【6套】广西壮族自治区南宁市第三中学2020中考提前自主招生数学模拟试卷附解析【冲刺实验班】
- 格式:docx
- 大小:1.54 MB
- 文档页数:78
2020年广西南宁三中初中部大学区中考数学三模试卷一、选择题(本大题共12小题,共36.0分)1.若直线l上一点P和直线l外一点Q的距离为8cm,则点Q到直线l的距离是()A. 等于8cmB. 小于或等于8cmC. 大于8cmD. 以上三种都有可能2.“m的3倍与n的平方的差”用代数式表示正确的是A. (m−3n)2B. (3m−n)2C. 3m−n 2D. m−3n 23.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A. 圆锥,正方体,三棱锥,圆柱B. 圆锥,正方体,四棱锥,圆柱C. 圆锥,正方体,四棱柱,圆柱D. 正方体,圆锥,圆柱,三棱柱4.2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A. 9.56×106B. 95.6×105C. 0.956×107D. 956×1045.下列说法正确的是()A. 为了解全国中小学生的心理健康状况,应采用普查B. 确定事件一定会发生C. 某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98D. 数据6、5、8、7、2的中位数是66.计算a2−(a+1)(a−1)的结果是()A. 1B. −1C. 2a2+1D. 2a2−17.关于x的一元二次方程4x2−3x+m=0有两个相等的实数根,那么m的值是()A. 98B. 916C. −98D. −9168.如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(2,1),点C的坐标为(2,−3).则经画图操作可知,△ABC的外心坐标应是()A. (0,0)B. (1,0)C. (−2,−1)D. (2,0)9.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“有100个和尚分100只馒头正好分完,如果大和尚一人分3只小和尚3人分一只,试问大、小和尚各有几人?”请算算大和尚有A. 75人B. 50人C. 30人D. 25人(k≠0),它们在同一直角坐标系中的图象10.已知二次函数y=kx2+k(k≠0)与反比例函数y=kx大致是()A. B.C. D.11.如图,某底面为圆形的古塔剖面和山坡的剖面在同一平面上,古塔EF与地面BD垂直,古塔的底面直径CD=8米,BC=10米,斜坡AB=26米,斜坡坡面AB的坡度i=5:12,在坡脚的点A处测得古塔顶端点E的仰角∠GAE=47∘,则古塔EF的高度约为(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)A. 30.66米B. 35.51米C. 40.66米D. 27.74米12.等腰三角形ABC中,AB=AC=12,BC=7.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则三角形BEC的周长等于()A. 12B. 13C. 19D. 31二、填空题(本大题共6小题,共18.0分)3的立方根是__________.13.√2714.分解因式:16−x2=______.15.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为______吨.16.在一次函数y=(2−k)x+1中,y随x的增大而增大,则k的取值范围为________.17.如图,将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为FG.若BG=2cm,DE=3cm,则FG的长为______.18.如图,△P1OA1,△P2A1A2,△P3A2A3…△P n A n−1A n都是等腰直角三角形,点P1、P2、P3…P n都(x>0)的图象上,斜边OA1、A1A2、A2A3…A n−1A n都在x轴上.则点A10的坐标是在函数y=4x______.三、解答题(本大题共8小题,共66.0分)19.计算:(12)−1−(2019+π)0+4sin60°−√12.20.先化简,再求值:a2−6a+9a2−4⋅a+2a−3−a−1a−2,其中a=−4.21.如图,AC//BD.(1)利用尺规作AB的垂直平分线(保留作图痕迹,不写作法);(2)若AB的垂直平分线分别交AC、BD于点M、N,连接BM,求证△BMN是等腰三角形.22.有三张正面分别标有数字:−1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落上的概率.在双曲线y=2x23.如图,在▱ABCD中,对角线AC和BD相交于点O,△ABO是等边三角形,AB=4.求▱ABCD的面积.24.新欣商场经营某种新型电子产品,购进时的价格为20元/件.根据市场预测,在一段时间内,销售价格为40元/件时,销售量为200件,销售单价每降低1元,就可多售出20件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)写出销售该产品所获利润W(元)与销售单价x(元)之间的函数关系式,并求出商场获得的最大(3)若商场想获得不低于4000元的利润,同时要完成不少于320件的该产品销售任务,该商场应该如何确定销售价格.25.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.26.如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(−4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.【答案与解析】1.答案:B解析:本题考查了点到直线的距离的定义及垂线段最短的性质.根据点到直线的距离的定义与垂线段最短的性质,易得答案.