,使旳最小值是3,若存在,求出旳值;若不a )(x f a 存在,阐明理由。
导数N 个满分套路学生用书套路一.导数构造法一—加减乘除导数加减乘除构造法,利用和差函数及乘除函数求导法则构造函数。
(1)对于不等式)0(0)()(''<>+或x g x f ,构造函数)()()(x g x f x F +=(2)对于不等式)0(0)()(''<>-或x g x f ,构造函数)()()(x g x f x F -=(3)对于不等式)0(0)()()()(''<>+或x f x g x g x f ,构造函数)()()(x g x f x F = (4)对于不等式)0(0)()()()(''<>-或x f x g x g x f ,构造函数)()()(x g x f x F =(5)特别地,对于不等式)()('k k x f <>或,构造函数kx x f x F -=)()(例1.设)(x f ,)(x g 在[]b a ,上可导,且)()(''x g x f >,则当b x a <<时,有( ))()(.x g x f A > )()(.x g x f B < )()()()(.a f x g a g x f C +>+)()()()(.b f x g b g x f D +>+解:构造函数)()()(x g x f x F -=,则由题意判断)(x F 单调递增,于是)()()(b F x F a F <<,所以)()()()(a g a f x g x f ->-,选C例 2.若定义在R 上地函数)()(x g x f ,满足0)(≠x g 0)()()()(''<-x f x g x g x f 。
若)()(x g a x f x=,25)1()1()1()1(=--+g f g f ,令)()(n g n f a n =,则使得}{n a 的前n 项和1615>n S 的最小自然数______=n 【答案】5 解:由题意得x a x g x f =)()(为减函数,所以10<<a ,n n a a =。
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
2021高考数学压轴题命题区间探究与突破专题第一篇函数与导数专题04巧妙构造函数,应用导数证明不等式问题一.方法综述利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.二.解题策略类型一“比较法”构造差函数证明不等式【例1】【2020·湖南长沙一中月考】已知函数()ln f x ax x =-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若21,a e ⎛⎤∈-∞- ⎥⎝⎦,求证:()12ax f x ax xe -≥-.【解析】(Ⅰ)由题意得()11'ax f x a x x-=-=,①当0a ≤时,则()'0f x <在()0,+∞上恒成立,∴()f x 在()0,+∞上单调递减.②当0a >时,则当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0f x f x >,单调递增,当10x a ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减.综上:当0a ≤时,()f x 在()0,+∞上单调递减;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(Ⅱ)令()()12ax g x f x ax xe-=-+1ln ax xe ax x -=--,则()111'ax ax g x eaxea x--=+--()()()111111ax ax ax xe ax e x x--+-⎛⎫=+-=⎪⎝⎭,设()11ax r x xe-=-,则()()1'1ax r x ax e -=+,∵10ax e ->,∴当10,x a⎛⎫∈- ⎪⎝⎭时,()()'0r x r x >,单调递增;当1,x a⎛⎫∈-+∞ ⎪⎝⎭时,()()0r x r x '<,单调递减.∴()2max 1110r x r a ae ⎛⎫⎛⎫=-=-+≤ ⎪ ⎪⎝⎭⎝⎭(因为21a e ≤-),∴110ax e x--≤.∴()g x 在10,a ⎛⎫- ⎪⎝⎭上单调递减,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,∴()min1g x g a ⎛⎫=- ⎪⎝⎭,设(210,t e a⎤=-∈⎦,则()221ln 1(0)t g h t t t e a e ⎛⎫-==-+<≤ ⎪⎝⎭,()211'0h t e t=-≤,()h t 在(20,e ⎤⎦上递减,∴()()20h t h e ≥=;∴()0g x ≥,故()12ax f x ax xe-≥-.说明:判断11ax e x--的符号时,还可以用以下方法判断:由110ax e x --=得到1ln x a x -=,设()1ln x p x x -=,则()2ln 2'x p x x -=,当2x e >时,()'0p x >;当20x e <<时,()'0p x <.从而()p x 在()20,e 上递减,在()2,e +∞上递增.∴()()22min 1p x p e e ==-.当21a e ≤-时,1ln x a x -≤,即110ax e x--≤.【指点迷津】当题目中给出简单的基本初等函数,例如()()3 f x x g x ln x =,=,进而证明在某个取值范围内不等式()()f x g x ≥成立时,可以类比作差法,构造函数()()()()()()h x f x g x x g x f x ϕ=-或=-,进而证明()()00min max h x x ϕ≥≤或即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明()()()00g x f x >>的前提下,也可以类比作商法,构造函数()()()()()f x f x h x xg x g x ϕ=(()=),进而证明()()()11min max h x x ϕ≥≤.【举一反三】【2020·河北衡水中学月考】已知函数1()ln (1),f x x a a R x=+-∈.(Ⅰ)若()0f x ≥,求实数a 取值的集合;(Ⅱ)证明:212ln (2)x e x x e x x+≥-++-.【解析】(Ⅰ)由已知,有221()(0)a x af x x x x x-'=-=>当0a ≤时,1(ln 202f a =-+<,与条件()0f x ≥矛盾,当0a >时,若(0,)x a ∈,则()0f x '<,()f x 单调递减,若(,)x a ∈+∞,则()0f x '>,则()f x 单调递增.所以()f x 在(0,)+∞上有最小值1()ln (1)ln 1f a a a a a a=+-=+-,由题意()0f x ≥,所以ln 10a a +-≥.令()ln 1g x x x =-+,所以11()1x g x x x-'=-=,当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,)x ∈+∞时,()0g x '<,()g x 单调递减,所以()g x 在(0,)+∞上有最大值(1)0g =,所以()ln 10g x x x =-+≤,ln 10a a -+≤,ln 10a a -+=,1a =,综上,当()0f x ≥时,实数a 取值的集合为{}1;(Ⅱ)证明:由(Ⅰ)可知:1a =时,()0f x ≥,即1ln 1x x ≥-在0x >时恒成立.要证212ln (2)x e x x e x x+≥-++-,只需证当0x >时,2(2)10x e x e x ----≥令2()(2)1(0)x h x e x e x x =---->()2(2)x h x e x e '=---,令()2(2)x u x e x e =---,则()2x u x e '=-,令()20x u x e '=-=,解得ln 2x =,所以,函数()u x 在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.