四则运算规律及其简便运算
- 格式:docx
- 大小:18.57 KB
- 文档页数:4
四则混合运算及简便计算四则混合运算的顺序和简便计算我们如何进行整数、小数、分数的四则混合运算呢?以下是运算定律:1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。
2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。
例如:75+124+225=124+75+225=4243、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
例如:25×37×466=37×25×466=5、乘法分配律:两个数的和(差)与一个数相乘,可以把两个加(减)数分别与这个数相乘再把两个积相加(减),即(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】。
例如:(40+4)×25=40×25+4×25=10006、减法的性质:一个数里连续减去两(几)个数,等于这个数连续减去这两(几)个数的和,即a-b-c=a-(b+c)。
【a-b-c-……-n=a-(b+c+……+n)】例如:875-324-376=875-(324+376)=1757、除法性质基本性质:一个数连续除以几个数,可以除以后几个数的积,也可以先除以第一个除数,再除以第二个除数。
a÷b÷c=a÷(b×c)=a÷c÷b。
例如:2500÷4÷256=2500÷(4×256)=2.xxxxxxxx综合练:2×6.6+2.5×611-6-14.6+3+6+5.43×(-÷) = 2583.xxxxxxxx4以上为四则混合运算的顺序和简便计算。
分数的四则运算—计算题专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。
2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:混合计算,先算乘除法再算加减;如果有括号,先算括号里面的(先算小括号,再算中括号)同一级运算,一般从左往右计算。
如果符合运算定律,可以进行简算。
练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________ ② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。
分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。
第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。
四则混合运算及简便计算
在进行四则混合运算时,我们需要遵循以下优先级规则:
1.首先计算括号中的运算。
2.其次计算乘法和除法运算,按照从左到右的顺序进行。
3.最后计算加法和减法运算,按照从左到右的顺序进行。
通过以上规则,我们可以简便地计算四则混合运算。
下面是一个例子:(4+3)×2-6÷3
首先计算括号中的运算:4+3=7
然后进行乘法和除法运算:7×2=14,6÷3=2
最后进行加法和减法运算:14-2=12
因此,(4+3)×2-6÷3=12
除了以上的优先级规则外,我们还需要注意一些特殊情况的处理。
例如,在进行除法运算时,如果除数为0,则结果为无穷大或不存在。
另外,如果算式中存在多个括号,则需要按照先内后外的顺序进行计算。
在实际应用中,四则混合运算可以帮助我们解决一些实际问题。
例如,在商业运算中,我们常常需要进行价格计算、税费计算等。
在这些情况下,我们可以使用四则混合运算来快速计算结果。
总结起来,四则混合运算及简便计算是数学中一个非常重要的概念。
通过遵循优先级规则,可以简便地计算混合运算的结果。
掌握四则混合运
算的方法和技巧,有助于我们在生活中快速解决一些实际问题。
数学四则运算简便计算首先,让我们从加法和减法开始。
1.加法:-有时候,我们可以利用数字的相等性质进行简化。
例如,如果我们需要计算20+31+15+14,我们可以将其中的两个数字相加得到35,然后再加上29和15,得到总和为80。
-在列竖式相加时,我们可以从左到右进行逐位相加,这样可以更容易进行多位数计算。
2.减法:-同样,列竖式相减时,我们可以从左到右进行逐位相减,这样可以更容易进行多位数计算。
-当遇到较大的减法问题时,可以使用借位法。
例如,我们要计算1000-643、我们可以从个位数开始逐位相减(0-3=7,4-4=0,1-6=5),所以答案是357接下来,让我们看看乘法和除法的简便方法。
3.乘法:-利用基本乘法表是解决乘法问题的关键。
熟记基本乘法表(1到10)可以快速地完成小规模乘法计算。
例如,当我们要计算7x8时,可以直接查表,得到结果是56-当遇到较大的乘法问题时,可以使用分配律和结合律来简化计算。
例如,要计算30x8,我们可以将其拆分为(3x10)x8,然后再计算3x10的结果是30,再乘以8,得到240。
4.除法:-利用乘法表反推除法是解决除法问题的关键。
例如,当我们要计算56÷8时,我们可以在乘法表中寻找到一个结果为56的数,然后再找出它与8相乘的倍数。
在这个例子中,我们可以发现7x8=56,所以答案是7 -当遇到不整除的除法问题时,我们可以使用长除法。
例如,要计算237÷6,我们可以写下长除法算式,逐步进行除法计算,直到没有余数为止。
除了这些基本方法外,还可以使用一些近似值和估算来简化计算。
-对于非精确的除法计算,我们可以使用近似值进行估算。
例如,当我们要计算23÷7时,我们可以大致估算为20÷7,得到2.85、这样我们可以在计算中使用这个近似值,而不需要进行更复杂的计算。
