2015年聊城二模--山东省聊城市2015届高三下学期第二次模拟考试数学(文)试题
- 格式:doc
- 大小:1.07 MB
- 文档页数:10
山东省2015届高考模拟试题数学(文)试题20140410第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.已知集合{}{}R x y y N x x x M x ∈==≥=,2,2,则MN = ( )A .)(1,0 B .]1,0[ C .)1,0[D .]1,0(2.已知复数(1i)(12i)z =-+,其中i 为虚数单位,则z 的实部为A .3-B .1C .1-D .3 3.下列命题中的真命题是( )A .对于实数a 、b 、c ,若a b >,则22ac bc >B .x 2>1是x >1的充分而不必要条件C .,R αβ∃∈ ,使得sin()sin sin αβαβ+=+成立D .,R αβ∀∈,tan tan tan()1tan tan αβαβαβ++=-⋅成立4.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为,设抛物线上任意一点P 到直线的距离为m ,则||PC m +的最小值为A .5B .41C .41-2D .45.在A ,B 两个袋中都有6张分别写有数字0,1,2,3,4, 5的卡片,现从每个袋中任取一张卡片,则两张卡片上数字之和为7的概率为A .19B .118C .16 D .136.下图是计算10181614121++++值的一个程序框图,其中判断框内应填入的条件是A .5≥kB .5<kC .5>kD .6≤k7.设等差数列{}n a 的前n 项和为n S ,若201312014a a a -<<-,则必定有A .201320140,0S S ><且B .201320140,0S S <>且C .201320140,0a a ><且D .201320140,0a a <>且8.已知O,A,M,B 为平面上四点,且(1)OM OB OA λλ=+-,实数(1,2)λ∈,则A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O,A,M,B 一定共线9.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,其中120,1A b ==,且ABC ∆,则sin sin a bA B+=+ABC .D .10.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则椭圆C 的离心率e =A .57B .54C .74D .65第Ⅱ卷 非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置) 11.复数4+3i 1+2i的虚部是__ ___.12.函数1()1f x x x =+-(1)x >的最小值为__ ___. 13.一个几何体的三视图如图所示,则该几何体的体积为__ ___.14.在ABC ∆中,不等式1119A B C π++≥成立;在凸四边形ABCD 中,不等式1111162A B C D π+++≥成立;在凸五边形ABCDE 中,不等式11111253A B C D E π++++≥成立,…,依此类推,在凸n 边形n A A A 21中,不等式12111nA A A +++≥__ ___成立.15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A .(坐标系与参数方程)已知直线的参数方程为,1x y ⎧=⎪⎪⎨⎪=⎪⎩ (为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩(θ为参数), 则圆心C 到直线的距离为_________.B .(几何证明选讲)如图,直线PC 与圆O 相切于点C ,割线经过圆心O ,弦CD ⊥AB 于点E ,4PC =,8PB =,则CE =_________.C .(不等式选讲)若存在实数x 使12x m x -++≤成立,则实数m 的取值范围是_________.三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分) 16.(本小题满分12分)已知函数()⎪⎭⎫ ⎝⎛--=672sin cos 22πx x x f . (Ⅰ)求函数)(x f 的最大值,并写出)(x f 取最大值时x 的取值集合; (Ⅱ)已知ABC ∆中,角C B A ,,的对边分别为.,,c b a 若3(),2f A = 2.b c +=求实数a 的最小值.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,211,(1),1,2,.2n n a S n a n n n ==--=(Ⅰ)证明:数列⎭⎬⎫⎩⎨⎧+n S nn 1是等差数列,并求n S ; (Ⅱ)设233nn S b nn +=,求证:125.12n b b b +++<18.(本小题满分12分)在直三棱柱ABC -A 1B 1C 1中,已知AB=5,AC=4,BC=3,AA 1=4,点D 在棱AB 上. (Ⅰ)求证:AC ⊥B 1C ;(Ⅱ)若D 是AB 中点,求证:AC 1∥平面B 1CD .19.(本小题满分12分)已知关于x 的一元二次函数.14)(2+-=bx ax x f(Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数)(x f y =在区间[),1+∞上是增函数的概率;(Ⅱ)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+008y x y x 内的随机点,求函数),1[)(+∞=在区间x f y 上是增函数的概率. 20.(本小题满分13分)已知函数x a x x f ln )1()(--=(0)x >. (Ⅰ)求函数)(x f 的单调区间和极值;(Ⅱ)若0)(≥x f 对),1[+∞∈x 上恒成立,求实数a 的取值范围. 21.(本小题满分14分)如下图所示,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为9(5,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.山东省2015届高考模拟试题数学(文)参考答案20140410一、选择题:二、填空题:11.-1; 12.3; 13.23; 14.; 15.A ; B .512; C .[3,1]-.三、解答题∴函数)(x f 的最大值为2.要使)(x f 取最大值,则sin(2)1,6x π+=22()62x k k Z πππ∴+=+∈ ,解得,6x k k Z ππ=+∈.故x 的取值集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. ………6分 (Ⅱ)由题意,3()sin(2)162f A A π=++=,化简得 1sin(2).62A π+=()π,0∈A ,132(,)666A πππ∴+∈,∴5266A ππ+=, ∴.3π=A在ABC ∆中,根据余弦定理,得bc c b bc c b a 3)(3cos 22222-+=-+=π.由2=+c b ,知1)2(2=+≤c b bc ,即12≥a . ∴当1==c b 时,实数a 取最小值.1 ………12分 17.(本小题满分12分)解:(Ⅰ)证明:由)1(2--=n n a n S n n 知,当2≥n 时:)1()(12---=-n n S S n S n n n , 即)1()1(122-=---n n S n S n n n ,∴1111=--+-n n S n nS n n ,对2≥n 成立. 又⎭⎬⎫⎩⎨⎧+∴=+n S n n S 1,11111是首项为1,公差为1的等差数列. 1)1(11⋅-+=+n S n n n ,∴12+=n n S n . ………6分(Ⅱ))3111(21)3)(1(1323+-+=++=+=n n n n n n S b n n ,………8分∴)311121151314121(2121+-+++-+⋯+-+-=+⋯⋯++n n n n b b b n =125)312165(21<+-+-n n .………12分 18.(本小题满分12分)解: (Ⅰ)证明:在△ABC 中,因为 AB=5,AC=4,BC=3, 所以 AC 2+ BC 2= AB 2, 所以 AC ⊥BC .因为 直三棱柱ABC-A 1B 1C 1,所以 C C 1⊥AC , 因为 BC ∩AC =C ,所以 AC ⊥平面B B 1C 1C . 所以 AC ⊥B 1C . ……… 6分 (Ⅱ)连结BC 1,交B 1C 于E ,连接DE .因为直三棱柱ABC-A 1B 1C 1,D 是AB 中点,所以 侧面B B 1C 1C 为矩形, DE 为△ABC 1的中位线,所以DE// AC 1.因为 DE ⊂平面B 1CD ,AC 1⊄平面B 1CD ,所以 AC 1∥平面B 1CD .……… 12分 19.(本小题满分12分)解:(Ⅰ)∵函数14)(2+-=bx ax x f 的图象的对称轴为,2abx =要使14)(2+-=bx ax x f 在区间),1[+∞上为增函数,当且仅当a >0且a b ab ≤≤2,12即, 若a =1则b =-1;若a =2则b =-1,1;若a =3则b =-1,1; ∴事件包含基本事件的个数是1+2+2=5, ∴所求事件的概率为51153=. ………6分 (Ⅱ)由(1)知当且仅当a b ≤2且a >0时,函数),1[14)(2+∞+-=在区是间bx ax x f 上为增函数,依条件可知试验的全部结果所构成的区域为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧>>≤-+0008|),(b a b a b a ,构成所求事件的区域为三角形部分.