即函数()h x '在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.而(0)1(2)30h e e '=--=->.(ln 2)(1)0h h '<'=∴存在0(0,ln 2)x ∈,使得0()0h x '=当0(0,)x x ∈时,()0,()h x h x '>单调递增;当0(,1)x x ∈时,()0,()h x h x '<单调递减.当(1,)x ∈+∞时,()0,()h x h x '>单调递增,又(0)110,(1)11(2)0h h e e =-==----=,∴对0,()0x h x ∀>≥恒成立,即2(2)10x e x e x ----≥,综上可得:212ln (2)x e x x e x x+≥-++-成立.类型二“拆分法”构造两函数证明不等式【例2】【2020·安徽阜阳统测】设函数()1f x x x=-,()ln g x t x =,其中()0,1x ∈,t 为正实数.(1)若()f x 的图象总在函数()g x 的图象的下方,求实数t 的取值范围;(2)设()()()221ln 1e 11x H x x x x x ⎛⎫=-++-- ⎪⎝⎭,证明:对任意()0,1x ∈,都有()0H x >.【解析】(1)因为函数()f x 的图象恒在()g x 的图象的下方,所以()()1ln 0f x g x x t x x-=--<在区间()0,1上恒成立.设()1ln F x x t x x =--,其中()0,1x ∈,所以()222111t x tx F x x x x-+'=+-=,其中24t ∆=-,0t >.①当240t - ,即02t < 时,()0F x ' ,所以函数()F x 在()0,1上单调递增,()()10F x F <=,故()()0f x g x -<成立,满足题意.②当240t ->,即2t >时,设()()2101x x tx x θ=-+<<,则()x θ图象的对称轴12tx =>,()01θ=,()120t θ=-<,所以()x θ在()0,1上存在唯一实根,设为1x ,则()1,1x x ∈,()0x θ<,()0F x '<,所以()F x 在()1,1x 上单调递减,此时()()10F x F >=,不合题意.综上可得,实数t 的取值范围是(]0,2.(2)证明:由题意得()()21e ln 1e 1xx H x x x x ⎛⎫=---+ ⎪⎝⎭()()21e 1e ln xx x x x x x--+=-,因为当()0,1x ∈时,e 10x x x -+>,ln 0x <,所以()()()21e 10e ln x xx x x H x x x--+>⇔>2e 1e 1ln x x x x x x x-⇔<-+.令()()e 101x h x x x =--<<,则()e 10xh x '=->,所以()h x 在()0,1上单调递增,()()00h x h >=,即e 1x x >+,所以()2e 1111xx x x x x x -+>+-+=+,从而2e e e 11x xx x x x <-++.由(1)知当2t =时,12ln 0x x x --<在()0,1x ∈上恒成立,整理得212ln x x x ->.令()()2e 011xm x x x =<<+,则要证()0H x >,只需证()2m x <.因为()()()222e 101x x m x x-'=>+,所以()m x 在()0,1上单调递增,所以()()e122m x m <=<,即()2m x <在()0,1上恒成立.综上可得,对任意()0,1x ∈,都有()0H x >成立.【指点迷津】当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为()()f x g x ≤的形式,进而证明()()max min f x g x ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.【举一反三】【2020届福建厦门双十中学月考】已知函数22()1ln ()f x x a x ax a R =-+-∈.(1)讨论()f x 的单调区间;(2)当0a =且(0,1)x ∈,求证:()11x f x x e x+-<.【解析】(1)函数()f x 定义域为(0,)+∞,21()2f x a x a x '=-+-2221(21)(1)a x ax ax ax x x--+-==.①若0a =时,则()0f x <,()f x 在(0,)+∞上单调递减;②若0a >时,1102a a >>-,令1()02f x x a >⇒<-或1x a>.又0x >,()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;③若0a <时,1102a a ->>,令1()0f x x a>⇒<或12x a >-.又0x >,()f x ∴在10,2a ⎛⎫- ⎪⎝⎭上单调递减,在1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(2)要证()11x f x x e x +-<,只需证1ln 11x x x e x-+-<,(0,1)x ∈ ,只需证()2(1ln )1x x x x x e -<+-,设()(1ln )g x x x =-,()2()1xh x x x e =+-,()ln 0g x x '=->在(0,1)x ∈上恒成立,所以()g x 在(0,1)上单调递增.所以()(1)1g x g <=,()2()2(2)(1)0x x h x x x e x x e '=--+=-+->,所以()h x 在(0,1)上单调递增,所以()(0)1h x h >=,所以当(0,1)x ∈时,()()g x h x <,即原不等式成立.类型三“换元法”构造函数证明不等式【例3】【2020湖北宜昌一中期中】已知函数()()1xf x e a x =--有两个零点.(1)求实数a 的取值范围;(2)设1x 、2x 是()f x 的两个零点,证明:1212x x x x <+⋅.【解析】(1)函数()()1x f x e a x =--,所以()xf x e a '=-,当0a ≤时,()0f x '>在R 上恒成立,所以()f x 在R 上单调递增,()f x 至多只有一个零点,不符合题意,当0a >时,由()0f x '=得ln x a =,所以(),ln x a ∈-∞时,()0f x '<,()f x 单调递减,()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增,所以ln x a =时()f x 取得极小值,也是最小值,()f x 要有两个零点,则()ln 0f a <,即()2ln 0a a -<,解得2a e >,所以ln 2a >,当1ln x a =<时,得()10f e =>,当2ln ln x a a =>时,()()22ln 2ln 2ln 1f a a a a a a a a =-+=-+,设()2ln 1a a a ϕ=-+,则()2210a a a aϕ-'=-=>所以()a ϕ单调递增,则()()22140a e e ϕϕ>=+->,所以()()2ln 2ln 10f a a a a =-+>,所以()f x 在区间()1,ln a 上有且只有一个零点,在()ln ,2ln a a 上有且只有一个零点,所以满足()f x 有两个零点的a 的取值范围为2()e +∞.