-进行估算时,我们可以使用舍入法来改变数字的精度。
例如,如果我们要计算753+385,我们可以将385近似为400,这样计算起来会更容易。
四则运算运算律加法运算律应用:两个数相加,交换……;三个数相加,可以先把前两数相加,再和第三个数……复习加法运算律,如下: 54+87+13 39+144+61延伸:减法:a-b-c=a-c-b=a-(b+c) 除法:a ÷b ÷c=a ÷c ÷b=a ÷(b ×c)酌情巧用分配律分配律是指m a b ma mb ()+=+,它可以推广到多个数的情况,例如,m a b c d ma mb mc md ()+++=+++,在进行有理数的乘除运算时,适当运用分配律改变运算顺序,可以大大简化计算过程。
下面举例说明。
一、直接运用分配律 二、逆向运用分配律例1. 计算:36795671834⨯--+() 例2. 计算:324123241332456...⨯+⨯-⨯ 解:原式=⨯-⨯-⨯+⨯36793656367183634 解:原式=⨯+-324121356.()=--+=2830142711=⨯-=32456560.()三、变形后顺向运用分配律 例3. 计算:()()()-⨯-+⨯-351224711189 解:原式=--⨯-++⨯-()()()()351224711189=-⨯-+-⨯-+⨯-+⨯-=+--=()()()()()()3245122479111897210635121312四、变形后逆向运用分配律例4. 计算:2277931383523÷+⨯--() 解:原式=⨯+⨯--2279710383523()=⨯+⨯--=⨯--=-23172387232317871113()()五、综合运用分配律例5. 计算:[()()]()(.)(.)(.)(.)---+⨯-+-⨯-+-⨯-1316291083407540945913407 解:原式=-⨯---⨯-+⨯-+-⨯-+-()()()()()(.)[(.)(.)]131081610829108340954094591 =--+=36182434093403例:24×2425怎样计算简便?运用什么运算律?方法一:原式=(25-1)×2425 方法二:原式=24×(1-125 )=25×2425 -1×2425 =24×1-24×125=24-2425 =24-2425=23125 =23125练习:用分配律计算下面各题:()()()()()11223453023812534125181253531428415168431383522718722151212131624911123524453()()()()()()().-+⨯⨯+⨯+-⨯-⨯-+⨯-⨯-+⨯-⨯-+-⨯+⨯+⨯答案:(1)19;(2)125;(3)10612;(4)-23;(5)-204乘法交换律和结合律练习(25×125)×(8×4)(80+8)×25 35×37+65×37 135×6+65×6 (43+25)×40 8×(125+7) 18×82+18×47+18×712 5×(40-4)16×256-16×56 125×(80+8) 69×45+31×45 38×29+38123×99 +123 125 ×7+125 79×99+79 35×102 47×10125×44 45×201-45 98×37 38×101-38 87×199 25×199+25 25×199 99×201-99 102×83 125×88 124×25-25×24 (80+8)×25 35×37+65×37 135×6+65×6 (43+25)×40 8×(125+7)18×82+18×47+18×7 14×24+26×24 30×2+25×2 (30×25)×4025×4=4×25=125×8=8×125=20×5=2×50=5×12=12×5=4×50=50×4=(15×25)×415×(25×4)(6×12)×56×(12×5)(13×5)×2013×(5×20) 299 ×120+120 38×25×48×17×1254×8×25×12535×2×5=35×(2×__)125×5×8=(__×__)×5 23×3= 70×5= 13×100=25×4= 125×8= 125×16=16×25=25×6×4=25×12=(8×125)×(4×25)8×4×125×25125×8×8(25×4)×6125×32= 125×8×4=64×125=42×125×8=27×4×5= 8×(7×25)= 195×25×4= 110×2+90×2=2×125×8×5 125×489×4 20×17×2×5×2×2 (110+90)×212×10538×62+38×38 75×14—70×14 101×38 12×98 55×99+5555×99 12×29+12 58×199+58 42×79+42 52×8969×101—69 55×21—55 125×(80+8) 125×(80×8) 125×32×2599×99+99 38×7+31×14 25×46+50×27 79×25+22×25—25乘法分配律练习题2一、选择。
四则运算4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 07、0÷0得不到固定的商;5÷0得不到商.运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b)+c=a+(b+c) 加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用。