根据题意,点Q到直线l的距离为点Q到直线l的垂线段的长度,其垂足是点Q到直线l上所有点中距离最小的点;此题不能明确PQ与l是否垂直,则点Q到直线l的距离应小于等于PQ的长度,即不大于8cm.故选:B.2.答案:C解析:本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.m的3倍是3m,n的平方n2,m的3倍与n的平方的差为3m−n2,据此解答.解:m的3倍与n的平方的差为3m−n2.故选C.3.答案:D解析:解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选:D.根据常见的几何体的展开图进行判断,即可得出结果.本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.解析:解:将数据9560000科学记数法表示为9.56×106.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.答案:D解析:解:A.为了解全国中小学生的心理健康状况,应采用抽样调查,此选项错误;B.确定事件一定会发生,或一定不会发生,此选项错误;C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98和99,此选项错误;D.数据6、5、8、7、2的中位数是6,此选项正确;故选:D.根据题意,逐一判断求解可得.本题考查了抽样调查,众数和中位数的定义,属于基础题.6.答案:A解析:先利用平方差公式计算,再根据整式的加减运算法则,即可得出答案.本题主要考查平方差公式的运用,熟练掌握公式结构特征是解题的关键.解:a2−(a+1)(a−1),=a2−(a2−1),=a2−a2+1,=1.故选A.解析:解:∵关于x的一元二次方程4x2−3x+m=0有两个相等的实数根,∴△=(−3)2−4×4m=9−16m=0,.解得:m=916故选:B.由方程有两个相等的实数根,即可得出关于m的一元一次方程,解之即可得出m的值.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.答案:C解析:本题考查三角形外接圆与外心,坐标与图形的性质,数形结合的数学思想,根据△ABC的外心即是三角形三边垂直平分线的交点,在平面直角坐标系中作AB与BC的中垂线,两中垂线的交点即为△ABC的外心,进而可得外心的坐标即可解答.解:∵△ABC的外心即是三角形三边垂直平分线的交点,∴由作图可知,EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(−2,−1).故选C.9.答案:D解析:【试题解析】。
第一套:满分150分2020-2021年南宁市第三中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
南宁市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。
①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。
2020年广西南宁市中考数学模拟试题(三)一.选择题(共12小题,每小题3分,共36分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠52.在,0,,,,﹣1.414中,有理数有()A.1个B.2个C.3个D.4个3.如图下列各曲线中表示y是x的函数的是()A.B.C.D.4.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形5.如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC的度数是()A.40°B.50°C.60°D.70°6.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)7.已知x是整数,当|x﹣5|取最小值时,x的值是()A.6B.7C.8D.98.众所周知,“石头、剪刀、布”游戏规则是比赛时双方任意出“石头”、“剪刀”、“布”这三种手势中的一种.石头胜剪刀,剪刀胜布,布胜石头,若双方出相同手势,则算打平.小明和小红玩这个游戏,他们随机出一种手势,则小明获胜的概率为()A.B.C.D.9.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.710.若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.﹣2B.1C.0D.311.如图,在△ABC中AB=2,将△ABC绕点A按逆时针方向旋转,使得点B恰好落在BC的中点B′处,得到△AB′C′.若tan∠CB′C′=,则BC的长为()A.4B.6C.8D.1012.如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C 作CE⊥x轴于点E,连结OC,OD,若△COE的面积与△DOB的面积相等,则k的值是()A.1B.C.2D.4二.填空题(共6小题,每小题3分,共18分)13.计算:(π+1)0+|﹣2|﹣()﹣2+tan60°=.14.点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab﹣1+b2的值为.15.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=6,以点C为圆心,CB长为半径作弧,交AB于点D,再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.16.如图,矩形ABCD中,AB=1,AD=,以BC的中点E为圆心的与AD相切,则图中阴影部分的面积为.17.如图,Rt△ABC中,∠ACB=90°,点D是AC上一点,过点D作DE⊥AC交AB于点E.