由),38,316(208得交点坐标为⎪⎩⎪⎨⎧==-+ab b a ∴所求事件的概率为31882138821=⨯⨯⨯⨯=P .………12分 20.(本小题满分13分)解:(Ⅰ)xa x xa x f -=-=1)(')0(>x ,当0≤a 时,0)('>x f ,在),0(+∞上增,无极值; 当0>a 时,a x xax x f ==-=得由,0)(', )(x f 在),0(a 上减,在),(+∞a 上增, )(x f 有极小值a a a a f ln )1()(--=,无极大值; ……… 6分(Ⅱ)xax x a x f -=-=1)(', 当1≤a 时,0)('≥x f 在),1[+∞上恒成立,则)(x f 是单调递增的, 则只需0)1()(=≥f x f 恒成立,所以1≤a ,当1>a 时,)(x f 在上),1(a 减,在),(+∞a 上单调递增,所以当),1(a x ∈时,0)1()(=≤f x f 这与0)(≥x f 恒成立矛盾,故不成立,综上:1≤a .……… 13分21.(本小题满分14分)解:(Ⅰ)依题意,M 是线段AP 的中点, 因为A (-1,0),P ⎪⎪⎭⎫ ⎝⎛534,59,所以点M 的坐标为⎪⎪⎭⎫⎝⎛532,52 由点M 在椭圆C 上,所以,12512254=+m ,解得74=m (II )解:设M ()11-,1,020200<<-+x myx y x 且,则① 因为M 是线段AP 的中点,所以P ()002,12y x + 因为OP ⊥OM ,所以()02122000=++y x x ②由①②,消去0y ,整理得22220020-+=x x x m所以()4321826221100-≤-++++=x x m。
山东省实验中学2015级高三第二次模拟考试数学试题(文)2015.6说明:试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷 (共50分)1.复数z 满足i z i +=-7)21(,则复数=z (A)i 31+(B)i 31-(C) i +3(D) i -32.已知全集U R =,集合{}{}()3021,log 0,x U A x B x x A C B =<<=>⋂=则 (A){}1x x >(B){}0x x >(C){}01x x << (D){}0x x <3.命题“存在R x ∈,使a ax x 42-+≤0为假命题”是命题“016≤≤-a ”的(A)充要条件 (B)必要不充分条件 (C)充分不必要条件(D)既不充分也不必要条件4.若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 ( )(A) 22(2)(2)3x y -+±= (B) 22(2)(3x y -+±=(C)22(2)(2)4x y -+±= (D) 22(2)(4x y -+±= 5.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a +=,则cBa cos 的值为 (A)41 (B) 45 (C) 85 (D)836.已知βα,是两个不同的平面,n m ,是两条不同的直线,给出下列命题: ①若βαβα⊥⊂⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ⊂⊂;③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂ 其中正确的命题是 ( ) (A)①② (B)②③ (C)③④ (D)①④7.函数f (x )=(x 2-2x )e x 的图像大致是(A) (B) (C) (D)8.已知数列错误!未找到引用源。
2015年山东省聊城市高考数学二模试卷(文科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知复数(i为虚数单位),则z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.设集合A={x|x2﹣2x﹣3<0},B={x|y=lnx},则A∩B=()A.(0,3)B.(0,2) C.(0,1) D.(1,2)3.下列函数中,满足f(xy)=f(x)f(y)的单调递增函数是()A.f(x)=x3B.f(x)=﹣x﹣1C.f(x)=log2x D.f(x)=2x4.已知两条不同的直线l,m和两个不同的平面α,β,有如下命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α⊥β,l⊥β,则l∥α,其中正确命题的个数是()A.3 B.2 C.1 D.05.函数的图象的大致形状是()A.B.C.D.6.利用简单随机抽样从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为()A.46 B.48 C.50 D.527.已知函数则=()A.B.1 C.D.﹣18.已知直线ax+y﹣1=0与圆C:(x﹣1)2+(y+a)2=1相交于A,B两点,且△ABC为等腰直角三角形,则实数a的值为()A.B.﹣1 C.1或﹣1 D.19.a1,a2,a3,a4是各项不为零的等差数列,且公差d≠0,若将此数列删去a2,得到的数列a1,a3,a4是等比数列,则的值为()A.1 B.﹣4 C.﹣1 D.410.已知M是△ABC内一点,且,若△MBC,△MCA,△MAB 的面积分别为,则xy的最大值是()A.B.C.D.二、填空题(本大题共5个小题,每小题5分,共25分.)11.△ABC中,已知,则cosC=.12.已知双曲线=1(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为.13.执行如图所示的程序框图,若输入的T=1,a=2,则输出的T的值为.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.15.已知函数f(x)=Msin(ωx+φ),(M>0,ω>0,)的部分图象如图所示,其中A,B两点之间的距离为5,那么f(﹣1)=.三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.) 16.一个小商店从某食品有限公司购进10袋白糖,称池内各袋白糖的重量(单位:g),如茎叶图所示,其中有一个数据被污损.(Ⅰ)若已知这些白糖重量的平均数为497g,求污损处的数据a;(Ⅱ)现从重量不低于498g的所购各袋白糖中随机抽取2袋,求重量是508g的那袋被抽中的概率.17.设△ABC的内角A,B,C的对边分别是a,b,c,已知A=,a=bcosC.(Ⅰ)求角C的大小;(Ⅱ)如图,在△ABC的外角∠ACD内取一点P,使PC=2,过点P作PM⊥CA于M,PN⊥CD 于N,设线段PM,PN的长分别为m,n,∠PCM=x,且,求f(x)=mn的最大值及相应x的值.18.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°PA=PD=AD=2BC=2,,Q是AD的中点.(Ⅰ)求证:平面PQ⊥底面ABCD;(Ⅱ)求三棱锥C﹣PBD的体积.19.在公比为2的等比数列{a n}中,a2+1是a1与a3的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{a n}前n项的和为S n,若数列{b n}满足b n=a n log2(S n+2),试求数列{b n}前n项的和T n.20.已知函数f(x)=alnx+..(Ⅰ)当a=2时,求f(x)的单调区间;(Ⅱ)若f(x)在区间(1,2)上不具有单调性,求a的取值范围.21.已知椭圆E的中心在坐标原点O,它的长轴长,短轴长分别为,右焦点F(c,0),直线l:cx﹣a2=0与x轴相交于点,过点A的直线m与椭圆E交于P,Q两点.(Ⅰ)求椭圆E的方程;(Ⅱ)若,求直线m的方程;(Ⅲ)过点P且平行于直线l的直线与椭圆E相交于另一点M,求证:Q,F,M三点共线.2015年山东省聊城市高考数学二模试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数(i为虚数单位),则z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】直接利用复数代数形式的乘除运算化简,求得z的坐标得答案.【解答】解:由=,∴z在复平面内对应的点的坐标为(),在第三象限角.故选:C.【点评】本题考查了复数代数形式的乘除运算,是基础的计算题.2.设集合A={x|x2﹣2x﹣3<0},B={x|y=lnx},则A∩B=()A.(0,3)B.(0,2) C.(0,1) D.(1,2)【考点】交集及其运算.【专题】集合.【分析】求出A中不等式的解集确定出A,求出B中x的范围确定出B,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)<0,解得:﹣1<x<3,即A=(﹣1,3),由B中y=lnx,得到x>0,即B=(0,+∞),则A∩B=(0,3),故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.下列函数中,满足f(xy)=f(x)f(y)的单调递增函数是()A.f(x)=x3B.f(x)=﹣x﹣1C.f(x)=log2x D.f(x)=2x【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】根据抽象函数的关系式分别进行判断即可.