如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c乘法分配律的应用:①类型一:(a+b)×c (a-b)×c= a×c+b×c = a×c-b×c②类型二:a×c+b×c a×c-b×c=(a+b)×c =(a-b)×c③类型三:a×99+a a×b-a= a×(99+1) = a×(b-1)④类型四:a×99 a×102= a×(100-1) = a×(100+2)= a×100-a×1 = a×100+a×2三、简便计算1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千、的结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。
四则混合运算及简便运算知识点回顾A 、一般情况下,四则运算的计算顺序是:有括号时,先算 ,没有括号时,先算 ,再算 ,只有同一级运算时,从左往右 。
B 、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律: a+b+c=a+(b+c ) 乘法交换律:a ×b=b ×a 乘法结合律:a ×b ×c=a ×(b ×c) 乘法分配律:(a+b)×c=a ×c+b ×cC 、注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果应该相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
D 、分数乘除法计算题中,如果出现了带分数,一定要将带分数化为假分数,再计算。
一、当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b; a×b×c=a×c×b, a÷b÷c=a÷c÷b , a×b÷c=a÷c×b, a÷b×c=a×c÷b,)根据:加法交换律和乘法交换率12.06+5.07+2.94 30.34+9.76-10.34 83×3÷83×325×7×4 34÷4÷1.7 1.25÷32×0.8102×7.3÷5.1 1773+174-773 195-137-95,二 A 、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
四则混合运算中的简便计算四则混合运算是指在运算过程中包含有加法、减法、乘法和除法的运算。
在进行四则混合运算时,如果我们掌握一些简便计算的技巧,可以在短时间内快速计算出结果。
本文将针对四则混合运算中的各种简便计算进行详细介绍,希望能够给读者带来帮助。
乘法是四则混合运算中最常见的运算之一、当我们需要计算一个数与10、100、1000等整数的乘积时,可以通过简单的移位操作来实现。
具体方法如下:(a)乘以10:将这个数末尾加一个0即可;例如:56×10=560(b)乘以100:将这个数末尾加两个0;(c)乘以1000:将这个数末尾加三个0;通过这种简单的移位规律,我们可以快速计算出乘以10、100、1000等整数的结果,提高计算效率。
除法也是四则混合运算中常见的运算之一、当我们需要计算一个数除以10、100、1000等整数时,可以通过简单的移位操作来实现。
具体方法如下:(a)除以10:将这个数向右移一位;例如:560÷10=56(b)除以100:将这个数向右移两位;(c)除以1000:将这个数向右移三位;通过这种简单的移位规律,我们可以快速计算出除以10、100、1000等整数的结果,提高计算效率。
3.近似计算在进行四则混合运算时,我们有时候不需要求得精确的结果,而只需要得到一个接近的数值即可。
这时可以利用近似计算的方法来快速求解。
以下是一些常见的近似计算方法:(a)精确到个位数的加减法近似:对于两个整数相加或相减,如果其中一个数的个位数大于5,我们可以将它近似为下一个整数,如果个位数小于5,则近似为当前整数;例如:39+67≈39+70=109(b)精确到十位数的乘法近似:当我们需要计算两个整数的乘积时,可以先将这两个数进行倍数的变化,然后再进行乘法运算。
具体方法如下:例如:35×7≈40×7=280(c)精确到个位数的乘法近似:如果两个数字相乘,其中一个数的个位数大于5,那么结果就近似为一些整十数和5的乘积,如果个位数小于5,则近似为一些整十数和0的乘积;例如:48×6≈40×6=240通过近似计算的方法,我们可以在短时间内得到一个近似的结果,从而加快计算速度。
数学四年级下《四则运算的顺序和简便算法》知识点总结归纳
一、四则运算的顺序
1.定义:四则运算的顺序是指在进行加、减、乘、除多种运算时,先进行乘除运
算,后进行加减运算的规则。
2.规则:先乘除后加减,按照运算符的优先级进行计算。
二、简便算法
1.定义:简便算法是指在计算过程中,采用一些技巧和方法,使计算变得简单、
快速的方法。
2.常用方法:
•提取公因数:将相同的因数提取出来,简化计算。
•乘法分配律:a × (b + c) = a × b + a × c。
•转化法:将复杂的问题转化为简单的问题,便于计算。
三、实际应用
1.购物计算:在购物时,使用四则运算的顺序和简便算法计算找零、打折等。
2.时间计算:在计算时间差、工作速率等问题时,运用四则运算和简便算法。
3.空间距离:在地理、地图等空间问题中,运用四则运算和简便算法计算距离、
速度等。
四、注意事项
1.注意运算顺序:在进行四则运算时,一定要遵循先乘除后加减的顺序,以免出
现错误。
2.灵活运用简便算法:在计算时,要善于发现和运用简便算法,简化计算过程。
3.注意实际应用:学习四则运算和简便算法是为了解决实际问题,要注重理论与
实际的结合。
四则运算知识点总结四则运算是数学中最基本的运算,包括加法、减法、乘法和除法。
四则运算的知识点主要包括四则运算的定义、性质及运算规则等。
下面是对四则运算知识点的详细总结:一、四则运算的定义1.加法:将两个或多个数相加的运算,运算结果称为和。