动点P从D点出发,以每秒1个单位长度的速度,按D→E→B→C的路径匀速运动,设P点的运动时间为t秒,△PCD的面积为S,S关于t的函数图象如图所示,则△ABC 的周长为.18.如图,在△ABC中,AB=AC=5,tan∠ABC=,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为.三.解答题(共8小题,共66分)19.计算:(1)(x﹣3y)2﹣(x+3y)(x﹣3y);(2)解方程:=.20.如图,海中有两个小岛C、D,某渔船在海中的A处测得小岛D位于东北方向上,且相距30海里,该渔船自西向东航行一段时间到达B处,此时测得小岛C恰好在点B的正北方向上,且相距75海里,又测得点B与小岛D相距30海里.(1)求sin∠ABD的值;(2)求小岛C、D之间的距离(计算过程中的数据不取近似值).21.某公司在国内有多家门店,共有600名销售人员,为了解该公司各门店销售人员上个月的销售业绩,随机抽取了甲、乙两个门店各30名销售人员在上月的销售数量,并将数据进行整理分析,给出了下面部分信息:①数据分为五组,分别为A组:x≤40,B组:40<x≤60,C组:60<x≤80,D组:80<x≤100,E组:x>100;②样本中甲、乙两门店的最高销售数量都是120件,甲店的最低数量比乙店少两件;③甲店C组数据:62,69,71,69,78,73,69,79,78,68乙店C组数据:78,76,69,62,69,71,80,69,73,79,75④两组数据的平均数、中位数、众数、极差(单位:件)如表所示:平均数中位数众数极差甲店706969b乙店70a6986⑤甲店销售数量频数分布直方图和乙店销售数量扇形统计图如下:(1)扇形统计图A组学生对应的圆心角的度数为,中位数a=,极差b =;(2)通过以上的数据分析,你认为甲、乙两个门店哪个门店的销售人员上月的业绩更好,并说明理由;(3)若该公司计划将上月销售数量在80件以上(不含80)的员工评为“优秀销售员”,请你估计该公司能评为“优秀销售员”的人数.22.小明根据学习函数的经验,对函数y=+x+b进行了探究,已知当x=0时,y=;当x=2时,y=1.探究过程如下,请补充完整:(1)k=,b=.(2)在给出的平面直角坐标系中,画出函数图象,并写出这个函数的一条性质:;(3)若一次函数y2=mx+1的图象与该函数有两个交点,则m的取值范围为:.23.受“新冠”疫情影响,全国中小学延迟开学,很多学校都开展起了“线上教学”,市场上对手写板的需求激增.重庆某厂家准备3月份紧急生产A,B两种型号的手写板,若生产20个A型号和30个B型号手写板,共需要投入36000元;若生产30个A型号和20个B型号手写板,共需要投入34000元.(1)请问生产A,B两种型号手写板,每个各需要投入多少元的成本?(2)经测算,生产的A型号手写板每个可获利200元,B型号手写板每个可获利400元,该厂家准备用10万元资金全部生产这两种手写板,总获利w元,设生产了A型号手写板a个,求w关于a的函数关系式;(3)在(2)的条件下,若要求生产A型号手写板的数量不能少于B型号手写板数量的2倍,请你设计出总获利最大的生产方案,并求出最大总获利.24.已知抛物线y=ax2﹣3ax+m与x轴交于A(﹣1,0)、B(x2,0)两点,与y轴正半轴交于点C,且满足S△ABC=5.(1)求此抛物线的对称轴和解析式;(2)点D是抛物线的对称轴与x轴的交点,在直线BC上找一点Q,使QA+QD最小,求QA+QD的最小值;(3)在第一象限的抛物线上是否存在点P,使得∠PCA+∠ABC=180°?若存在,请你求出P点的坐标;若不存在,请说明理由.25.求一元二次方程x2﹣2x﹣3=0时,可以先将左边(x2﹣2x﹣3)分解成(x﹣3)(x+1),该方程变为(x﹣3)(x+1)=0,解得x1=3,x2=﹣1;求一元三次方程x3﹣2x2﹣2x+4=0也可以将左边(x3﹣2x2﹣2x+4)分解成(x﹣2)(x2﹣2),则该方程变为(x﹣2)(x2﹣2)=0,从而求出该方程的解为:x1=2,x2=,x3=﹣;这种利用分解因式将高次方程转化成一元一次方程和一元二次方程,从而求出其解的方法称为降次法.请根据材料,完成下列解答:(1)解方程:①x3﹣2x2﹣x+2=0②x4+2x3﹣7x2﹣8x+12=0(2)解决下面问题:①若关于x的方程x3﹣5x2+(4+k)x﹣k=0的三个根可作为一个等腰三角形的三边长,求实数k的值;②若关于x的方程x4+2x3+(3+m)x2+(2+m)x+2m=0有实根,若所有实根之积为﹣2,求所有实数根的平方和.26.在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.参考答案与试题解析一.选择题(共12小题,每小题3分,共36分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角的定义进行选择即可.【解答】解:∠1的同位角是∠3,故选:B.2.在,0,,,,﹣1.414中,有理数有()A.1个B.2个C.3个D.4个【分析】直接化简二次根式,再利用有理数的定义判断得出答案.【解答】解:在,0,,,=2,﹣1.414中,有理数有:,0,,﹣1.414共4个.故选:D.3.如图下列各曲线中表示y是x的函数的是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、图象满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A符合题意;B、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B不符合题意;C、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不符合题意;D、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D不符合题意;故选:A.4.