(2)1x 、2x 是()f x 的两个零点,则()()120f x f x ==,要证1212x x x x <+⋅,即证()()12111x x --<,根据()()120f x f x ==,可知()111x e a x =-,()221xe a x =-,即证()()12122111x x e x x a+--=<,即证122x x e a +<,即证122ln x x a +<,即证212ln x a x <-,设1ln x a <,2ln x a >,由(1)知()f x 在()ln ,a +∞上单调递增,故只需证明()()212ln f x f a x <-,而()()21f x f x =,所以只需证()()112ln f x f a x <-令()()()2ln g x f a x f x =--,且ln x a<所以()222ln x x a g x e ax a a e =-+-,ln x a <,()22222x x xx x a a e ae g x e a e e +-'=--+=-()2xxe a e -=-<所以()g x 在(),ln a -∞上单调递减,所以()()()()ln 2ln ln ln 0g x g a f a a f a >=--=,所以()()2ln f a x f x ->在(),ln a -∞上恒成立,所以()()112ln f a x f x ->,故原命题得证.【指点迷津】若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m(x 1,x 2)的表达式(其中m(x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m(x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.【举一反三】【2020山西太原五中期中】已知函数2()2ln f x x x x =++.(1)求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若正实数12,x x 满足12()()4f x f x +=,求证:122x x +≥.【解析】(1)2(1)2ln111=2f =++,切点为(1,2).2()21f x x x'=++,(1)5k f '==.切线为:25(1)y x -=-,即530x y --=.(2)2212111222()()2ln 2ln 4f x f x x x x x x x +=+++++=221112222ln 2ln 4x x x x x x +++++=.212121212()()42(ln )x x x x x x x x +++=+-令12x x t =,()ln g t t t =-,0t >,11()1t g t t t-'=-=,(0,1)t ∈,()0g t '<,()g t 为减函数,(1,)t ∈+∞,()0g t '>,()g t 为增函数,min ()(1)1g t g ==,所以()1g t ≥.即21212()()426x x x x +++≥+=.得:1212(3)(2)0x x x x +++-≥,得到1220x x +-≥,即:122x x +≥.类型四“转化法”构造函数证明不等式【例4】【2020·天津南开中学月考】已知函数1()ln f x x a x x=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为()0,+∞,()222111a x ax f x x x x -+=--+-'=.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在()0,+∞单调递减.(ii )若2a >,令()0f x '=得,42a x =或42a x =.当0,,22a a x ⎛⎛⎫+∈⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当,22a a x ⎛+∈ ⎪⎝⎭时,()0f x '>.所以()f x在0,,,22a a ⎛⎛⎫++∞ ⎪ ⎪ ⎪⎝⎭⎝⎭单调递减,在,22a a ⎛-+ ⎪⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----,所以()()12122f x f x a x x -<--等价于22212ln 0x x x -+<.设函数()12ln g x x x x=-+,由(1)知,()g x 在()0,+∞单调递减,又()10g =,从而当()1,x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即()()12122f x f x a x x -<--.【指点迷津】在关于x 1,x 2的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.【举一反三】【2020·吉林省实验期末】已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围;(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>.【解析】(I )()ln 24f x x ax +'=-.∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立.令()ln 2x g x x x =+,则()21ln xg x x --'=,∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫ ⎪⎝⎭内为增函数;当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数.∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x ,由(I ),知e 04a <<.由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a +>,只需证明()()121212142ln ln x x a x x a x x +<--.即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+.令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减.∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+.即不等式12112221ln 1x x xx x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>.三.强化训练1.【2020·辽宁本溪一高期末】已知a R ∈,函数2()x f x e ax =+.(1)()f x '是函数数()f x 的导函数,记()()g x f x '=,若()g x 在区间(,1]-∞上为单调函数,求实数a 的取值范围;(2)设实数0a >,求证:对任意实数12,x x ()12x x ≠,总有()()121222f x f x x x f ++⎛⎫<⎪⎝⎭成立.附:简单复合函数求导法则为[()]()f ax b af ax b ''+=+.【解析】(1)由已知得()2x f x e ax '=+,记()2x g x e ax =+,则()2xg x e a '=+.①若0a ≥,()0g x '>,()g x 在定义域上单调递增,符合题意;②若0a <,令()0g x '=解得()ln 2x a =-,()g x '自身单调递增,要使导函数()g x 在区间(],1-∞上为单调函数,则需()ln 21a -≥,解得2ea ≤-,此时导函数()g x 在区间(],1-∞上为单调递减函数.综合①②得使导函数()f x '在区间(],1-∞上为单调函数的a 的取值范围是[),0,2e ⎛⎤-∞-+∞ ⎥⎝⎦.(2)因为12x x ≠,不妨设12x x <,取1x 为自变量构造函数,()()()1212122f x f x x x F x f ++⎛⎫=-⎪⎝⎭,则其导数为()()11211222f x x x F x f '+⎛⎫''=- ⎪⎝⎭()121122x x f f x ⎡+⎤⎛⎫''=- ⎪⎢⎥⎝⎭⎣⎦0a > ()2xf x e ax ∴'=+在R 上单调递增而且12211022x x x x x +--=>,所以()1212x x f f x +⎛⎫''> ⎪⎝⎭,即()10F x '>.