【解答】解:A.f(x)f(y)=x3y3=(xy)3=f(xy),且函数f(x)为增函数,满足条件.B.f(x)f(y)=﹣x﹣1(﹣y﹣1)=(xy)﹣1,f(xy)=﹣(xy)﹣1,则f(xy)=f(x)f(y)不成立.C.f(xy)=log2xy=log2x+log2y=f(x)+f(y),则f(xy)=f(x)f(y)不成立.D.f(xy)═2xy,f(x)f(y)=2x+2y,f(xy)=f(x)f(y)不成立.故选:A【点评】本题主要考查抽象函数的应用,根据条件进行验证是解决本题的关键.比较基础.4.已知两条不同的直线l,m和两个不同的平面α,β,有如下命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α⊥β,l⊥β,则l∥α,其中正确命题的个数是()A.3 B.2 C.1 D.0【考点】空间中直线与平面之间的位置关系.【专题】空间位置关系与距离.【分析】利用线面平行的性质定理和判定定理对三个命题分别分析解答.【解答】解:对于①,若l⊂α,m⊂α,l∥β,m∥β,则α与β可能相交;故①错误;对于②,若l⊂α,l∥β,α∩β=m,满足线面平行的性质定理,故l∥m;故②正确;对于③,若α⊥β,l⊥β,如果l⊂α,则l⊥α;故③错误;故选C.【点评】本题考查了线面平行的性质定理和判定定理的运用,关键是正确运用定理进行分析解答.5.函数的图象的大致形状是()A.B.C.D.【考点】函数的图象.【专题】数形结合.【分析】先利用绝对值的概念去掉绝对值符号,将原函数化成分段函数的形式,再结合分段函数分析位于y轴左右两侧所表示的图象即可选出正确答案.【解答】解:∵y==当x>0时,其图象是指数函数y=a x在y轴右侧的部分,因为a>1,所以是增函数的形状,当x<0时,其图象是函数y=﹣a x在y轴左侧的部分,因为a>1,所以是减函数的形状,比较各选项中的图象知,C符合题意故选C.【点评】本题考查了绝对值、分段函数、函数的图象与图象的变换,培养学生画图的能力,属于基础题.6.利用简单随机抽样从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为()A.46 B.48 C.50 D.52【考点】频率分布直方图.【专题】计算题;概率与统计.【分析】根据频率分布直方图,利用频率、频数与样本容量的关系进行解答即可.【解答】解:这些用户中,用电量落在区间[150,250]内的频率为1﹣(0.0024+0。
绝密★启用前 试卷类型A山东省2015年高考模拟冲刺卷(六)文科数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第I 卷(选择题 共50分)一、选择题:在每小题给出的四个选项中,只有一个是符合题目要求的(本大题共10小题,每小题5分,共50分).1.已知集合1={R| 2},{R| 1}xA x eB x x∈<=∈>则A B = ( )A .2{|0log }x R x e ∈<<B .{|01}x R x ∈<<C .2{|1log }x R x e ∈<<D .2{|log }x R x e ∈< 2.以下判断正确的是( )A .函数()y f x =为R 上的可导函数,则'0()0f x =是0x 为函数()f x 极值点的充要条件. B .命题“2,10x R xx ∈+-<存在”的否定是“2,10x R x x ∈+->任意”.C .命题“在ABC ∆中,若,sin sin A B A B >>则”的逆命题为假命题.D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充要条件.3.已知复数2320131i i i i z i++++=+,则复数z 在复平面内对应的点位于( )A .第一像限B .第二像限C .第三像限D .第四像限 4.函数331x x y =-的图象大致是( )A B C D6 7 758 8 8 6 84 0 93甲乙俯视图5.甲、乙两位歌手在“中国好声音”选拔赛中,5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别为x 甲、x 乙,则下列判断正确的是 ( ) A .x x <甲乙,甲比乙成绩稳定B .x x <甲乙,乙比甲成绩稳定C .x x >甲乙,甲比乙成绩稳定D .x x >甲乙,乙比甲成绩稳定6.右图是函数y =A sin (ωx +φ)(00,ω>>A ,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R )的图像上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.7.在ABC ∆中,点M 是BC 中点.若 120=∠A ,12⋅=-AB AC ,则AM的最小值是 ( )A . BC .32D .128.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cm B .320cm C .330cmD .340cm9.曲线21:2(0)=>C y px p 的焦点F 恰好是曲线22222:1-=x yC a b 的右焦点,且曲线1C 与曲线2C 交点连线过点F ,则曲线2C 的离心率是( )A .1BC D .110.定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,,则不等式()3xx e f x e >+(其中e 为自然对数的底数)的解集为( )A .()0,+∞B .()(),03,-∞+∞C .()(),00,-∞+∞ D .()3,+∞第Ⅱ卷(非选择题 共100分)二、填空题:把答案填在相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.在平面直角坐标系xOy 中,设D 是由不等式组⎪⎩⎪⎨⎧≥≤-+≥+-0101y y x y x 表示的区域,E 是到原点的距离不大于1的点构成的区域,若向E 中随机投一点,则所投点落在D 中的概率是 .12.设集合{}|01A x x =≤<,{}|12B x x =≤≤,2,()42,x x Af x x x B⎧∈=⎨-∈⎩,0x A ∈ 且0[()]f f x A ∈,则0x 的取值范 围是 .13.如右上所示框图,若2()31f x x =-,取0.1ε=,则输出的值为 . 14.若关于x 的不等式a x x ≤-+1无解,则实数a 的取值范围为 . 15.已知函数[][]x x x f =)(,其中[]x 表示不超过实数x 的最大整数,如[][]1999.1,301.2=-=-.若3322x -≤≤,则)(x f 的值域为 .三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分). 16.(本小题满分12分)在ABC ∆中,角A B C 、、对边分别是a b c 、、,满足222()AB AC a b c ⋅=-+. (Ⅰ)求角A 的大小;(Ⅱ)求24sin()23C B π--的最大值,并求取得最大值时角B C 、的大小.17.(本小题满分12分)已知数列}{n a 中,51=a 且1221n n n a a -=+-(2n ≥且n N +∈)(Ⅰ)证明:数列12n n a -⎧⎫⎨⎬⎩⎭为等差数列; (Ⅱ)求数列}{n a 的前n 项和n S .名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[)35,40,第5组[40,45],20,25,第2组[)25,30,第3组[)30,35,第4组[)得到的频率分布直方图如图所示,已知第2组有35人.(Ⅰ)求该组织的人数.(Ⅱ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅲ)在(Ⅱ)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.ABCDEF如图,E 是以AB 为直径的半圆上异于点A B 、的点,矩形ABCD 所在的平面垂直于该半圆所在平面,且AB=2AD=2. (Ⅰ)求证:EA EC ;(Ⅱ)设平面ECD 与半圆弧的另一个交点为F①求证:EF //AB ;②若EF=1,求多面体ABCDEF 的体积V .已知椭圆2222:1(0)x y C a b a b+=>>的离心率为=e ,以原点为圆心,椭圆短半轴长为半径的圆与直线0x y -=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设12(1,0),(1,0)F F -,若过1F 的直线交曲线C 于A B 、两点,求22F A F B 的取值范围.已知函数()ln 3f x a x ax =--(a R ∈). (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 的图像在点(2,(2))f 处的切线的倾斜角为45,且函数32'()()2⎡⎤=++⎢⎥⎣⎦m g x x x f x 在区间(1,3)上不单调,求m 的取值范围;(Ⅲ)试比较ln 2222+ln 3232+…+ln n 2n 2与n -n +n +的大小(n ∈N +,且n ≥2),并证明你的结论.文科数学(六)1---5 BDACB 6----10 ADBDA 11.1π 12.23(log ,1)213.1932 14.1<a 15.{}0,1,2,3 三、解答题:()1112112n n ++⎡⎤=-+⎣⎦1=, …………4分由上可知,数列12n n a -⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. …………5分(Ⅱ)由(Ⅰ)知,()1111122n n a a n --=+-⨯, 即:()121nn a n =+⋅+. …………7分 ∴()()()()12122132121121n nn S n n -⎡⎤=⋅++⋅+++⋅+++⋅+⎣⎦.即()1212232212n n n S n n n -=⋅+⋅++⋅++⋅+. 