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形【分析】根据矩形的对角线相等且平分,和正方形的对角线互相垂直、相等平分进行判定即可得出结论.【解答】解:A、对角线互相平分的四边形是平行四边形,故A选项正确;B、对角线相等的平行四边形才是矩形,故B选项错误;C、对角线互相垂直的矩形是正方形,故C选项正确;D、两条对角线相等的菱形是正方形,故D选项正确;综上所述,B符合题意,故选:B.5.如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC的度数是()A.40°B.50°C.60°D.70°【分析】根据圆周角定理即可求出答案.【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC=∠BOC=50°,故选:B.6.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)【分析】连接BF交y轴于P,根据题意求出CG,根据相似三角形的性质求出GP,求出点P的坐标.【解答】解:如图,连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(﹣4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选:C.7.已知x是整数,当|x﹣5|取最小值时,x的值是()A.6B.7C.8D.9【分析】根据绝对值的意义,由与5最接近的整数是7,可得结论.【解答】解:∵<5<,∴7<5<8,且与5最接近的整数是7,∴当|x﹣5|取最小值时,x的值是7,故选:B.8.众所周知,“石头、剪刀、布”游戏规则是比赛时双方任意出“石头”、“剪刀”、“布”这三种手势中的一种.石头胜剪刀,剪刀胜布,布胜石头,若双方出相同手势,则算打平.小明和小红玩这个游戏,他们随机出一种手势,则小明获胜的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明获胜的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小明获胜的有3种情况,∴小明获胜的概率P==;故选:B.9.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.7【分析】根据在1个主干上的主干、支干和小分支的数量之和是43个,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.10.若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.﹣2B.1C.0D.3【分析】解分式方程可先确定出a的取值范围,再由二次函数的性质可确定出a的范围,从而可确定出a的取值,可求得答案.【解答】解:解分式方程+=2可得y=,∵分式方程+=2的解是非负实数,∴a≥﹣2且a≠2,∵y=x2+(a﹣1)x+b,∴抛物线开口向上,对称轴为x=,∴当x<时,y随x的增大而减小,∵在x<﹣1时,y随x的增大而减小,∴≥﹣1,解得a≤3,综上可知满足条件的a的值为﹣2,1,0,1,3,∴所有满足条件的整数a的值之和是﹣2+1+0+1+3=1,故选:B.11.如图,在△ABC中AB=2,将△ABC绕点A按逆时针方向旋转,使得点B恰好落在BC的中点B′处,得到△AB′C′.若tan∠CB′C′=,则BC的长为()A.4B.6C.8D.10【分析】作B′H⊥AB于H,如图,利用旋转的性质得∠AB′C′=∠B,AB′=AB=2,再证明即∠CB′C′=∠BAB′,根据正切的定义得tan∠HAB′==tan∠CB′C′=,设B′H=4x,则AH=3x,则AB′=5x=2,解得x=,所以B′H=,BH=,然后利用勾股定理计算出BB′,从而得到BC的长.【解答】解:作B′H⊥AB于H,如图,∵△ABC绕点A按逆时针方向旋转,∴∠AB′C′=∠B,AB′=AB=2,∵∠AB′C=∠B+∠BAB′,即∠AB′C′+∠CB′C′=∠B+∠BAB′,∴∠CB′C′=∠BAB′,在Rt△HAB′中,tan∠HAB′==tan∠CB′C′=,设B′H=4x,则AH=3x,∴AB′=5x,即5x=2,解得x=,∴B′H=,AH=,∴BH=2﹣=,在Rt△BB′H中,BB′==4,而B′为BC的中点,∴BC=2BB′=8.故选:C.12.如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C 作CE⊥x轴于点E,连结OC,OD,若△COE的面积与△DOB的面积相等,则k的值是()A.1B.C.2D.4【分析】由反比例k的几何意义可得S△OCE=k,设D(x,),所以S△BOD=﹣x,再由已知可得k=﹣x,求得D(﹣k,﹣2),再将点D代入y=x﹣1即可求k的值.【解答】解:由题意可求B(0,﹣1),∵直线y=x﹣1与y1=交于点C,∴S△OCE=k,设D(x,),∴S△BOD=×1×(﹣x)=﹣x,∵△COE的面积与△DOB的面积相等,∴k=﹣x,∴k=﹣x,∴D(﹣k,﹣2),∵D点在直线y=x﹣1上,∴﹣2=﹣k﹣1,∴k=2,故选:C.二.填空题(共6小题,每小题3分,共18分)13.计算:(π+1)0+|﹣2|﹣()﹣2+tan60°=﹣1.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1+2﹣﹣4+=﹣1,故答案为:﹣114.点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab﹣1+b2的值为3.【分析】先把P点坐标代入函数解析式,求得a﹣b的值,再将代数式转化成a﹣b的形式,整体代入计算便可.【解答】解:∵P(a,b)是直线y=x﹣2上一点,∴b=a﹣2,∴a﹣b=2,∴原式=(a﹣b)2﹣1=22﹣1=3,故答案为3.15.