故关于1x 的函数()1F x 单调递增,()()120F x F x <=即()()121222f x f x x x f ++⎛⎫<⎪⎝⎭证得.2.【2020·湖北随州一中期末】高三月考(理))已知函数()ln f x ax x =-.(Ⅰ)求()f x 的极值;(Ⅱ)若1a =-,1b ≥,()()xg x f x be =+,求证:()0g x >.【解析】(Ⅰ)()()10f x a x x'=->,当0a ≤时,()0f x '<恒成立,则()f x 在()0,∞+上单调递减,()f x 无极值;当0a >时,令()0f x '>,得1x a >;令()0f x '<,得10x a<<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,()f x 有极小值为1ln a +,无极大值;(Ⅱ)当1a =-,1b =时,()()ln 0xg x e x x x =-->,()11x g x e x'=--,令()()h x g x '=,则()210x h x e x =+>',所以()h x 在()0,∞+上单调递增.又1302h ⎛⎫=< ⎪⎝⎭,()120h e =->,所以01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()000110x h x e x =--=,即0011x e x =+,所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以函数()g x 的最小值为()00000001ln 1ln xg x e x x x x x =--=+--,又函数11ln y x x x=+--在1,12⎛⎫⎪⎝⎭上是单调减函数,所以()011ln1110g x >+--=>,又1b ≥,()()x xf x be f x e +≥+,故()0g x >.3.【2020·湖北黄石一高月考】已知函数2()1f x e x e =+--.(1)若()f x ax e ≥-对x ∈R 恒成立,求实数a 的值;(2)若存在不相等的实数1x ,2x ,满足12()()0f x f x +=,证明:122x x +<.【解析】(1)令()()()(1)1x g x f x ax e e a x =--=+--,则()1x g x e a '=+-,由题意,知()0g x ≥对x ∈R 恒成立,等价min ()0g x ≥.当1a ≤时,由()0g x '≥知()(1)1x g x e a x =+--在R 上单调递增.因为1(1)(1)10g a e-=---<,所以1a ≤不合题意;当1a >时,若(,ln(1))x a ∈-∞-,则()0g x '<,若(ln(1),)x a ∈-+∞,则()0g x '>,所以,()g x 在(,ln(1))a -∞-单调递减,在(ln(1),)a -+∞上单调递增.所以min ()(ln(1))2(1)ln(1)0g x g a a a a =-=-+--≥记()2(1)ln(1)(1)h a a a a a =-+-->,则()ln(1)h a a '=--.易知()h a 在(1,2)单调递增,在(2,)+∞单调递减,所以max ()(2)0h a h ==,即2(1)ln(1)0a a a -+--≤.而min ()2(1)ln(1)0g x a a a =-+--≥,所以2(1)ln(1)0a a a -+--=,解得2a =.(2)因为()()120f x f x +=,所以12122(1)x x e e x x e +++=+.因为12122122,x x x x e e ex x ++≥≠,所以121222x x x x e e e++>令12x x t +=,则22220t e t e +--<.记2()2220tm t e t e =+--<,则2()10t m t e '=+>,所以()m t 在R 上单调递增.又(2)0m =,由22220te t e +--<,得()(2)m t m <,所以2t <,即122x x +<.4.【2020·浙江高温州三中期末】已知函数()11114x x e e ax a f x ++⎛⎫=-+- ⎪⎝⎭,其中2.718e =⋅⋅⋅是自然对数的底数,()()'g x f x =是函数()f x 的导数.(1)若()g x 是R 上的单调函数,求a 的值;(2)当78a =时,求证:若12x x ≠,且122x x +=-,则()()122f x f x +>.【解析】(1)()()1112'1x x e e ax g x f x ++⎛⎫=-- ⎝=⎪⎭,()()11'1x x e e x g x a a ++=---,由题意()110x e ax a G x +=---≥恒成立,由于()10G -=,所以()'10G -=,解得1a =.方法一:消元求导死算(2)()11171488x x e x e f x ++⎛⎫=-- ⎪⎝⎭()111731484x x e e x ++⎛⎫=-++ ⎪⎝⎭,令1x t +=,120t t +=,不妨设210t x =+>,()173484t th e e t t ⎛⎫=-+⎪⎝⎭,令()()()H t h t h t =+-173173484484t tt t e e t e e --⎛⎫⎛⎫=-++++⎪ ⎪⎝⎭⎝⎭,原题即证明当0t >时,()2H t >,()171171288288't tt t e e t e e H t t --⎛⎫⎛⎫=---+-⎪ ⎪⎝⎭⎝⎭()()()()171288t t t t t t t te e e e t e e e e ----=+--+--()()()()711208216t t t t t t t t e e e e t e e e e ----⎡⎤⎡⎤=+--+-+-≥⎢⎥⎣⎦⎣⎦,其中()()11'1022t t t t e e t e e --⎡⎤--=+-≥⎢⎥⎣⎦,因为()02H =,所以当0t >时,()2H t >,得证.5.【2020·安徽黄山期末】已知函数()()2e 12e x x f x a a x =+--.(1)当0a <时,讨论()f x 的单调性;(2)若()f x 有两个不同零点1x ,2x ,证明:1a >且120x x +<.【解析】(1)()()()()22e 12e 1e 12e 1x x x x f x a a a '=+--=-+.因为0a <,由()0f x '=得,0x =或1ln 2x a ⎛⎫=- ⎪⎝⎭.i )1ln 02a ⎛⎫-< ⎪⎝⎭即12a <-时,()f x 在1,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在()0,∞+单调递减;ii )1ln 02a ⎛⎫-=⎪⎝⎭即12a =-时,()f x 在(),-∞+∞单调递减;iii )1ln 02a ⎛⎫->⎪⎝⎭即102a -<<时,()f x 在(),0-∞单调递减,在10,ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在1ln ,2a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭单调递减.(2)由(1)知,12a <-时,()f x 的极小值为111ln 1ln 10242f a a a ⎛⎫⎛⎫⎛⎫-=--->> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,102a -<<时,()f x 的极小值为()0110f a =->>,12a =-时,()f x 在(),-∞+∞单调,故0a <时,()f x 至多有一个零点.当0a ≥时,易知()f x 在(),0-∞单调递减,在()0,∞+单调递增.要使()f x 有两个零点,则()00f <,即120a a +-<,得1a >.