令()1212232212n n nT n n -=⋅+⋅++⋅++⋅, ①则()23122232212n n nT n n +=⋅+⋅++⋅++⋅. ② …………9分②-①,得()()12312222212n n n T n +=-⋅-+++++⋅12n n +=⋅.∴()11221n n n S n n n ++=⋅+=⋅+. …………12分A BCD EF(A3,C1),共有12种, …………11分 则第3组至少有一名志愿者被抽中的概率为124155p == …………12分 19.(本题满分12分)解:(Ⅰ)∵E 是半圆上异于A 、B 的点,∴AE ⊥EB, 又∵矩形平面ABCD ⊥平面ABE ,且CB ⊥AB ,由面面垂直性质定理得:CB ⊥平面ABE ,∴平面CBE ⊥平面ABE , 且二面交线为EB ,由面面垂直性质定理得:AE ⊥平面ABE ,又EC 在平面ABE 内,故得:EA ⊥EC …………4分 (Ⅱ) ①由CD//AB ,得CD//平面ABE ,又∵平面CDE ∩平面ABE 于直线EF ,∴根据线面平行的性质定理得:CD//EF ,CD//AB ,故EF//AB …………7分②分别取AB 、EF 的中点为O 、M ,连接OM ,则在直角三角形OME中,OM ===,因为矩形ABCD 所在的平面垂直于该半圆所在平面,,OM AB OM ABCD ⊥∴⊥面,即OM 为M 到面ABCD 之距,又EF //AB , ∴E 到到面ABCD之距也为OM =9分则D-AEF 111V=V +V =1121323E ABCD -⨯⨯+⨯⨯ ……12分 20.(本题满分13分)解:(Ⅰ)由题意可得圆的方程为222x y b +=,∵直线0x y -=与圆相切,∴d b ==,即1b =, …………2分又c e a ==222a b c =+,得2a =,所以椭圆方程为2212x y +=.…………4分 (Ⅱ)①当直线AB 的斜率为0时,A(,0),B,0)时,22F A F B =-1…5分 ②当直线AB 的斜率不为0时,不妨设AB 的方程为:1x my += 由22112x my x y +=⎧⎪⎨+=⎪⎩得:22(2)210m y my +--=,------7分 设11122()()A x y B x y ,,,,则:12222m y y m +=+,12212y y m =-+,22F A F B 11221122(1,)(1,)(2,)(2,)x y x y my y my y =-∙-=-∙-212121212(2)(2)(1)2()4my my y y m y y m y y =--+=+-++2225194122m m m --=+=-+++7(1,2∈-], 由①、②得:22F A F B 的取值范围为[71,2-]. …………13分 21.(本小题满分14)解:(Ⅰ)'(1)()(0)a x f x x x-=> …………1分 当0a >时,()f x 的单调增区间为(]0,1,单调减区间为[)1,+∞; …………2分 当0a <时,()f x 的单调增区间为[)1,+∞,单调减区间为(]0,1 …………3分 当0a =时,()f x 不是单调函数。
理科数学试题(二)参考答案一、选择题(本大题共12小题,每小题5分,共60分.)CBDA A BCBAD CC. 二、填空题:(本大题共4小题,每小题5分,共20分.) 13.23π. 14. 23n n a =. 15.14. 16. 2016 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)11sincos 2222ααα-=,11c o s 22αα-=,所以1sin()62πα-=,又因为α为锐角,所以3πα=. ………………6分(Ⅱ)2()cos 22sin 2sin 2sin 1f x x x x x =+=-++,令sin t x =,则2221(11)y t t t =-++-≤≤,由二次函数的图像知:当12t =时,max 32y =;当1t =-时,min 3y =-, 所以函数()f x 的值域为3[3,]2-. ………………12分18.(本小题满分12分) 解:(Ⅰ)证明:PD ⊥平面ABCD ,BC Ü平面ABCD ,BC PD ∴⊥,又,BC CD CD PD D ⊥=,BC PCD ∴⊥面,又PC PCD 面Ü,∴BC PC ⊥. …………6分(Ⅱ)因为,//BC CD AD BC ⊥,所以AD DC ⊥,以D 为原点建立空间直角坐标系D xyz -,不妨设1AD =,则(1,0,0)A ,(0,0,2)P ,(0,2,0)C ,(2,2,0)B ,设平面PBC 的一个法向量为(,,)m x y z =,又(2,0,0)BC =-,(0,2,2)PC =-,由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩得20220x y z -=⎧⎨-=⎩,不妨取1y =,则(0,1,1)m =,(1,0,2)PA =-,∴PA 与平面PBC 所成角θ的正弦值sin cos ,52PA m PA m PA mθ⋅=<>===⋅. ……………12分19.(本小题满分12分)解:(Ⅰ)由图知,m 名学生中星期日运动时间少于60分钟的频率为:111()30750300020+⨯=,所以1520m ⨯=,所以100m =;设星期日运动时间在[)90,120内的频率为x ,则1111111()3013000750300100200300600x ++++++⨯+=,所以14x =.所以星期日运动时间在[)90,120内的频率为14. ……………6分 (Ⅱ)由图知,第一组有1人、第二组有4人、第七组有10人,第八组有5人,四组共20人,其中星期日运动时间少于60分钟的有5人.所以ξ可能取值为0,1,2,3,且3515320()(0,1,2,3)i i C C P i i C ξ-⋅===.所以ξ的分布列为所以ξ的期望=0+1+2+3==2282282282282284E ξ⨯⨯⨯⨯. …………12分20.(本小题满分12分) 解:(Ⅰ)由c a =,及222a b c =+,设2,,(0)a k c b k k ===>,则由四个顶点构成的四边形面积为4得12242a b ⋅⋅=,即14242k k ⋅⋅=,解得1k =, ∴椭圆22:14x C y +=. ……………5分 (Ⅱ)设直线:l x ty m =+,即0x ty m --=,1m ≥,则由直线l 与圆221x y +=相切得1=,即221t m =-, 由222244()44x y ty m y x ty m⎧+=⇒++=⎨=+⎩,即222(4)240t y tmy m +++-=,易知0∆>恒成立,设1122(,),(,)A x y B x y ,由韦达定理知:12221222444tm y y t m y y t -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,∴由弦长公式得12AB y =-21212)4]y y y y =+-⋅==,∵1m ≥,∴23AB m m ==≤=+,当且仅当3m m =,即m =时等号成立,所以max 2AB =,所以OAB ∆的面积最大值为12112⨯⨯=. ……………12分21.(本小题满分12分) 解:(Ⅰ)由已知得,221ln ln ()=ex xf x x x--'=.由()0f x '>得01x <<;由()0f x '<得1x >.所以函数()y f x =的单调增区间为:(0,1),单调减区间为(1,)+∞.……………5分(Ⅱ)不等式()()f x g x ≥恒成立⇔不等式1+ln 1x kx x ≥+恒成立 ⇔不等式(1)(1+ln )x x k x+≤恒成立,令(1)(1+ln )1()1(1+ln )(1)x x h x x x x x +⎛⎫==+≥ ⎪⎝⎭,则min ()k h x ≤.因为2ln ()x x h x x-'=,令()l n (1)x x xx ϕ=-≥,则()h x '与()x ϕ同号,因为1()0x x x ϕ-'=≥(当且仅当1x =时取等号),所以()x ϕ在[1,)+∞上递增,所以()(1)10x ϕϕ≥=>,所以()0h x '>,所以()h x 在[1,)+∞上递增,所以min ()(1)2h x h ==,所以 2.k ≤ ……………12分22.证明:(Ⅰ)因为A C B D =,所以ABC BCD ∠=∠.又因为EC 与圆相切于点C ,故ACE ABC∠=∠,所以ACE BCD ∠=∠. ………………5分 (Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠,所以BDCECB ∆∆,故B C C DB E B C=.即2BC BE CD =⋅.又82BE ,CD ,==所以=4BC . ………………10分23.解:(Ⅰ)曲线1:2cos C ρθ=化为普通方程为:22(1)1x y -+=;直线2C的参数方程x ty =⎧⎪⎨=⎪⎩ (t 为参数).0y -=.所以曲线1C 是以1C ()1,0为圆心,1r =为半径的圆.所以圆心1C ()1,00y -=的距离为:d ==.所以1AB ==.………………5分 (Ⅱ)由(Ⅰ)知,圆10分 24.解: 1,1()1223,121,2x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩(Ⅰ)不等式()2f x x >,即112x x ≤⎧⎨->⎩或12232x x x <<⎧⎨->⎩或212x x≥⎧⎨>⎩,解得12x <-,所以不等式()2f x x >的解集为12x x ⎧⎫<-⎨⎬⎩⎭. ……………5分(Ⅱ)存在x R ∈,使得2()1f x t t >-+,即2max ()1f x t t >-+∵max ()1f x =, ∴只要22110(0,1)t t t t t >-+⇔-<⇔∈即(0,1)t ∈ ……………10分。