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=6,以点C为圆心,CB长为半径作弧,交AB于点D,再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为9.【分析】根据作图过程可得,CE是BD的垂直平分线,即CF⊥AB于点F,根据30度角所对直角边等于斜边一半即可求得AF的长.【解答】解:根据作图过程可知:CE是BD的垂直平分线,∴CF⊥AB于点F,∴∠CFB=90°∵∠ACB=90°,∠A=30°,BC=6,∴∠CBF=60°,AB=2BC=12,∴∠BCF=30°,∴BF=BC=3,∴AF=AB﹣BF=9.故答案为9.16.如图,矩形ABCD中,AB=1,AD=,以BC的中点E为圆心的与AD相切,则图中阴影部分的面积为.【分析】连接MN、PE,则PE⊥MN,在直角△MEF中利用三角函数即可求得∠MEF的度数,然后求得∠MEN的度数,利用扇形的面积公式即可求解.【解答】解:连接MN、PE,则PE⊥MN,∵在直角△MEF中,MF=MN=,ME=1,sin∠MEF===,∴∠MEF=60°,∴∠MEN=120°,∴S阴影==.故答案是:.17.如图,Rt△ABC中,∠ACB=90°,点D是AC上一点,过点D作DE⊥AC交AB于点E.动点P从D点出发,以每秒1个单位长度的速度,按D→E→B→C的路径匀速运动,设P点的运动时间为t秒,△PCD的面积为S,S关于t的函数图象如图所示,则△ABC 的周长为16.【分析】先由当t=6秒时,S有最大值8,当t=10秒时,S=0,得出BC的值,进而根据t=6时,S=8,得出CD的值,从而可进一步求得DE和BE的值;然后证明△ADE ∽△ACB,利用相似三角形的性质可得AD和AE的值,从而△ABC的周长可求.【解答】解:∵当t=6秒时,S有最大值8,当t=10秒时,S=0∴BC=10﹣6=4∵当t=6时,S=8∴×CD×4=8∴CD=4∵CD×DE=2∴×4×DE=2∴DE=1∴BE=6﹣1=5∵DE⊥AC∴∠ADE=90°∵∠ACB=90°∴DE∥BC∴△ADE∽△ACB∴==∴==解得:AD=,AE=∴AC=+4=,AB=+5=∴△ABC的周长为++4=16故答案为:16.18.如图,在△ABC中,AB=AC=5,tan∠ABC=,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.【分析】过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.由AB=AC=5,tan∠ABC=,得出BC=4,得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG,EH=DG=8﹣x,所以S=,当x=4时,△BDE面积的最大值为8.△BDE【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,tan∠ABC=,∴BC=4,∴BM=CM=2,∵∠B=∠B,∠AMB=∠CGB=90°,∴△AMB∽△CGB,∴,即,∴GB=8,设BD=x,则DG=8﹣x,∵∠EDH=∠CDG,∠DHE=∠DGC=90°,ED=DC,∴△EDH≌△DCG(AAS),∴EH=DG=8﹣x,∴S△BDE=,当x=4时,△BDE面积的最大值为8.故答案为8.三.解答题(共8小题,共66分)19.计算:(1)(x﹣3y)2﹣(x+3y)(x﹣3y);(2)解方程:=.【分析】(1)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=x2﹣6xy+9y2﹣x2+9y2=﹣6xy+18y2;(2)去分母得:2(2x+1)=4,去括号得:4x+2=4,移项合并得:4x=2,解得:x=,经检验x=是分式方程的解.20.如图,海中有两个小岛C、D,某渔船在海中的A处测得小岛D位于东北方向上,且相距30海里,该渔船自西向东航行一段时间到达B处,此时测得小岛C恰好在点B的正北方向上,且相距75海里,又测得点B与小岛D相距30海里.(1)求sin∠ABD的值;(2)求小岛C、D之间的距离(计算过程中的数据不取近似值).【分析】(1)过D作DE⊥AB于E,解直角三角形即可得到结论;(2)过D作DF⊥BC于F,解直角三角形即可得到结论.【解答】解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=30,∠DAE=45°,∴DE=30×sin45°=30,在Rt△BED中,BD=30,∴sin∠ABD=;(2)过D作DF⊥BC于F,在Rt△BED中,DE=30,BD=30,∴BE=,∵四边形BFDE是矩形,∴DF=EB=60,BF=DE=30,∴CF=BC﹣BF=45,在Rt△CDF中,CD=,∴小岛C,D之间的距离为75nmile21.某公司在国内有多家门店,共有600名销售人员,为了解该公司各门店销售人员上个月的销售业绩,随机抽取了甲、乙两个门店各30名销售人员在上月的销售数量,并将数据进行整理分析,给出了下面部分信息:①数据分为五组,分别为A组:x≤40,B组:40<x≤60,C组:60<x≤80,D组:80<x≤100,E组:x>100;②样本中甲、乙两门店的最高销售数量都是120件,甲店的最低数量比乙店少两件;③甲店C组数据:62,69,71,69,78,73,69,79,78,68乙店C组数据:78,76,69,62,69,71,80,69,73,79,75④两组数据的平均数、中位数、众数、极差(单位:件)如表所示:平均数中位数众数极差甲店706969b乙店70a6986⑤甲店销售数量频数分布直方图和乙店销售数量扇形统计图如下:(1)扇形统计图A组学生对应的圆心角的度数为12°,中位数a=72,极差b =88;(2)通过以上的数据分析,你认为甲、乙两个门店哪个门店的销售人员上月的业绩更好,并说明理由;(3)若该公司计划将上月销售数量在80件以上(不含80)的员工评为“优秀销售员”,请你估计该公司能评为“优秀销售员”的人数.