令()()()F x f x f x =--,(0x >),则()()()F x f x f x '''=+-()()22e 12e 1x x a a =+--()()22e 12e 1x x a a --++--()()()2e e 1e e 2e e 20x x x x x x a ---=+++-++-≥,所以()F x 在0x >时单调递增,()()00F x F >=,()()f x f x >-.不妨设12x x <,则10x <,20x >,20x -<,()()()122f x f x f x =>-.由()f x 在(),0-∞单调递减得,12x x <-,即120x x +<.6.【2020·山东东营期末】已知函数()()sin ,ln f x x a x g x x m x =-=+.(1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立;(2)求函数()g x 的极值;(3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <.【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤ ,()11cos 0a f x a x '∴≤=-≥,,()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立;(2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=>当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值.(3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数,由(2)知,当0m ≥,()g x 在()0+∞,上为增函数,这时,()()f x g x +在()0+∞,上为增函数,所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--②由①②式可得:()()()2121211ln ln 22m x x x x x x -->---即()()21213ln ln 02m x x x x -->->又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③又要证12249x x m <,即证21294m x x >120,0m x x <<<即证m ->……④所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x x x x ->设211x t x =>,只需证1ln t t ->即证()ln 01t t ->>令()()ln 1h t t t =>由()()()2101h t t h t -'=>>,在()1+∞,上为增函数,()()10h t h∴>=2121ln ln x x x x -∴>-成立,所以由③知,0m ->>成立,所以1224 9x xm 成立.7.【2020届四川省成都一诊】已知函数.(1)求曲线在点处的切线方程;(2)设,证明:.【解析】(1)由题意,又,所以,因此在点处的切线方程为,即(2)证明:因为,所以由于,等价于,令,设函数当时,,所以,所以在上是单调递增函数,又,所以,所以,即等价于,令,设函数当时,,所以,所以在上是单调递减函数,又,所以所以,即综上①②可得:.8.【2020·天津南开期末】已知2()46ln f x x x x =--,(1)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调性;(2)对(1,)x ∀∈+∞,有21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭恒成立,求k 的最大整数解;(3)令()()4(6)ln g x f x x a x =+--,若()g x 有两个零点分别为1x ,2x ()12x x <且0x 为()g x 的唯一的极值点,求证:12034x x x +>.【解析】(1)2()46ln f x x x x=-- 所以定义域为()0,+¥6()24f x x x'∴=--;(1)8f '=-;(1)3f =-所以切线方程为85y x =-+;2()(1)(3)f x x x x'=+-,令()0f x '>解得3x >令()0f x '<解得03x <<所以()f x 的单调递减区间为()0,3,单调递增区间为(3,)+∞.(2)21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭等价于min ln ()1x x x k h x x +<=-;22ln ()(1)x x h x x --'∴=-,记()2ln m x x x =--,1()10m x x'=->,所以()m x 为(1,)+∞上的递增函数,且(3)1ln 30m =-<,(4)2ln 40m =->,所以0(3,4)x ∃∈,使得()00m x =即002ln 0x x --=,所以()h x 在()01,x 上递减,在()0,x +∞上递增,且()000min 000ln ()(3,4)1x x x h x h x x x +===∈-;所以k 的最大整数解为3.(3)2()ln g x x a x =-,()20ag x x x x -'=-==得0x =,当x ⎛∈ ⎝,()0g x '<,x ⎫∈+∞⎪⎪⎭,()0g x '>;所以()g x在⎛ ⎝上单调递减,⎫+∞⎪⎪⎭上单调递增,而要使()g x 有两个零点,要满足()00g x <,即2ln 02g a a e =-<⇒>;因为10x <<2x >,令21x t x =(1)t >,由()()12f x f x =,221122ln ln x a x x a x ∴-=-,即:2221111ln ln x a x t x a tx -=-,212ln 1a tx t ∴=-而要证12034x x x +>,只需证1(31)t x +>即证:221(31)8t x a+>即:22ln (31)81a t t a t +>-由0a >,1t >只需证:22(31)ln 880t t t +-+>,令22()(31)ln 88h t t t t =+-+,则1()(186)ln 76h t t t t t'=+-++令1()(186)ln 76n t t t t t =+-++,则261()18ln 110t n t t t -'=++>(1)t >故()n t 在(1,)+∞上递增,()(1)0n t n >=;故()h t 在(1,)+∞上递增,()(1)0h t h >=;12034x x x ∴+>.9.【2020·湖南洪湖期末】已知函数()1,f x xlnx ax a R=++∈(1)当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围;(2)当*n N ∈时,证明:2223122421n n n ln ln ln n n n +<+++<++ .【解析】(1)由()0f x ≥,得ln 10x x ax ++≥(0)x >.整理,得1ln a x x -≤+恒成立,即min 1ln a x x ⎛⎫-≤+ ⎪⎝⎭.令()1ln F x x x =+.则()22111'x F x x x x-=-=.∴函数()F x 在()0,1上单调递减,在()1,+∞上单调递增.∴函数()1ln F x x x=+的最小值为()11F =.∴1a -≤,即1a ≥-.∴a 的取值范围是[)1,-+∞.(2)∵24n n +为数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和,1n n +为数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.∴只需证明()()211ln 12n n n n +<++()11n n <+即可.由(1),当1a =-时,有ln 10x x x -+≥,即1ln x x x ≥-.令11n x n +=>,即得1ln 11n n n n +>-+11n =+.