山东省2015年高考模拟冲刺卷(二)理科数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知i 为虚数单位,R a ∈,若ia i+-2为纯虚数,则复数i a z 2)12(++=的模等于( ) A .2B .3C .11D .62、在ABC ∆中,设命题BcA b C a p sin sin sin :==,命题ABC q ∆:是等边三角形,那么命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3、已知sinα+2cosα=3,则tanα=( ) A .22B . 2C .- 22D .- 24、如图所示的茎叶图表示甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( ) A .52B .107C .54D .109 5、在ABC ∆中,c ,b ,a 分别为C ,B ,A 的对边,如果c ,b ,a 成等差数列,︒=30B ,ABC ∆的面积为23,那么=b( ) A 13+ B .13 C 23+ D .236、直线L 过抛物线()2:20C y px p =>的焦点F 且与C 相交于A 、B 两点,且AB 的中点M的坐标为()3,2,则抛物线C 的方程为( )A .2224y x y x ==或 B .2248y x y x ==或 C .2268y x y x ==或 D .2228y x y x ==或7、已知某几何体的三视图如图所示,则该几何体的表面积等于( ) A .3160B .160C .23264+D .2888+8、.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )9、设)为整数(0,,>m m b a ,若a和b 被m 除得的余数相同,则称a 和b 对模m 同余,记作)(mod m b a ≡,已知),10(mod ,22212020202202120b a C C C a ≡++++=且 则b 的值可为 ( )A .2011B .2012C .2009D .201010、若定义在R 上的函数()f x 满足()()()(),2,f x f x f x f x -=-=且当[]0,1x ∈时,()21f x x =-()()xH x xe f x =-在区间[]5,1-上的零点个数为( )A .4B .8C .6D .10xO A1y xOB1y xOC1y x OD1y第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11、已知21k π-=⎰,直线1y kx =+交圆22:1P x y +=于,A B 两点,则AB = .12、已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x xf x >,则不等式21()()0x f f x x-<的解集为 .13、已知集合}9|4||3|{≤-++∈=x x R x A ,)},0(,614{+∞∈-+=∈=t tt x R x B ,则集合B A ⋂= . 14、若等比数列{}n a 的各项均为正数,且512911102ea a a a =+,则1220ln ln ln a a a +++= .15、给出定义:若2121+≤<-m x m (其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即m x =}{.在此基础上给出下列关于函数}{)(x x x f -=的四个命题: ①函数)(x f y =定义域是R ,值域是⎥⎦⎤⎢⎣⎡21,0;②函数)(x f y =的图像关于直线)(2Z k kx ∈=对称; ③函数)(x f y =是周期函数,最小正周期是1;④函数)(x f y =在⎥⎦⎤⎢⎣⎡-21,21上是增函数.则其中真命题的序号为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16、(本小题满分12分)已知)1,sin 32cos 2(x x m +=,),(cos y x n -=,且m n ⊥. (Ⅰ)将y 表示为x 的函数)(x f ,并求)(x f 的单调增区间;(Ⅱ)已知c b a ,,分别为ABC ∆的三个内角C B A ,,对应的边长,若()32Af =,且2=a ,4b c +=,求ABC ∆的面积.17、(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12AD=1,CD=3.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若二面角M-BQ-C为30。
2015年聊城市高考模拟试题 语 文(二) 本试卷分第I卷和第II卷两部分,共8页。
满分150分。
考试时间150分钟。
注意事项: 1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、县(市、区)、学校和准考证号填写在答题卡规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题纸各题目指定的区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第I卷(36分) 一、(每小题3分,共15分) 1.下列词语加点的字,每对读音都不相同的是 A.驰骋/聘请 饶恕/溯源 腮帮/敷衍塞责 B.狡黠/遐想 寒暄/煊赫 癖好/否极泰来 C.依仗/绮丽 洗涤/嫡亲 箴言/三缄其口 D.渗透/参杂 果脯/辅导 纤巧/鲜为人知 2.下列各句中,没有错别字的一项是 A.照金村的孩子们也可以在崭新的校舍里上课了,他们的教学楼、教学设施、宿舍、食堂、塑胶操场等设施一应具全。
B.教辅出版门槛低,市场上有高品质的能够“出口”到国外的教辅书,但也不乏东抄西凑的粗制烂造的“害人书”。
C.登山大剑山峰顶,竟能看到三月飘雪,山间的皑皑白色、山野油菜花的金黄色和野樱桃的片片粉白色,给剑门关添了一丝烂漫。
D.在兵马俑的塑造上,最为人们称道的还是兵马俑头上的塑造,准确细腻,五官端正,惟妙惟肖,显示了精湛的造形能力。
3.依次填入下列句中横线处的词语,最恰当的一组是 ①谷歌公司是知名的搜索引擎公司,但不广为人知的是,它还是搞生物技术研究,______衰老就是它研究的一个主要方向。
②不少家长对孩子的缺点和错误一味____,这样对孩子的成长带来严重的不良影响。
③同学间深厚情谊的表现就是这样:即使很久不见,相互间的感情也不会______。
2015年山东省青岛市高考数学二模试卷(文科)一、选择题(本大题共10小题.每小题5分,共50分)1.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=()A. 3 B. 2 C. 5 D.2.已知集合M={x|2x﹣x2>0},N={x|x2+y2=1},则M∩N=()A. [﹣1,2) B.(0,1) C.(0,1] D.∅3.某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人,为了解该校学生健康状态,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为()A. 84 B. 78 C. 81 D. 964.函数y=的值域为()A. [0,+∞) B.(0,1) C. [0,1) D. [0,1]5.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(8,3)=2.如图是一个算法的程序框图,当输入的值为25时,则输出的结果为()A. 4 B. 5 C. 6 D. 76.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A. B. C. D.7.“0≤m≤1”是“函数f(x)=sinx+m﹣1有零点”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数f(x)=2sin(2x+φ)(|φ|<的图象过点,则f(x)的图象的一个对称中心是()A. B. C. D.9.设x,y满足约束条件,则下列不等式恒成立的是()A. x≥3 B. y≥4 C. x+2y﹣8≥0 D. 2x﹣y+1≥010.如果函数y=f(x)在区间I上是增函数,而函数y=在区间I上是减函数,那么称函数y=f(x)是区间I上“缓增函数”,区间I叫做“缓增区间”,若函数f(x)=是区间I上“缓增函数”,则“缓增区间”I为()A. [1,+∞) B. C. [0,1] D.二、填空题(本大题共5小题,每小题5分,共25分)11.已知不共线的平面向量,满足,,那么|= .12.已知函数f(x)=则f(f(﹣1))= .13.已知实数x,y满足2x+2y=1,则x+y的最大值是.14.某三棱锥的三视图如图所示,该三棱锥的体积是;15.已知双曲线=1(a>0,b>0)的右焦点为F,过F作斜率为﹣1的直线交双曲线的渐近线于点P,点P在第一象限,O为坐标原点,若△OFP的面积为,则该双曲线的离心率为.三、解答题(本大题共6小题,共75分)16.某区工商局、消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第2组或第4组的概率;(Ⅱ)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女性的概率.17.已知向量,,实数k为大于零的常数,函数f(x)=,x∈R,且函数f(x)的最大值为.(Ⅰ)求k的值;(Ⅱ)在A中,A9分别为内角A2所对的边,若<A<π,f(A)=0,且b=2,a=2,求的值.18.