【分析】(1)根据表格中的数据和扇形统计图中的数据可以计算出扇形统计图A组学生对应的圆心角的度数,a的值,极差b的值;(2)根据表格中的数据,可以得到甲、乙两个门店哪个门店的销售人员上月的业绩更好,并说明理由;(3)根据题意和表格中的数据可以计算出该公司能评为“优秀销售员”的人数.【解答】解:(1)∵乙店C组数据:78,76,69,62,69,71,80,69,73,79,75,∴乙组数据中心C组中有11人,按照从小到大排列是:62,69,69,69,71,73,75,76,78,79,80,∴扇形统计图A组学生对应的圆心角的度数为:360°×=12°,A组学生有30﹣11﹣30×(10%+20%+30%)=1(人),B组有学生:30×30%=9(人),∴中位数a是C组的第5个数和第6个数的中位数,即a=(71+73)÷2=72,∵样本中甲、乙两门店的最高销售数量都是120件,甲店的最低数量比乙店少两件,乙的极差是86,∴极差b=86+2=88,故答案为:12°,72,88;(2)乙店门店的销售人员上月的业绩更好,理由:由表格可知,两个销售人员的平均数相同,众数相同,但是乙的中位数高于甲,说明乙店门店的销售人员上月的业绩更好;(3)600×=180(人),答:该公司能评为“优秀销售员”的有180人.22.小明根据学习函数的经验,对函数y=+x+b进行了探究,已知当x=0时,y=;当x=2时,y=1.探究过程如下,请补充完整:(1)k=2,b=﹣1.(2)在给出的平面直角坐标系中,画出函数图象,并写出这个函数的一条性质:y随x值的增大而增大;(3)若一次函数y2=mx+1的图象与该函数有两个交点,则m的取值范围为:<m <.【分析】(1)将x=0,y=,x=2,y=1分别代入y=+x+b即可求k与b的值;(2)画出图象,写出一条符合图象的性质即可;(3)当x≥2时,y=x﹣,当x<2时,y=x+,通过观察图象可得<m<时,y2=mx+1的图象与该函数有两个交点.【解答】解:(1)当x=0,y=时,=+b,∴b=﹣1;当x=2,y=1时,1=+2﹣1,∴k=2,故答案为2,﹣1;(2)如图:y随x值的增大而增大,故答案为y随x值的增大而增大;(3)由(1)可知,y=+x﹣1,当x≥2时,y=x﹣,当x<2时,y=x+,∴<m<时,y2=mx+1的图象与该函数有两个交点,故答案为<m<.23.受“新冠”疫情影响,全国中小学延迟开学,很多学校都开展起了“线上教学”,市场上对手写板的需求激增.重庆某厂家准备3月份紧急生产A,B两种型号的手写板,若生产20个A型号和30个B型号手写板,共需要投入36000元;若生产30个A型号和20个B型号手写板,共需要投入34000元.(1)请问生产A,B两种型号手写板,每个各需要投入多少元的成本?(2)经测算,生产的A型号手写板每个可获利200元,B型号手写板每个可获利400元,该厂家准备用10万元资金全部生产这两种手写板,总获利w元,设生产了A型号手写板a个,求w关于a的函数关系式;(3)在(2)的条件下,若要求生产A型号手写板的数量不能少于B型号手写板数量的2倍,请你设计出总获利最大的生产方案,并求出最大总获利.【分析】(1)根据生产20个A型号和30个B型号手写板,共需要投入36000元;若生产30个A型号和20个B型号手写板,共需要投入34000元,可以列出相应的二元一次方程组,从而可以求得生产A,B两种型号手写板,每个各需要投入多少元的成本;(2)根据题意和(1)中的结果可以得到w与a的函数关系式;(3)要求生产A型号手写板的数量不能少于B型号手写板数量的2倍,可以得到a的取值范围,再根据(2)中的函数关系式和一次函数的性质可以得到总获利最大的生产方案,并求出最大总获利.【解答】解:(1)设生产A种型号的手写板需要投入成本a元,生产B种型号的手写板需要投入成本b元,,得,即生产A种型号的手写板需要投入成本600元,生产B种型号的手写板需要投入成本800元;(2)∵该厂家准备用10万元资金全部生产这两种手写板,生产了A型号手写板a个,∴生产B型号的手写板的数量为:=(个),∴w=200a+400×=﹣100a+50000,即w关于a的函数关系式为w=﹣100a+50000;(3)∵要求生产A型号手写板的数量不能少于B型号手写板数量的2倍,∴a≥×2,∴a≥100,∵w=﹣100a+50000,∴当a=100时,w取得最大值,此时w=40000,=50,答:总获利最大的生产方案是生产A型号的手写板100台,B型号的手写板50台,最大总获利是40000元.24.已知抛物线y=ax2﹣3ax+m与x轴交于A(﹣1,0)、B(x2,0)两点,与y轴正半轴交于点C,且满足S△ABC=5.(1)求此抛物线的对称轴和解析式;(2)点D是抛物线的对称轴与x轴的交点,在直线BC上找一点Q,使QA+QD最小,求QA+QD的最小值;(3)在第一象限的抛物线上是否存在点P,使得∠PCA+∠ABC=180°?若存在,请你求出P点的坐标;若不存在,请说明理由.【分析】(1)先求出点B坐标,由三角形面积公式可求OC长,可得点C坐标,由待定系数法可求解;(2)作点D关于直线BC的对称点D'(,),连接AD'交BC于点Q,由两点距离公式可求解;(3)连接AC,延长PC交x轴于E,设E(m,0).由△ECA∽△EBC,得到EC2=EA •EB,可得方程m2+4=(﹣1﹣m)(4﹣m),求出点E坐标,再求出直线PC的解析式,利用方程组求交点坐标即可.【解答】解:(1)∵抛物线解析式为:y=ax2﹣3ax+m,∴对称轴为x==,且点A(﹣1,0),∴点B(4,0),∴AB=5,∵S△ABC=5.∴×AB×OC=5,∴OC=2,∴点C(0,2)∴设抛物线解析式y=a(x+1)(x﹣4),且过点(0,2)∴2=﹣4a,∴a=﹣∴抛物线解析式为:y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如图,作点D关于直线BC的对称点D'(,2),连接AD'交BC于点Q,∵点A(﹣1,0),D'(,2),∴AD'==,∴QA+QD的最小值为;(3)如图,连接AC,延长PC交x轴于E,设E(m,0).