∴2211ln 1n n n +⎛⎫> ⎪+⎝⎭()()112n n >++1112n n =-++.现证明()211ln 1n n n n +<+,即<==()*现证明12ln (1)x x x x <->.构造函数()12ln G x x x x=--()1x ≥,则()212'1G x x x =+-22210x x x-+=≥.∴函数()G x 在[)1,-+∞上是增函数,即()()10G x G ≥=.∴当1x >时,有()0G x >,即12ln x x x <-成立.令x =,则()*式成立.综上,得()()211ln 12n n n n +<++()11n n <+.对数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭,21ln n n +⎧⎫⎨⎬⎩⎭,()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭分别求前n 项和,得223ln 2ln 242n n <++21ln 1n n n n ++⋅⋅⋅+<+.10.【2020·全国高三专题】已知函数()ln a f x x x=+,其中a R ∈.(1)试讨论函数()f x 的单调性;(2)若1a =,试证明:()e cos x x f x x +<.【解析】(1)由221()a x a f x x x x -'=-=(0)x >知:(i )若0a ≤,2()0(0)x a f x x x -'=>>,∴()f x 在区间()0,∞+上为增函数.(ii )若0a >,∴当x ∈()0,a 时,有()0f x '<,∴()f x 在区间()0,a 上为减函数.当x ∈(),a +∞时,有()0f x '>,∴()f x 在区间(),a +∞上为增函数.综上:当0a ≤时,()f x 在区间()0,∞+上为增函数;当0a >时,()f x 在区间()0,a 上为减函数;()f x 在区间(),a +∞上为增函数.(2)若1a =,则1()ln (0)f x x x x =+>要证e cos ()x x f x x +<,只需证ln 1e cos x x x x +<+,即证:ln e cos 1x x x x <+-.(i )当01x <≤时,ln 0x x ≤,而e cos 11cos11cos10x x +->+-=>∴此时ln <e cos 1x x x x +-成立.(ii )当1x >时,令()e cos ln 1x g x x x x =+--,()0,x ∈+∞,∵()e sin ln 1x g x x x '=---,设()()e sin ln 1x h x g x x x '==---,则1()e cos x h x x x'=-- 1x >,∴1()e cos e 110x h x x x '=-->-->∴当1x >时,()h x 单调递增,∴()(1)e sin110h x h >=-->,即()0g x '>∴()g x 在()1,+∞单调递增,∴()(1)e cos110g x g >=+->即()e cos ln 10x g x x x x =+-->,即ln <e cos 1x x x x +-,∴e cos ()<x x f x x+综上:当0x >时,有e cos ()<x x f x x +成立.。
近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结: 和与积联系:()()f x xf x '+,构造()xf x ; 22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=; ()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,……………… ()()f x nf x '-,构造()()e nxf x F x =, 奇偶性结论:奇乘除奇为偶;奇乘偶为奇。
(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。
给出导函数,构造原函数,本质上离不开积分知识。
【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是专题6.1 导数中的构造函数( ) A .1x y <<B .1y x <<C .1x y <<D .1y x <<【来源】广东省佛山市2021届高三下学期二模数学试题 【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =, 当1x >时,由()1f x >,则()1g y >,可得1y >, 当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x -=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减, 又()2110ln 2h '=-+>,()1230ln 2h '=-+<, 则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<, 又因为()()()()010,10,412480h h x h h =>==-+=-<, 所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<, 当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能. 故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性. 【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=( )A .2B C .2D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题 【答案】C 【解析】()ln 1g x x x =--,1()1g x x'=-, ()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈, ∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-2221a b -21a b =-, 221ln ln(2)ln a a a bb b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b+-=-,又21ab =(不等式取等条件),解得:a b ==,2a b ∴+=, 故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为( )A .11[,]22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞- D .1[,)2+∞【答案】D【解析】由()()1f m f m -- ()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为( )A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________. 【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x xx-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,. 类型二 巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是fx ,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为( )A .(1,1)-B .(),1-∞-C .1,D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟) 【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦, ∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<. ∴()()10xf x f ->的解集为(1,1)-. 