如图,在正四棱台ABCD﹣A 1B1C1D1中,A1B1=a,AB=2a,,E、F分别是AD、AB的中点.(Ⅰ)求证:平面EFB1D1∥平面BDC1;(Ⅱ)求证:A1C⊥平面BDC1.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.19.设{a n}是等差数列,{b n}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*.(Ⅰ)求{a n},{b n}的通项公式;(Ⅱ)若数列{d n}满足(n∈N*),且d1=16,试求{d n}的通项公式及其前2n项和S2n.20.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.(Ⅰ)求抛物线C1的方程;(Ⅱ)已知椭圆C2:=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为.直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.21.已知函数f(x)=1﹣﹣lnx(a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在点处的切线方程;(Ⅱ)当a≥0时,记函数Γ(x)=﹣1+f(x),试求Γ(x)的单调递减区间;(Ⅲ)设函数h(a)=3λa﹣2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,求h(a)的最大值.2015年山东省青岛市高考数学二模试卷(文科)参考答案与试题解析一、选择题(本大题共10小题.每小题5分,共50分)1.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=()A. 3 B. 2 C. 5 D.考点:复数求模.专题:数系的扩充和复数.分析:通过复数的相等求出a、b,然后求解复数的模.解答:解:=1﹣bi,可得a=1+b+(1﹣b)i,因为a,b是实数,所以,解得a=2,b=1.所以|a﹣bi|=|2﹣i|==.故选:D.点评:本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.2.已知集合M={x|2x﹣x2>0},N={x|x2+y2=1},则M∩N=()A. [﹣1,2) B.(0,1) C.(0,1] D.∅考点:交集及其运算.专题:集合.分析:求出M中不等式的解集确定出M,求出N中x的范围确定出N,找出两集合的交集即可.解答:解:由M中不等式变形得:x(x﹣2)<0,解得:0<x<2,即M=(0,2),由N中x2+y2=1,得到﹣1≤x≤1,即N=[﹣1,1],∴M∩N=(0,1],故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人,为了解该校学生健康状态,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为()A. 84 B. 78 C. 81 D. 96考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义建立比例关系即可.解答:解:∵高一480人,高二比高三多30人,∴设高三x人,则x+x+30+480=1290,解得x=390,故高二420,高三390人,若在抽取的样本中有高一学生96人,则该样本中的高三学生人数为人,故选:B点评:本题主要考查分层抽样的应用,根据比例关系是解决本题的关键.4.函数y=的值域为()A. [0,+∞) B.(0,1) C. [0,1) D. [0,1]考点:函数的值域.专题:计算题;函数的性质及应用.分析:由题意得0≤1﹣<1,从而求函数的值域.解答:解:∵0≤1﹣<1,∴0≤<1,即函数y=的值域为[0,1);故选C.点评:本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.5.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(8,3)=2.如图是一个算法的程序框图,当输入的值为25时,则输出的结果为()A. 4 B. 5 C. 6 D. 7考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,根据题意,依次计算MOD(n,i)的值,当i=5,MOD(25,5)=0,满足条件MOD(25,2)=0,退出循环,输出i的值为5.解答:解:模拟执行程序框图,可得:n=25,i=2,MOD(25,2)=1,不满足条件MOD(25,2)=0,i=3,MOD(25,3)=1,不满足条件MOD(25,3)=0,i=4,MOD(25,4)=1,不满足条件MOD(25,4)=0,i=5,MOD(25,5)=0,满足条件MOD(25,2)=0,退出循环,输出i的值为5.故选:B.点评:本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的MOD(n,i)的值是解题的关键,属于基础题.6.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A. B. C. D.考点:直线与圆的位置关系.专题:综合题;直线与圆.分析:根据条件令x=0,求出AB的长度,结合三角形的勾股定理求出三角形ACB是直角三角形即可得到结论.解答:解:当y=0时,得x2﹣4x=0,解得x=0或x=4,则AB=4﹣0=4,半径R=2,∵CA2+CB2=(2)2+(2)2=8+8=16=(AB)2,∴△ACB是直角三角形,∴∠ACB=90°,即弦AB所对的圆心角的大小为90°,故选:C.点评:本题主要考查圆心角的求解,根据条件求出先AB的长度是解决本题的关键.7.“0≤m≤1”是“函数f(x)=sinx+m﹣1有零点”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析: f(x)是连续函数,从而f(x)是否有零点就看是否满足,从而从两个方向判断:先看“0≤m≤1”能否得到“函数f(x)=sinx+m﹣1有零点”,再看“函数f(x)=sinx+m﹣1有零点”能否得到“0≤m≤1”,并且f(x)的最大值为m,最小值为m﹣2.解答:解:(1)若0≤m≤1,﹣1≤sinx≤1;∴﹣2≤sinx+m﹣1≤1;即f(x)∈[﹣2,1];∴此时f(x)存在零点;“0≤m≤1”是“函数f(x)=sinx+m﹣1有零点”的充分条件;(2)若“函数f(x)=sinx+m﹣1有零点”,则f(x)的最大值m≥0,最小值m﹣2≤0;∴0≤m≤2;∴得不到0≤m≤1;∴“0≤m≤1”不是“函数f(x)=sinx+m﹣1有零点”的必要条件;∴综上得“0≤m≤1”是“函数f(x)=sinx+m﹣1有零点”的充分不必要条件.故选:A.点评:考查判断一个条件是另一个条件的什么条件时,要从两个方面判断:充分条件,和必要条件,掌握正弦函数的值域,以及需理解充分条件、必要条件、充分不必要条件的概念.8.已知函数f(x)=2sin(2x+φ)(|φ|<的图象过点,则f(x)的图象的一个对称中心是()A. B. C. D.考点:正弦函数的对称性.专题:三角函数的图像与性质.分析:由题意可得=2sinφ,结合(|φ|<可得φ的值,由五点作图法令2x+=0,可解得:x=﹣,则可求f(x)的图象的一个对称中心.解答:解:∵函数f(x)=2sin(2x+φ)(|φ|<的图象过点,∴=2sinφ,由(|φ|<,可得:φ=∴f(x)=2sin(2x+),∴由五点作图法令2x+=0,可解得:x=﹣,则f(x)的图象的一个对称中心是.故选:B.点评:本题主要考查了正弦函数的对称性,属于基本知识的考查.9.设x,y满足约束条件,则下列不等式恒成立的是()A. x≥3 B. y≥4 C. x+2y﹣8≥0 D. 2x﹣y+1≥0考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用线性规划的知识进行判断即可.解答:解:作出不等式组对应的平面区域如图:则C(2,3),B(2,5),则x≥3,y≥4不成立,作出直线x+2y﹣8=0,和2x﹣y+1=0,由图象可知2x﹣y+1≥0不成立,恒成立的是x+2y﹣8≥0,故选:C.点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.10.如果函数y=f(x)在区间I上是增函数,而函数y=在区间I上是减函数,那么称函数y=f(x)是区间I上“缓增函数”,区间I叫做“缓增区间”,若函数f(x)=是区间I上“缓增函数”,则“缓增区间”I为()A. [1,+∞) B. C. [0,1] D.考点:函数单调性的判断与证明.专题:计算题;函数的性质及应用.分析:由题意,求f(x)=的增区间,再求y==x﹣1+的减函数,从而求缓增区间.解答:解:f(x)=在区间[1,+∞)上是增函数,y==x﹣1+,y′=﹣•=;故y==x﹣1+在[﹣,]上是减函数,故“缓增区间”I为[1,];故选D.点评:本题考查了函数的性质应用,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分)11.已知不共线的平面向量,满足,,那么|= 2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据向量的坐标即可求得,而根据即可得到,从而得到,这样便可求出答案.解答:解:;∴;;∴;∴.故答案为:.点评:考查根据向量的坐标求向量的长度的公式,两非零向量垂直的充要条件,以及数量积的运算.12.已知函数f(x)=则f(f(﹣1))= 1 .考点:函数的值.专题:函数的性质及应用.分析:直接利用分段函数求解函数值即可.