∵∠PCA+∠ABC=180°,∠PCA+∠ECA=180°,∴∠ECA=∠EBC,又∵∠CEA=∠CEB,∴△ECA∽△EBC,∴EC2=EA•EB,∴m2+4=(﹣1﹣m)(4﹣m),∴m=﹣,∴点E(﹣,0),∵点C(0,2),点E(﹣,0),∴直线EC解析式为:y=x+2,联立方程组可得:∴或∴点P(,)25.求一元二次方程x2﹣2x﹣3=0时,可以先将左边(x2﹣2x﹣3)分解成(x﹣3)(x+1),该方程变为(x﹣3)(x+1)=0,解得x1=3,x2=﹣1;求一元三次方程x3﹣2x2﹣2x+4=0也可以将左边(x3﹣2x2﹣2x+4)分解成(x﹣2)(x2﹣2),则该方程变为(x﹣2)(x2﹣2)=0,从而求出该方程的解为:x1=2,x2=,x3=﹣;这种利用分解因式将高次方程转化成一元一次方程和一元二次方程,从而求出其解的方法称为降次法.请根据材料,完成下列解答:(1)解方程:①x3﹣2x2﹣x+2=0②x4+2x3﹣7x2﹣8x+12=0(2)解决下面问题:①若关于x的方程x3﹣5x2+(4+k)x﹣k=0的三个根可作为一个等腰三角形的三边长,求实数k的值;②若关于x的方程x4+2x3+(3+m)x2+(2+m)x+2m=0有实根,若所有实根之积为﹣2,求所有实数根的平方和.【分析】(1)①将式子变形为x3﹣2x2﹣x+2=(x﹣2)(x+1)(x﹣1)=0即可求解;②将式子变形为x4+2x3﹣7x2﹣8x+12=(x+2)(x﹣1)(x+3)(x﹣2)=0即可求解;(2)①x3﹣5x2+(4+k)x﹣k=(x﹣1)(x2﹣4x+k)=0,则x2﹣4x+k=0,则由△=0可求k;②x4+2x3+(3+m)x2+(2+m)x+2m=(x2+x+m)(x2+x+2)=0,由根与系数的关系可求m=﹣2,再由x12+x22+x32+x42=(x1+x2)2﹣2x1x2+(x3+x4)2﹣2x3x4可求解.【解答】解:(1)①x3﹣2x2﹣x+2=x2(x﹣2)﹣(x﹣2)=(x﹣2)(x2﹣1)=(x﹣2)(x+1)(x﹣1)=0,∴x=2或x=1或x=﹣1;②x4+2x3﹣7x2﹣8x+12=(x2+x﹣2)(x2+x﹣6)=(x+2)(x﹣1)(x+3)(x﹣2)=0,∴x=﹣2或x=1或x=﹣3或x=2;(2)①x3﹣5x2+(4+k)x﹣k=(x﹣1)(x2﹣4x+k)=0,∴x=1或x2﹣4x+k=0,∵方程的解是等腰三角形的三边长,∴一条边长为1,当1为等腰三角形的腰长时,则x2﹣4x+k=0的一个解是1,∴k=3,此时x2﹣4x+3=0的两个根为x=1或x=3,∴三角形的三条边长为1,1,3,不成立;当1为等腰三角形的底边时,x2﹣4x+k=0有两个相等的实数根,∴16﹣4k=0,∴k=4;②x4+2x3+(3+m)x2+(2+m)x+2m=(x2+x)2+(2+m)(x2+x)+2m=(x2+x+m)(x2+x+2)=0,∴x2+x+m=0或x2+x+2=0,∵x2+x+2=0中△=1﹣8<0,∴x2+x+2=0无解,∵所有实根之积为﹣2,∴x2+x+m=0有两个实数根,∴m=﹣2,∴x2+x﹣2=0时x1+x2=﹣1,x1x2=﹣2,x2+x+2=0时,x3+x4=﹣1,x3x4=2,∴x12+x22+x32+x42=(x1+x2)2﹣2x1x2+(x3+x4)2﹣2x3x4=1+4+1﹣4=2.26.在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.【分析】(1)如图1中,在CA上取一点H,使得CH=CG.求出GH,证明GH=AH=BG即可解决问题.(2)连接CD,DE,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,根据余角的性质得到∠FBD=∠DCE,由全等三角形的性质得到AE=CF,CE=BF,推出△BFD ≌△CDE,由全等三角形的性质得到DF=DE,∠FDB=∠EDC,证得△DEF是等腰直角三角形,即可得到结论.(3)如图3中,结论:=.连接AF,在EC上取一点H,使得CH=AH,连接AH.首先证明△BCF,△AEF是等腰直角三角形,设EF=AE=m,求出BD(用m 表示)即可解决问题.【解答】(1)解:如图1中,在CA上取一点H,使得CH=CG.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵AE⊥CR,CE=ER,∴AC=AR,∴∠CAG=∠GAB=22.5°∵CG=CH=1,∴GH===,∠CHG=45°,∵∠CHG=∠HAG+∠HGA,∴∠HAG=∠HGA=22.5°,∴HA=HG=,∵CB=CA,CG=CH,∴BG=AH=.(2)解:如图2中,连接CD,DE.∵CF⊥AG,BC⊥CF,∴∠BCF=∠CAE=90°﹣∠ACE在△AEC和△CFB,,∴△AEC≌△CFB(AAS),∴AE=CF,CE=BF,∵等腰Rt△ABC中,∠ACB=90°,AC=BC,∴CD=BD,∠CDB=90°,∵∠CDB=∠CFB=90°,∴∠FBD=∠DCE,在△BFD与△CED中,,∴△BFD≌△CED(SAS),∴DF=DE,∠FDB=∠EDC,∴∠EDC+∠EDB=∠BDF+∠BDE=90°,∴△DEF是等腰直角三角形,∴EF=DF.(3)如图3中,结论:=.理由:连接AF,在EC上取一点H,使得CH=AH,连接AH.∵AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=60°,AB=AC=BC,∵∠BAG=15°,∴∠CAE=75°,∵CE⊥AG,∴∠CEA=90°,∴∠ACE=15°,∴∠BCF=∠ACB﹣∠ACE=45°,∵BF⊥CE,∴∠FCB=∠FBC=45°,∴FB=FC,∵AB=AC,∴AF垂直平分线段BC,∴AF平分∠CAB,∴∠F AB=∠CAB=30°,∴∠EAF=∠EF A=45°,∴EF=AE,设EF=AE=m,∵HC=HA,∴∠HCA=∠HAC=15°,∴∠EHA=∠HCA+∠HAC=30°,∴AH=2AE=2m,EH=m,∴EC=2m+m,∴AC===(+)m,∵BD=AB=AC=m,∴=.。