故选:A. 【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是( )A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()xg x e f x = ,则()(()())0xg x e f x f x '+'=<, 所以(2)(3),g g > 即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等 3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( ) A .(0)02(1)f f << B .0(0)2(1)f f << C .02(1)(0)f f << D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B . 4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当 成立(是函数的导数),若,则的大小关系是( )A .B .C .D .【答案】A 【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+,,∞∞ B .()()2002-,,C .()()202-+,,∞D .()()202--,,∞【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减, ()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+,,∞.故选C . 点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<-,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001-,,B .()()11--+,,∞∞C .()()101-+,,∞D .()()101--,,∞ 【答案】D.【解析】设()ln ()g x x f x =,当0x >时,1()()ln ()0g x f x xf x x'=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->; 当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<, ∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->. 综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101--,,∞ 【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则( ) A .()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0xg x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]xg x xf x =。
必须掌握的7种构造函数方法——合理构造函数,巧解导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。
其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。
导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例3 已知函数f(x)=ae x−1x(a ∈R )在x =2处的切线斜率为e2.(1)求实数a 的值,并讨论函数f(x)的单调性; (2)若g(x)=e x lnx +f (x ),证明:g(x)>1.思路分析:(1)先对函数f(x)求导,由函数在x =2处的切线斜率为e2即可求出a 的值,进而可得函数的单调性;(2)要证g(x)>1,即证xlnx >x ex −2e,构造函数ℎ(x )=xlnx ,m (x )=x ex −2e,用导数的方法求函数ℎ(x )的最小值和函数m (x )的最大值,即可得出结论. 【详解】(1)f ′(x)=a e (e xx )′=ae ⋅e x x−e x x 2=ae x−1x−1x 2,由切线斜率k =f ′(2)=ae ⋅2−122=e2,解得a =2. ∴f(x)=2e x−1x,其定义域为(−∞,0)∪(0,+∞),f ′(x)=2e x−1x−1x 2,令f ′(x)>0,解得x >1,故f(x)在区间(1,+∞)上单调递增;令f ′(x)<0,解得x <1,且x ≠0,故f(x)在区间(−∞,0)和区间(0,1]上单调递减; (2)由(1)知g(x)=e x lnx +2e x−1x,定义域为(0,+∞).从而g(x)>1等价于xlnx >x e x −2e ,设ℎ(x )=xlnx (x >0),则ℎ′(x)=lnx +1,ℎ′(1e )=ln 1e +1=0.∴当x ∈(0,1e )时,ℎ′(x)<0,当x ∈(1e ,+∞)时,ℎ′(x)>0. 故ℎ(x )在区间(0,1e )上单调递减,在区间(1e ,+∞)上单调递增,从而ℎ(x )在(0,1e )的最小值为ℎ(1e )=−1e . 设m (x )=xe x −2e (x >0),则m ′(x)=1−x e x,∴当x ∈(0,1)时,m ′(x)>0,当x ∈(1,+∞)时,m ′(x)<0,故m (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,从而m (x )在(0,+∞)的最大值为m (1)=−1e ,综上所述,在区间(0,+∞)上恒有ℎ(x )>m (x )成立,即g (x )>1.点评:本题主要考查了利用导数研究函数的单调性及极值和最值,考查了函数的思想和考生的发散思维能力,属于中档题.利用导数研究函数的单调性,首先求出函数的定义域,忽略定义域是最常见的错误;证明不等式通过构造新函数,研究新函数的单调性,求得其最值是最常用的思想方法,本题解答的难点是(3)中通过构造新函数并求得其极值点,从而判断p 的范围是解题的关键.例4 (2020·全国高三专题练习(理))已知函数()()ln x af x a R x+=∈,()e 1x g x =-. (1)求()f x 的单调区间;(2)若()()g x f x ≥在()0,∞+上恒成立,求a 的取值范围. 思路分析:1)对函数进行求导得21ln '()x af x x--=,再解不等式得到函数的单调区间; (2)将不等式恒成立等价转化为e ln x a x x x ≤--,再构造函数()e ln xh x x x x =--,利用导数研究函数()h x 的最小值. (1)21ln '()x af x x--=(0)x >. 当10e a x -<<时,'()0,()f x f x >单调递增;当1e a x ->时,'()0,()f x f x <单调递减.所以()f x 的单调递增区间为()10,e a-,单调递减区间为()1e +a -∞,(2)由()()g x f x ≥得ln e 1xx ax+-≥也就是e ln x a x x x ≤--,令()e ln xh x x x x =--则1'()e e 1x xh x x x =+--=1(1)(e )xx x+-,由0x >知,10x +>. 设1()e x t x x =-,21'()e 0xt x x=+>,()t x 在()0,∞+单调递增,又1()20,(1)e 102t t =<=->,所以存在01,12x ∈()使得0()0t x =,即0x 01e x =. 当()00,x x ∈时,'()0h x <,()h x 在()00,x 单调递减; 当()0,x x ∈+∞时,'()0h x >,()h x 在()0,x +∞单调递增; 所以0min 0000()()e ln x h x h x x x x ==--=0011x x -+=.所以a 的取值范围是(],1-∞.点评:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.恒成立问题的处理方法:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若f(x)>0就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为f(x)min >0,若f(x)<0恒成立,就转化为f(x)max <0;(3)若f(x)>g(x)恒成立,可转化为f(x)min >g(x)max . 方法三 局部构造 方法导读整体与局部是认识论重要的哲学视角,在研究函数问题要学会从不同视角观察函数结构,如果从整体观察函数结构感觉束手无策或复杂时,可以从观察函数的局部结构入手,可能会柳暗花明。