解答:解:函数f(x)=则f(﹣1)=,f(f(﹣1))=f()==1.故答案为:1.点评:本题考查分段函数的应用,考查计算能力.13.已知实数x,y满足2x+2y=1,则x+y的最大值是﹣2 .考点:基本不等式.专题:不等式的解法及应用.分析:实数x,y满足2x+2y=1,利用基本不等式可得,化简即可得出.解答:解:∵实数x,y满足2x+2y=1,∴=2,化为x+y≤﹣2.当且仅当x=y=﹣1时取等号.则x+y的最大值是﹣2.故答案为:﹣2.点评:本题考查了基本不等式的性质、指数运算性质,属于基础题.14.某三棱锥的三视图如图所示,该三棱锥的体积是32 ;考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得三棱锥的底面边长与对应的高,求出它的体积.解答:解:根据几何体的三视图,得;该几何体是底面边长为8,该边上的高为6的三棱锥,且三棱锥的高为4;∴该三棱锥的体积为V三棱锥=×8×6×4=32.故答案为:32.点评:本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出几何体的结构特征,是基础题目.15.已知双曲线=1(a>0,b>0)的右焦点为F,过F作斜率为﹣1的直线交双曲线的渐近线于点P,点P在第一象限,O为坐标原点,若△OFP的面积为,则该双曲线的离心率为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:过F作斜率为﹣1的直线方程为y=﹣(x﹣c),与双曲线的渐近线y=x,可得P(,),利用△OFP的面积为,可得a=3b,即可求出该双曲线的离心率.解答:解:过F作斜率为﹣1的直线方程为y=﹣(x﹣c),与双曲线的渐近线y=x,可得P(,),∵△OFP的面积为,∴=,∴a=3b,∴c==b,∴e==.故答案为:.点评:本题考查双曲线的离心率,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共6小题,共75分)16.某区工商局、消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第2组或第4组的概率;(Ⅱ)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女性的概率.考点:古典概型及其概率计算公式;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(Ⅰ)设第2组[30,40)的频率为f2,利用概率和为1,求解即可.(Ⅱ)设第1组[30,40)的频数n1,求出n1,记第1组中的男性为x1,x2,女性为y1,y2,y3,y4列出随机抽取3名群众的基本事件,列出至少有两名女性的基本事件,然后求解至少有两名女性的概率.解答:(本小题满分12分)解:(Ⅰ)设第2组[30,40)的频率为f2=1﹣(0.005+0.01+0.02+0.03)×10=0.35;…(3分)第4组的频率为0.02×10=0.2所以被采访人恰好在第2组或第4组的概率为P1=0.35+0.2=0.55…(6分)(Ⅱ)设第1组[30,40)的频数n1,则n1=120×0.005×10=6…(7分)记第1组中的男性为x1,x2,女性为y1,y2,y3,y4随机抽取3名群众的基本事件是:(x1,x2,y1),(x1,x2,y2),(x1,x2,y3),(x1,x2,y4)(x1,y2,y1),(x1,y3,y2),(x1,y1,y3),(x1,y4,y1),(x1,y2,y4),(x1,y3,y4),(x2,y2,y1),(x2,y3,y2),(x2,y1,y3),(x2,y4,y1),(x2,y2,y4),(x2,y3,y4),(y1,y2,y3),(y1,y2,y4),(y2,y3,y4),(y1,y3,y4)共20种…(10分)其中至少有两名女性的基本事件是:(x1,y2,y1),(x1,y3,y2),(x1,y1,y3),(x1,y4,y1),(x1,y2,y4),(x1,y3,y4),(x2,y2,y1),(x2,y3,y2),(x2,y1,y3),(x2,y4,y1),(x2,y2,y4),(x2,y3,y4),(y1,y2,y3),(y1,y2,y4),(y2,y3,y4),(y1,y3,y4)共16种所以至少有两名女性的概率为…(12分)点评:本题考查古典概型概率公式的应用概率的求法,考查计算能力.17.已知向量,,实数k为大于零的常数,函数f(x)=,x∈R,且函数f(x)的最大值为.(Ⅰ)求k的值;(Ⅱ)在A中,A9分别为内角A2所对的边,若<A<π,f(A)=0,且b=2,a=2,求的值.考点:余弦定理的应用;平面向量数量积的运算;两角和与差的正弦函数.专题:三角函数的求值;平面向量及应用.分析:(Ⅰ)利用数量积以及两角和与差的三角函数化简函数的表达式,然后利用函数的最大值求解k的值即可.(Ⅱ)求出,利用A的范围求出A的值,利用要走的路求出c,然后求解数量积的值即可.解答: 17.(本小题满分12分)解:(Ⅰ)由已知==…(5分)因为x∈R,所以f(x)的最大值为,则k=1…(6分)(Ⅱ)由(Ⅰ)知,,所以化简得因为,所以则,解得…(8分)所以化简得c2+4c﹣32=0,则c=4…(10分)所以…(12分)点评:本题考查余弦定理的应用,两角和与差的三角函数,向量的数量积,考查计算能力.18.如图,在正四棱台ABCD﹣A 1B1C1D1中,A1B1=a,AB=2a,,E、F分别是AD、AB的中点.(Ⅰ)求证:平面EFB1D1∥平面BDC1;(Ⅱ)求证:A1C⊥平面BDC1.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.考点:平面与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)连接A1C1,AC,分别交B1D1,EF,BD于M,N,P,连接MN,C1P,证明D∥平面EFB1D1,推出MC1∥NP,然后证明PC1∥MN,得到PC1∥平面EFB1D1,利用平面与平面平行的判定定理证明平面EFB1D1∥平面BDC1.(Ⅱ)连接A1P,说明四边形A1C1CP为平行四边形,证明A1C⊥PC1,推出BD⊥平面A1C1CA,得到BD⊥A1C,然后证明A1C⊥平面BDC1.解答: 18.(本小题满分12分)证明:(Ⅰ)连接A1C1,AC,分别交B1D1,EF,BD于M,N,P,连接MN,C1P由题意,BD∥B1D1因为BD⊄平面EFB1D1,B1D1⊂平面EFB1D1,所以BD∥平面EFB1D1…(3分)又因为A1B1=a,AB=2a,所以又因为E、F分别是AD、AB的中点,所以所以MC1=NP又因为AC∥A1C1,所以MC1∥NP所以四边形MC1PN为平行四边形所以PC1∥MN因为PC1⊄平面EFB1D1,MN⊂平面EFB1D1,所以PC1∥平面EFB1D1因为PC1∩BD=P,所以平面EFB1D1∥平面BDC1…(6分)(Ⅱ)连接A1P,因为A1C1∥PC,A1C1=,所以四边形A1C1CP为平行四边形因为,所以四边形A 1C1CP为菱形所以A1C⊥PC1…(9分)因为MP⊥平面ABCD,MP⊂平面A1C1CA所以平面A1C1CA⊥平面ABCD,因为BD⊥AC,所以BD⊥平面A1C1CA因为A1C⊂平面A1C1CA,所以BD⊥A1C因为PC1∩BD=P,所以A1C⊥平面BDC1.…(12分)点评:本题考查平面与平面平行的判定定理的应用,直线与平面垂直的判定定理的应用,考查空间想象能力以及逻辑推理能力,19.设{a n}是等差数列,{b n}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*.(Ⅰ)求{a n},{b n}的通项公式;(Ⅱ)若数列{d n}满足(n∈N*),且d1=16,试求{d n}的通项公式及其前2n项和S2n.考点:数列的求和;等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)通过{b n}的各项都为正整数及,可得解得,从而可得结论;(Ⅱ)通过(I)及log2b n+1=n可得,结合已知条件可得d1,d3,d5,…是以d1=16为首项、以为公比的等比数列,d2,d4,d6,…是以d2=8为首项、以为公比的等比数列,分别求出各自的通项及前n项和,计算即可.解答:解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0,且,即,解得,或,由于{b n}各项都为正整数的等比数列,所以,从而a n=1+(n﹣1)d=2n﹣1,;(Ⅱ)∵,∴log2b n+1=n,∴,,两式相除:,由d1=16,,可得:d2=8,∴d1,d3,d5,…是以d1=16为首项,以为公比的等比数列;d2,d4,d6,…是以d2=8为首项,以为公比的等比数列,∴当n为偶数时,,当n为奇数时,,综上,,∴S2n=(d1+d3+…+d2n﹣1)+(d2+d4+…+d2n)=.点评:本题考查等差、等比数列的基本性质,求通项及前n项和,考查对数的性质,考查分类讨论的思想,注意解题方法的积累,属于中档题.20.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.(Ⅰ)求抛物线C1的方程;(Ⅱ)已知椭圆C2:=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为.直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.考点:直线与圆锥曲线的综合问题;椭圆的简单性质;抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设点G的坐标为(x0,y0),列出关于x0,y0,p的方程组,即可求解抛物线方程.