加法的符号为“+”,用于表示两个数相加的运算。
2.减法:减法是将一个数减去另一个数的运算,运算结果称为差。
减法的符号为“-”,用于表示一个数减去另一个数的运算。
3.乘法:将两个或多个数相乘的运算,运算结果称为积。
乘法的符号为“×”,用于表示两个数相乘的运算。
4.除法:将一个数除以另一个数的运算,运算结果称为商。
除法的符号为“÷”,用于表示一个数除以另一个数的运算。
二、四则运算的性质1.加法的性质:交换律和结合律。
即对于任意的实数a、b、c,有a+b=b+a和(a+b)+c=a+(b+c)。
2.减法的性质:减法没有交换律和结合律。
即对于任意的实数a和b,有a-b≠b-a和(a-b)-c≠a-(b-c)。
3.乘法的性质:交换律和结合律。
即对于任意的实数a、b、c,有a×b=b×a和(a×b)×c=a×(b×c)。
4.除法的性质:除法没有交换律和结合律。
即对于任意的非零实数a和b,有a÷b≠b÷a和(a÷b)÷c≠a÷(b÷c)。
三、四则运算的运算规则1.顺序规则:多个运算符同时出现时,按照从左到右的顺序进行运算。
2.级联规则:如果一个算式中不仅有加法和减法,还有乘法和除法,则先进行乘法和除法的运算,再进行加法和减法的运算。
3.括号规则:括号内的算式先进行运算。
四、四则运算的简便计算方法1.加法的简便计算方法:先列竖式,逐位相加,进位继续加。
2.减法的简便计算方法:先列竖式,逐位相减,退位借。
3.乘法的简便计算方法:竖式乘法,逐位相乘,再相加。
四则运算运算定律与简便计算复习教案第一章:四则运算回顾1.1 加法运算:两个数相加得到的结果称为和。
1.2 减法运算:一个数减去另一个数得到的结果称为差。
1.3 乘法运算:两个数相乘得到的结果称为积。
1.4 除法运算:一个数除以另一个数得到的结果称为商。
第二章:运算定律介绍2.1 加法结合律:三个或更多数相加,可以任意改变它们的组合方式,结果不变。
2.2 减法结合律:三个或更多数相减,可以任意改变它们的组合方式,结果不变。
2.3 乘法结合律:三个或更多数相乘,可以任意改变它们的组合方式,结果不变。
2.4 除法结合律:三个或更多数相除,可以任意改变它们的组合方式,结果不变。
第三章:运算定律的应用3.1 加法运算定律的应用:通过改变加数的组合方式,简化计算过程。
3.2 减法运算定律的应用:通过改变减数的组合方式,简化计算过程。
3.3 乘法运算定律的应用:通过改变乘数的组合方式,简化计算过程。
3.4 除法运算定律的应用:通过改变除数的组合方式,简化计算过程。
第四章:简便计算方法4.1 分配律:将一个数与两个数的和相乘,等于将这个数分别与这两个数相乘,将结果相加。
4.2 结合律:在进行乘法或除法运算时,可以任意改变计算的顺序。
4.3 分解法:将一个数分解成两个或多个数的和或差,简化计算过程。
4.4 交换律:在进行加法或乘法运算时,可以任意改变数的顺序。
第五章:综合练习5.1 选择合适的运算定律和简便计算方法,解决实际问题。
5.2 完成一些有关四则运算的练习题,巩固所学的知识。
5.3 进行小组讨论,互相交流解题方法和经验。
第六章:四则运算的顺序6.1 运算顺序规则:在没有括号的算式中,先进行乘除运算,再进行加减运算。
6.2 运算顺序的应用:解决含有多个运算的算式,按照正确的顺序进行计算。
第七章:括号的使用7.1 括号的作用:改变运算顺序,优先计算括号内的运算。
7.2 括号的运用规则:括号前面是加减号时,括号内的运算符号不变;括号前面是乘除号时,括号内的运算符号变相反数。
四则运算简便计算教学四则运算是数学中最基础的运算,包括加法、减法、乘法和除法。
本文将向你介绍一些简便计算四则运算的方法和技巧。
一、加法运算:1.对于两个整数的加法运算,可以从个位数开始逐位相加,并将进位保留下来,最后将进位加到最高位上。
例如,计算1234+5678=6912时,可以逐位相加,得到个位数为4,十位数为3(1+7+进位1),百位数为9(2+6+进位0),千位数为6(1+5+进位0)。
2.如果在计算加法时遇到进位比较困难,你可以考虑将其中一个数拆分为更容易计算的数。
例如,计算162+37时,你可以将37拆分为30+7,然后分别计算162+30=192和192+7=199,最终得到162+37=199二、减法运算:1.对于两个整数的减法运算,可以从个位数开始逐位相减,并将借位保留下来,最后将借位减去相应的位数。
例如,计算758-241=517时,可以逐位相减,得到个位数为7,十位数为1(8-4-借位),百位数为3(5-4-借位),最终得到758-241=5172.如果在计算减法时遇到借位比较困难,你可以考虑将其中一个数拆分为更容易计算的数。
例如,计算875-128时,你可以将128拆分为100+28,然后分别计算875-100=775和775-28=747,最终得到875-128=747三、乘法运算:1.对于两个整数的乘法运算,可以使用竖式乘法法则进行计算。
2.如果其中一个数比较大且末尾有很多个0,你可以只保留其非零部分进行计算,最后再将0补上。
四、除法运算:1.对于整数的除法运算,可以使用长除法法则进行计算。
例如,计算1296÷18时,首先将18除以1,得到1,然后将1乘以18,得到18,再将18减去18,得到0,这时商为1,余数为0,所以1296÷18=722.如果被除数和除数都是整数,并且除不尽,你可以考虑将除数扩大到使其能够整除。
例如,计算240÷15时,你可以将15扩大为150,然后计算240÷150=1余90,最后将余数除以15,得到240÷15=16余6以上是一些简便计算四则运算的方法和技巧。
四则混合运算及简便运算知识点回顾A 、一般情况下,四则运算的计算顺序是:有括号时,先算 ,没有括号时,先算 ,再算 ,只有同一级运算时,从左往右 。