方法导引例5.已知函数()ln x e f x a x ax x=--+,a R ∈(1)当0a <时,讨论函数()f x 的单调性 (2)当1a =时,()()1xF x f x x e bx x ⎛⎫ ⎪⎝⎭=++-,对任意()0,x ∈+∞,都有()1F x ≥恒成立,求实数b 的取值范围.导引:(1)先求得定义域及函数的导函数,求得函数极值点.再由0a <,可判断导函数的符号,即可判断函数的单调区间.(2)将1a =代入()f x ,再代入()F x 可得解析式.由不等式()1F x ≥恒成立,分离参数后构造函数()ln 1xx g x e x x =--.求其导函数可得()22ln xx e xg x x+'=.再构造函数()2ln x h x x e x =+,求得()()212x h x x x e x'=+⋅+.可判断出()h x 有唯一的零点0x ,即()g x 在0x x =处取得最小值.进而结合不等式即可求得b 的取值范围.解析(1)定义域为()0,∞+由题知()ln xe f x a x ax x=--+则()()()221xx x ax e x a xe e f x a x x x-⋅--'=--+=, 令()0f x '=解得1x = 当0a <,0x ax e -<,∴当1x >,()0f x '<﹔当01x <<,()0f x '>; ∴函数()f x 在()0,1单调递增,在()1,+∞单调递减(2)将1a =代入()f x ,再代入()()1xF x f x x e bx x ⎛⎫ ⎪⎝⎭=++-中可得 ()()1x F x xe lnx b x =-+-由()1F x ≥恒成立可得()11xxe lnx b x -+≥-恒成立,即ln 11xx b e x x-≤--恒成立, 设()ln 1xx g x e x x =--,则()22ln x x e xg x x +'=, ()2ln x h x x e x =+,()()212x h x x x e x'=+⋅+,∴当0x >时,()0h x '>,()h x ∴在()0,∞+上单调递增,且有()10h e =>,1ln 2024h ⎛⎫=-< ⎪⎝⎭,∴函数()h x 有唯一的零点0x ,且0112x << , 当()00,x x ∈,()0h x <,()0g x '<,()g x 单调递减, 当()0,x x ∈+∞,()0h x >,()0g x '>,()g x 单调递增,()0g x ∴是()g x 在定义域内的最小值0000ln 11x x b e x x ∴-≤-- , ()00h x =得0000ln xx x e x =-,0112x <<,(*) 令()xk x xe =,112x <<, 方程(*)等价为()()ln k x k x =-,()112x k x <<,()0,x ∈+∞单调递增, ()()ln k x k x ∴=-等价为ln x x =-,112x <<,()ln m x x x =+,112x <<,易知()m x 单调递增11ln 2022m ⎛⎫=-< ⎪⎝⎭,()110m =>,0x ∴是()m x 的唯一零点,00ln x x ∴=-,001xe x =, ()g x ∴的最小值()00000ln 11xx g x e x x =--=, 11b ∴-≤恒成立 b ∴的范围是(],2-∞例6.已知函数()ln f x a x x =-,且函数()f x 在1x =处取到极值. (1)求曲线()y f x =在(1,(1))f 处的切线方程;(2)若函数2()g()(01)()x m x m f x x-=<<+,且函数()g x 有3个极值点1x ,2x ,3x 123()x x x <<,证明:131ln 22x x +⎛⎫>- ⎪⎝⎭.导引:(1)求出原函数的导函数,由()01f '=求解a 值,则曲线()y f x =在(1,(1))f 处的切线方程可求;(2)求出函数()g x 的解析式,由2()211()1m x m nx x g x n x⎛⎫-+- ⎪⎝⎭'=,根据已知()0g x '=有三个解,2ln 10x x m +-=存在两个不同于m 的零点, 设()2ln 1h x x xm=+-,求出m 取值范围,结合()h x 的函数特征,可判断213,,x m x x =是函数()h x 的两个零点,构造函数13()2ln ,()()x x x x x x ϕϕϕ=-=,研究()x ϕ的单调性,把证明131ln 22x x +⎛⎫>-⎪⎝⎭转化为证明()11)x x ϕϕ>-即可. 解析:(1)()ln f x a x x =-,()1af x x'=- , 函数()f x 在1x =处取到极值,(1)10f a '∴=-=,即1a =. 则()ln f x x x =-,(1)1f =-,∴曲线()y f x =在(1,(1))f 处的切线方程为1y =-;(2)222()()()()(01)()11x m x m x m g x m f x x nx x x nx---===<<++-, 函数的定义域为(0,)+∞且1x ≠,2221()2112()ln ()()11m x m nx x m x x m x x g x n x n x⎛⎫-+----⋅ ⎪⎝⎭'∴==令()2ln 1h x x x m =+-,22()x m h x x -'∴=, ()h x 在0,2m ⎛⎫ ⎪⎝⎭上单调递减,在,2m ⎛⎫+∞ ⎪⎝⎭上单调递增;()2h m是()h x 的最小值;()g x 有三个极值点123x x x <<,2ln 1022m m h ⎛⎫∴=+< ⎪⎝⎭,得m <.m ∴的取值范围为⎛ ⎝,当0m <时,()2ln 0h m m =<,(1)10h m =-<, 2x m ∴=;即1x ,3x 是函数()h x 的两个零点.112221n 1021n 10m x x m x x ⎧+-=⎪⎪∴⎨⎪+-=⎪⎩,消去m 得1113332ln 2ln x x x x x x -=-; 令()2ln x x x x ϕ=-,()2ln 1x x ϕ'=+,()x ϕ'的零点为x =13x x <<. ()x ϕ∴在⎛ ⎝上递减,在⎫+∞⎪⎭上递增.要证明131ln 22x x +⎛⎫>- ⎪⎝⎭,即证13x x +>等价于证明31x x >,即()31x x ϕϕ⎫-⎪⎭>. ()()13x x ϕϕ=,∴即证()11x x ϕϕ⎫>-⎪⎭.构造函数()()F x x x ϕϕ⎫=--⎪⎭,则0F =; ∴只要证明在⎛ ⎝上()F x 单调递减,函数()x ϕ在⎛ ⎝单调递减; xx -减小,x ϕ⎫-⎪⎭增大,x ϕ⎫-⎪⎭减小,x ϕ⎫∴-⎪⎭在⎛ ⎝上是减函数.()x x ϕϕ⎫∴-⎪⎭在⎛ ⎝上是减函数.∴当0a <<时,13x x +>. 即131ln 22x x +⎛⎫>-⎪⎝⎭. 方法四 二次求导研究函数的性质方法导读:在高考较难的题目中,仅仅通过一次求导我们不容易得出原函数的单调性,我们不妨对导函数进行再次求导,通过二次求导函数正负的判断去确定导函数的单调性,进而确定导函数值的正负好去判断原函数的单调性。