(Ⅱ)利用已知条件推出m、n的关系,设(x1,y1)、B(x2,y2),联立直线与椭圆方程,利用韦达定理以及判别式大于0,求出K的范围,通过原点O在以线段AB为直径的圆的外部,推出,然后求解k的范围即可.解答:(本小题满分13分)解:(Ⅰ)设点G的坐标为(x0,y0),由题意可知…(2分)解得:,所以抛物线C1的方程为:y2=8x…(4分)(Ⅱ)由(Ⅰ)得抛物线C1的焦点F(2,0),∵椭圆C2的一个焦点与抛物线C1的焦点重合∴椭圆C2半焦距c=2,m2﹣n2=c2=4,∵椭圆C2的离心率为,∴,,∴椭圆C2的方程为:…(6分)设A(x1,y1)、B(x2,y2),由得(4k2+3)x2﹣32kx+16=0由韦达定理得:,…(8分)由△>0⇒(﹣32k)2﹣4×16(4k2+3)>0或…①…(10分)∵原点O在以线段AB为直径的圆的外部,则,∴===…②由①、②得实数k的范围是或…(13分)点评:本题考查直线与题意的位置关系的综合应用,圆锥曲线的综合应用,考查分析问题解决问题的能力.21.已知函数f(x)=1﹣﹣lnx(a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在点处的切线方程;(Ⅱ)当a≥0时,记函数Γ(x)=﹣1+f(x),试求Γ(x)的单调递减区间;(Ⅲ)设函数h(a)=3λa﹣2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,求h(a)的最大值.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)当a=1时,化简函数的解析式求出函数的导数,求出斜率以及切点坐标,求解切线方程.(Ⅱ)化简函数Γ(x)=﹣1+f(x)的解析式,求出函数的导数,通过①当a=0时,②当a>0时,分别通过函数的极值点,判断函数的单调性.求出单调区间.(Ⅲ)通过函数的导数为0,求出极值点,利用题意转化为函数f(x)在区间(0,2)上不存在极值,求出a的范围然后求解h(a)max值即可.解答:(本小题满分14分)解:(Ⅰ)当a=1时,,,则,∴函数f(x)的图象在点的切线方程为:,即2x﹣y+ln2﹣2=0.…(4分)(Ⅱ)∵,∴(x>0),,①当a=0时,,由及x>0可得:0<x≤1,∴Γ(x)的单调递减区间为(0,1]…(6分)②当a>0时,,由ax2﹣(2a﹣1)x﹣1=0可得:△=(2a﹣1)2+4a=4a2+1>0,设其两根为x1,x2,因为,所以x1,x2一正一负,设其正根为x2,则,由及x>0可得:,∴Γ(x)的单调递减区间为.…(8分)(Ⅲ),由f'(x)=0⇒x=a,由于函数f(x)在区间(0,2)上不存在极值,所以a≤0或a≥2…(10分)对于h(a)=3λa﹣2a2,对称轴,当或,即λ≤0或时,;当,即时,h(a)max=h(0)=0;当,即时,h(a)max=h(2)=6λ﹣8;综上可知:.…(14分)点评:本题考查函数的导数的综合应用,函数的单调性以及函数的极值最值的求法,考查分类讨论以及转化思想的应用.。
2 2015年聊城市二模文科数学
注意事项:
1.本试题分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至3页,第II 卷3至5页.满分150分,考试用时120分钟.
2.答卷前,考生务必将自己的姓名、学校、考生号涂写在答题卡上.
3.第I 卷共2页.答题时,考生须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试卷上作答无效.
4.第II 卷写在答题卡对应的区域内,严禁在试题卷或草纸上答题.
5.考试结束后,只将答题卡交回.
参考公式: 锥体的体积公式:13
V Sh =
.,其中S 是锥体的底面积,h 是锥体的高. 第I 卷(选择题 共50分)
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知复数11z i =
-+(i 为虚数单位),则z 在复平面内对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.设集合{}{}2230,ln A x x x B y y x A B =--<==⋂=,则 A.()03, B. ()02, C. ()0,1 D. ()1,2
3.下列函数中,满足()()()f xy f x f y =的单调递增函数是
A. ()3f x x =
B. ()1
f x x -=- C. ()2lo
g f x x = D. ()2x
f x = 4.已知两条不同的直线,l m 和两个不同的平面,αβ,有如下命题:
①若,,//,////l m l m ααββαβ⊂⊂,则;
②若,//,//l l m l m αβαβ⊂⋂=,则;
③若,//l l αββα⊥⊥,则,其中正确命题的个数是
A.3
B.2
C.1
D.0
5.函数()1x
xa y a x
=>的图象的大致形状是
6.利用简单随机抽样从某小区抽取100户居民进行
月用电量调查,发现其用电量都在50到350度之
间,频率分布直方图如图所示.在这些用户中,用电
量落在区间[150,250]内的户数为
A.46
B.48
C.50
D.52
7.已知函数()()
2log ,1,2,0 1.x x f x f x x ≥⎧⎪=⎨<<⎪⎩则1212f ⎡⎤⎛⎫⎢⎥= ⎪⎢⎥⎝⎭⎣⎦ A. 32 B.1 C.12 D. 1-
8.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A,B 两点,且ABC ∆为等腰直
角三角形,则实数a 的值为 A.1
17-或 B. 1- C. 11-或 D.1
9.1234,,,a a a a 是各项不为零的等差数列,且公差0d ≠,若将此数列删去2a ,得到的数列134,,a a a 是等比数列,则
1a d 的值为 A.1
B. 4-
C. 1-
D. 4
10.已知M 是ABC ∆内一点,且30AB AC BAC ⋅=∠=o u u u r u u u r ,若M
B C M C A ∆∆,,MAB ∆的面积分别为12,x,y,则xy 的最小值是 A.
114 B. 116 C. 118 D. 120
第II 卷(非选择题 共100分)
二、填空题(本大题共5个小题,每小题5分,共25分.)
11.在ABC ∆中,若54sin ,cos 135
A B ==,则cos C =_________.
12.已知双曲线22
221x y a b
-=的离心率为2,它的一个焦点与抛物线216y x =的焦点相同,那么该双曲线的渐近线方程为_________.
13.执行如图所示的程序框图,若输入的1,2T a ==,则输出的T 的值
为_______.
14.记集合(){}()221,1,,0
0x y A x y x y B x y x y ⎧+≤⎧⎫⎪⎪⎪=+≤=≥⎨⎨⎬⎪⎪⎪≥⎩⎭
⎩构成的平面区域分别为M,N ,现随机地向M 中抛一粒豆子(大小忽略
不计),则该豆子落入N 中的概率为_________.
15.已知函数()()sin f x M x ωϕ=+是常数,(0,0M ω>>,
2π
ϕπ≤≤)的部分图象如图所示,其中A,B 两点之间的距离
为5,那么()1f -=__________.
三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.)
16. (本小题满分12分)
一个小商店从某食品有限公司购进10袋白糖,称池内各袋白糖的重量
(单位:g ),如茎叶图所示,其中有一个数据被污损.
(I )若已知这些白糖重量的平均数为497g ,求污损处的数据a ;
(II )现从重量不低于498g 的所购各袋白糖中随机抽取2袋,求重量是
508g 的那袋被抽中的概率.
17. (本小题满分12分)
设ABC ∆的内角A,B,C 的对边分别是,,a b c ,已知,cos 6A a b C π
==.
(I )求角C 的大小;
(II )如图,在ABC ∆的外角ACD ∠内取一点P ,使PC=2,过
点P 作PM CA ⊥于M ,PN CD ⊥于N ,设线段PM ,PN 的长分别为,,,62m n PCM x x π
π
∠=<<且,求()f x mn =的最大
值及相应x 的值.
18. (本小题满分12分)
如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,
AD//BC ,9022ADC PA PD AD BC ∠=====o
,CD PB Q 是AD 的中点
.
(I )求证:平面PQ ⊥底面ABCD ;
(II )求三棱锥C PBD -的体积.
19. (本小题满分12分)
在公比为2的等比数列{}n a 中,2121a a a +是与的等差中项.
(I )求数列{}n a 的通项公式;
(II )记数列{}n a 前n 项的和为n S ,若数列{}n b 满足()2log 2n n n b a S =+,试求数列{}n b 前n 项的和n T .
20. (本小题满分13分)
已知函数()()21ln 1,2
f x a x x a x a R =+-+∈.. (I )当2a =时,求()f x 的单调区间;
(II )若()f x 在区间(1,2)上不具有单调性,求a 的取值范围.
21. (本小题满分14分)
已知椭圆E 的中心在坐标原点O ,它的长轴长,短轴长分别为2a ,右焦点(),0F c ,直
线2
:0l cx a x -=与轴相交于点,2A OF FA =u u u r u u r ,过点A 的直线m 与椭圆E 交于P ,Q 两点. (I )求椭圆E 的方程;
(II )若0OP OQ ⋅=u u u r u u u r ,求直线m 的方程;
(III )过点P 且平行于直线l 的直线与椭圆E 相交于另一点M ,求证:,,Q F M 三点共线.。