B 、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律: a+b+c=a+(b+c ) 乘法交换律:a ×b=b ×a 乘法结合律:a ×b ×c=a ×(b ×c) 乘法分配律:(a+b)×c=a ×c+b ×cC 、注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果应该相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
D 、分数乘除法计算题中,如果出现了带分数,一定要将带分数化为假分数,再计算。
一、当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b; a×b×c=a×c×b, a÷b÷c=a÷c÷b , a×b÷c=a÷c×b, a÷b×c=a×c÷b,)根据:加法交换律和乘法交换率12.06+5.07+2.94 30.34+9.76-10.34 83×3÷83×325×7×4 34÷4÷1.7 1.25÷32×0.8102×7.3÷5.1 1773+174-773 195-137-95,二 A 、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
一、整数四则运算定律(1) 加法交换律:a b b a +=+(2) 加法结合律:()()a b c a b c ++=++ (3) 乘法交换律:a b b a ⨯=⨯(4) 乘法结合律:()()a b c a b c ⨯⨯=⨯⨯(5) 乘法分配律:()a b c a b a c ⨯+=⨯+⨯;()b c a b a c a +⨯=⨯+⨯ (6) 减法的性质:()a b c a b c --=-+ (7) 除法的性质:()a b c a b c ÷⨯=÷÷;(8) 除法的“左”分配律:()a b c a c b c +÷=÷+÷;()a b c a c b c -÷=÷-÷,这里尤其要注意,除法是没有“右”分配律的,即()c a b c a c b ÷+=÷+÷是不成立的! 备注:上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用.二、 加减法中的速算与巧算速算巧算的核心思想和本质:凑整。
常用的思想方法总结如下:(1) 分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.(2) 加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.三、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=理论依据:乘法交换律:a ×b=b ×a 乘法结合律:(a ×b) ×c=a ×(b ×c) 乘法分配律:(a+b) ×c=a ×c+b ×c知识点拨第一讲 整数四则混合运算的简便运算积不变规律:a ×b=(a ×c) ×(b ÷c)=(a ÷c) ×(b ×c)四、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.一、加法【例1】:278+463+22+37举一反三:732+580+268二、减法【例2】:2871-299例题精讲举一反三:(1)157-99 (2)363-199 (3)968-599三、连减(5种)【例3】:528-53-47举一反三:(1)489-134-76 (2)470-254-46 (3)545-167-133【例4】:496-(296+144)举一反三:(1)675-(175+89)(2)466-(66+125)(3)354-(154+77)【例5】:496-(144+296)举一反三:(1)675-(89+175)(2)466-(125+66)(3)354-(77+154)【例6】:528-72-28举一反三:(1)489-77-389 (2)465-267-65 (3)545-167-145【例7】:824-224-176-124举一反三:(1)643-164-133-243 (2)487-187-139-61 (3)545-167-145四、乘法分配律(8种)【例8】:计算:125×(80+32)(24+40)×25举一反三:(1)125×(64+80)(2)(80+32)×125 (3)(16+32)×25【例9】:(1)125×(100-8)(2)(125-40)×8举一反三:(1)125×(100-48)(2)(100-16)×25【例10】:(1)117×56+117×44举一反三:(1)269×26+74×269 (2)521×65+35×521 (3)126×72+126×12+126×16【例11】:125×69-125×61举一反三:(1)25×127-25×119 (2)365×251-365×151(3)156×59-156×27-156×22 (4)137×97-44×137-137×43【例12】:45×102举一反三:(1)25×44 (2)125×168 (3)125×18【例13】:36×99举一反三:(1)45×98 (2)125×92 (3)35×99【例14】:(1)81+9×391 (2)9+9×999 (3)99+9×99【例15】:(1)9×107-63 (2)6×108-48 (3)134×101-134五、连除(2种)【例16】:1250÷25÷5举一反三:(1)2000÷125÷8 (2)1280÷16÷8 (3)1300÷5÷20(4)840÷5÷8 (5)1700÷25÷4 (6)4800÷50÷2【例17】:630÷(63×5)举一反三:(1)780÷(78×2)(2)1250÷(125×5)(3)6300÷(63×5)六、四则混合运算(1)(24+24)÷24×24 (2)24+24÷24×24 (3)16+4-16+4 (4)(16+4)-(16+4)(5)25×6÷25×6 (6)120-(72+48)÷24(7)45+55÷5-20 (8)12×(280-80÷4)(9)218+324÷18×5(10)(488+32×5)÷12 (11)4500÷(170-60×2)(12)(28+41)÷(92÷4)(13)80+320÷4-30 (14)18×(420-320÷20)(15)48-2×8÷8×2 (16)480÷(144-960÷8)(17)120+480÷(43-28)(18)(273+562)÷5-96 (19)4500÷(150-40×3)(20)812÷(532-36×14)(21)(12+12)÷12×12(22)625÷(54-522÷18)(23)17+13-17+13 (24)60-15×7÷15×7 (25)12×(289-84÷4)(26)218+702÷18×5 (27)45000÷(150-40×3)(28)(77+38)÷(92÷4)(29)58-28×2+40 (30)56×4-175÷5(31)(73-59)×(6+13)(32)(85-40)÷(15÷3)(33)71-17×7÷17×7课堂检测:(1)43×202 (2) 59×299 (3) 134×51-51×34 (4) 7200÷36 (5)68×32—784÷56 (6)3000÷125÷8 (7)98×35 (8) 960×46÷48 (9)480×46÷48 (10)302×99+302 (11)756+483-556(12)230×54+540×77 (13)887×25-87×25 (14)(825+25×8)×4(15)325-225÷5+145 (16)35×102 (17)498+(201-154)(18)125×89×8 (19)428×78+572×78 (20)8800÷(25×88)(21)3600÷50÷2(22)25×(20+4)容易出错类型(共五种类型)600-60÷15 20×4÷20×4736-35×20 25×4÷25×498-18×5+25 56×8÷56×8280-80÷ 4 12×6÷12×6175-75÷25 25×8÷25×880-20×2+60 36×9÷36×936-36÷6-6 25×8÷(25×8)。
小学二年级数学学习资料
小学数学四则运算的基础知识及简便方法
1
运算定律
✍加法交换律
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
✍加法结合律
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
✍乘法交换律
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
✍乘法结合律
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即
(a×b)×c=a×(b×c)。
✍乘法分配律。
四则运算规律及其简便运算一、四则运算的运算顺序1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
2、在没有括号的算式里,同时有加、减法和乘、除法,要先算乘除法,再算加减法。
3、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
二、关于“0”的运算:1、“0”不能做除数;2、一个娄加上0或者减去0,最终还等于原数3、被减数等于减数,差得04、0乘任何数或0除以任何数,都得0三、运算定律与简便运算(一)加法运算定律:1、两个加数交换位置,和不变这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加;和不变,这叫做加法结合律。
字母公式:(a+b)+c=a+(b+c)(二)乘法运算定律1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a × b=b × a2、先乘前两个数,或者先乘后两个数,积不变,这叫乘法结合律。
字母公式:(a ×b)× c=a ×(b ×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这员乘法分配律。
字母公式:(a+b)⨯c=a⨯c+b⨯c 或a⨯(b+c)=a⨯b+a⨯c(加号也可以换成减号)(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a-c-b (四)除法简便运算1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b x c)2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b能简便运算的要简算,不能简算的按四则运算来计算。
第一讲 整数四则混合运算的简便运算知识点拨1、整数四则运算定律(1) 加法交换律:(2) 加法结合律:(3) 乘法交换律:(4) 乘法结合律:(5) 乘法分配律:;(6) 减法的性质:(7) 除法的性质:;(8) 除法的“左”分配律:;,这里尤其要注意,除法是没有“右”分配律的,即是不成立的!备注:上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用.2、加减法中的速算与巧算速算巧算的核心思想和本质:凑整。
常用的思想方法总结如下:(1) 分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.(2) 加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.三、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:,,理论依据:乘法交换律:a×b=b×a乘法结合律:(a×b) ×c=a×(b×c)乘法分配律:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)四、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:,⑵在连除时,可以交换除数的位置,商不变.即:⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即 ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即⑸两个数之积除以两个数之积,可以分别相除后再相乘.即上面的三个性质都可以推广到多个数的情形.例题精讲一、加法【例1】:278+463+22+37举一反三:732+580+268二、减法【例2】:2871-299举一反三:(1)157-99 (2)363-199 (3)968-599三、连减(5种)【例3】:528-53-47举一反三:(1)489-134-76 (2)470-254-46 (3)545-167-133 【例4】:496-(296+144)举一反三:(1)675-(175+89)(2)466-(66+125)(3)354-(154+77)【例5】:496-(144+296)举一反三:(1)675-(89+175)(2)466-(125+66)(3)354-(77+154)【例6】:528-72-28举一反三:(1)489-77-389 (2)465-267-65 (3)545-167-145【例7】:824-224-176-124举一反三:(1)643-164-133-243 (2)487-187-139-61 (3)545-167-145四、乘法分配律(8种)【例8】:计算:125×(80+32)(24+40)×25举一反三:(1)125×(64+80)(2)(80+32)×125 (3)(16+32)×25【例9】:(1)125×(100-8)(2)(125-40)×8举一反三:(1)125×(100-48)(2)(100-16)×25【例10】:(1)117×56+117×44举一反三:(1)269×26+74×269 (2)521×65+35×521 (3)126×72+126×12+126×16【例11】:125×69-125×61举一反三:(1)25×127-25×119 (2)365×251-365×151(3)156×59-156×27-156×22 (4)137×97-44×137-137×43【例12】:45×102举一反三:(1)25×44 (2)125×168 (3)125×18【例13】:36×99举一反三:(1)45×98 (2)125×92 (3)35×99【例14】:(1)81+9×391 (2)9+9×999 (3)99+9×99【例15】:(1)9×107-63 (2)6×108-48 (3)134×101-134五、连除(2种)【例16】:1250÷25÷5举一反三:(1)2000÷125÷8 (2)1280÷16÷8 (3)1300÷5÷20(4)840÷5÷8 (5)1700÷25÷4 (6)4800÷50÷2【例17】:630÷(63×5)举一反三:(1)780÷(78×2)(2)1250÷(125×5)(3)6300÷(63×5)六、四则混合运算(1)(24+24)÷24×24 (2)24+24÷24×24 (3)16+4-16+4(4)(16+4)-(16+4)(5)25×6÷25×6 (6)120-(72+48)÷24(7)45+55÷5-20 (8)12×(280-80÷4)(9)218+324÷18×5(10)(488+32×5)÷12 (11)4500÷(170-60×2)(12)(28+41)÷(92÷4)(13)80+320÷4-30 (14)18×(420-320÷20)(15)48-2×8÷8×2(16)480÷(144-960÷8)(17)120+480÷(43-28)(18)(273+562)÷5-96 (19)4500÷(150-40×3)(20)812÷(532-36×14)(21)(12+12)÷12×12(22)625÷(54-522÷18)(23)17+13-17+13 (24)60-15×7÷15×7(25)12×(289-84÷4)(26)218+702÷18×5 (27)45000÷(150-40×3)(28)(77+38)÷(92÷4)(29)58-28×2+40 (30)56×4-175÷5(31)(73-59)×(6+13)(32)(85-40)÷(15÷3)(33)71-17×7÷17×7课堂检测:(1)43×202 (2)59×299 (3) 134×51-51×34 (4)7200÷36(5)68×32—784÷56 (6)3000÷125÷8 (7)98×35 (8) 960×46÷48(9)480×46÷48 (10)302×99+302 (11)756+483-556(12)230×54+540×77 (13)887×25-87×25 (14)(825+25×8)×4(15)325-225÷5+145 (16)35×102 (17)498+(201-154)(18)125×89×8(19)428×78+572×78 (20)8800÷(25×88)(21)3600÷50÷2(22)25×(20+4)容易出错类型(共五种类型)600-60÷15 20×4÷20×4736-35×20 25×4÷25×498-18×5+25 56×8÷56×8280-80÷ 4 12×6÷12×6175-75÷25 25×8÷25×880-20×2+60 36×9÷36×936-36÷6-6 25×8÷(25×8)。
四则运算规律及其简便运算
四则运算规律及其简便运算
一、四则运算的运算顺序
1、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
2、在没有括号的算式里,同时有加、减法和乘、除法,要先算乘除法,再算加减法。
3、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
二、关于“0”的运算:
1、“0”不能做除数;
2、一个娄加上0或者减去0,最终还等于原数
3、被减数等于减数,差得0
4、0乘任何数或0除以任何数,都得0
三、运算定律与简便运算
(一)加法运算定律:
1、两个加数交换位置,和不变这叫做加法交换律。
字母公式:a+b=b+a
2、先把前两个数相加,或者先把后两个数相加;和不变,这叫做加法结合律。
字母公式:(a+b)+c=a+(b+c)
(二)乘法运算定律
1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:
a x b=
b x a
2、先乘前两个数,或者先乘后两个数,积不变,这叫乘法结合律。
字母公式:(a x b)x c=a x(b x c)
3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这员乘法分配律。
字母公式:(a+b) x c=a x c+b x c 或a x (b+c)=a x b+a x c
拓展公式:(a-b)x c=a x c- b x c 或a x(b-c)=a x b-a x c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a-c-b
(四)除法简便运算
1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b x c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b
类型一:利用加法交换律、结合律,观察数的末位特征,将数凑成整数进行简算。
如:123+45+55 74+86+26+14 163+78+22+37
类型二:算式中的大部分数字都接近整十,整百,整千……根据“多加的要减去”原则计算。
如:把199看做200-1 199+299+399 99+198+97+6 99+999+9999
类型三:只有两个数相加,其中一个数字接近整十,整百,整千……根据“多加的要减去”,“少加的要再加”
的原则进行计算如,加99看做加100-1;加103看做加100+3 163+99 634+103 193+98 846+202
一、减法
类型一:连续减去两个数或者两个数以上,等于减去它们的和。
186-63-37 899-132-68 478-26-174
类型二:只有两个数相见,其中减数接近整十,整百,整千……根据“多减的加回来”,“少减的要再减”的原则计算,如,减99看做减100+1;减104看做减100-4(与加法类型三属于同类型题目)189-99 569-104 363-97 483-102
二、加减混合计算
类型一:移动数字,符号跟着后面的符号,开头的数的符号都是加号,如,632-143-32中,632的符号是加号,143的符号是减号,32的符号是减号。
移动是为了减法能消去尾数,加法可以凑整。
789+63-89 843-88+57 144-33-44 632+184-132
类型二:添括号,去括号以达到减法消除尾数,加法能凑整的目的。
原则是:减号后面添括号,去括号,括号里面要变号;加号后面添括号,去括号,括号里面不变号。
638-139+39
546+188-88 436-(36+24) 563+(76-63)
三、乘法
类型一:利用乘法交换律、结合律25X4=100 125X8=1000进行计算
768X25X4 125X76X8 125X39X8X25X4
类型二:利用25?4=100,125?8=1000拆数。
题目中出现25,125,需要找的4,8隐藏在另外的因数中。
25?32 125?64 125?32?25 25?44 125?78
型三:乘法分配律具体应用
(一)类公式的正运算,(a+b)c= ac+bc a(b+c)=ab+ac(加号也可以换成减号)
(40+8) ?25 125?(8+80) 36?(100+50) 24?(2+10)
(二)公式的逆运算:ac+bc=(a+b)c ab+ac= a(b+c) (加号也可以换成减号)
36?34+36?66 75?23+25?23 325?113-325?13 28?18-8?28 93?6+4? 93
(三)两个数相乘,其中一个因数接近整十,整百,整千……,将它改写后利用乘法分配律进行计算。
注意要加上括号!如102看做(100+2);81看做(80+1);99看做(100-1);79看做(80-1)。
78?102 56?101 25? 41 125?81 31? 99 42?98 125?79 25 ?39
(四)出现单个的数,应看做的1的形式,再用乘法分配律算。
如,83看做83?1
83+83?99 56?99+56 99?99+99 75?101-75 125?81-125 91?31-91。