2020年广西省南宁市中考数学模拟试卷(2)一.选择题(共12小题,满分36分,每小题3分)1.(3分)|−16|的相反数是( )A .16B .−16C .6D .﹣62.(3分)下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个3.(3分)下列调查中,适合采用抽样调查的是( )A .对乘坐高铁的乘客进行安检B .调查本班学生的身高C .为保证某种新研发的战斗机试飞成功,对其零部件进行检查D .调查一批英雄牌钢笔的使用寿命4.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是( )A .268×103B .26.8×104C .2.68×105D .0.268×1065.(3分)下列运算正确的是( )A .(a +1)2=a 2+1B .a 8÷a 2=a 4C .3a •(﹣a )2=﹣3a 3D .x 3•x 4=x 76.(3分)不等式组{2x −1<54x ≥3x +1的解集在数轴上表示为( ) A . B .C .D .7.(3分)将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是( )A .1927B .49C .23D .8278.(3分)如图,在平面直角坐标系中,圆P 经过点A (0,√3)、O (0,0)、B (1,0),点C 在第一象限内的AB 上,则∠BCO 的度数为( )A .60°B .45°C .30°D .15°9.(3分)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A .x+12050−x 50+6=3 B .x 50−x 50+6=3 C .x 50−x+12050+6=3 D .x+12050+6−x 50=3 10.(3分)如图,关于x 的二次函数y =x 2﹣x +m 的图象交x 轴的正半轴于A ,B 两点,交y 轴的正半轴于C 点,如果x =a 时,y <0,那么关于x 的一次函数y =(a ﹣1)x +m 的图象可能是( )A .B .C .D .11.(3分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∠A =30°,CD =4√3,则⊙O 的直径的长为()A.2B.4C.6D.812.(3分)如图,点A、B是反比例函数y=kx(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣6二.填空题(共6小题,满分18分,每小题3分)13.(3分)使分式1x−4有意义的x的取值范围是.14.(3分)把多项式x2y﹣6xy+9y分解因式的结果是.15.(3分)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是.16.(3分)如图,在边长为4的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为.17.(3分)如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD=2,则AB的长是.18.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.三.解答题(共8小题)19.计算(1)√18−2√18+14√32(2)(π﹣3)0+|√3−2|−√27÷√3−(12)﹣1(3)(2x+3)2+(3x﹣2)2(4)(2a﹣b)(2a+b)(4a2+b2)20.先化简,再求值:(x+1x−1−x+1x)÷x2−x2,其中x满足x2﹣x﹣1=0.21.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(Ⅰ)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(Ⅱ)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.22.菲尔兹奖是国际上享有崇高荣誉的一个数学奖项,每4年评选一次,在国际数学家大会上颁给有卓越贡献的年龄不超过40岁的年轻数学家,美籍华人丘成桐1982年获得菲尔兹奖.为了让学生了解菲尔兹奖得主的年龄情况,我们查取了截止到2018年60名菲尔兹奖得主获奖时的年龄数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.截止到2018年菲尔兹奖得主获奖时的年龄数据的频数分布直方图如图1(数据分成5组,各组是28≤x<31,31≤x<34,34≤x<37,37≤x<40,x≥40):b.如图2,在a的基础上,画出扇形统计图;c.截止到2018年菲尔兹奖得主获奖时的年龄在34≤x<37这一组的数据是:3635343535343435363636363435d.截止到2018年时菲尔兹奖得主获奖时的年龄的平均数、中位数、众数如下:年份平均数中位数众数截止到201835.58m37,38根据以上信息,回答下列问题:(1)依据题意,补全频数直方图;(2)31≤x<34这组的圆心角度数是度,并补全扇形统计图;(3)统计表中中位数m的值是;(4)根据以上统计图表试描述菲尔兹奖得主获奖时的年龄分布特征.23.如图,在平面直角坐标系中,A(0,4),B(3,4),P为线段OA上一动点,过O,P,B三点的圆交x轴正半轴于点C,连结AB,PC,BC,设OP=m.(1)求证:当P与A重合时,四边形POCB是矩形.(2)连结PB,求tan∠BPC的值.(3)记该圆的圆心为M,连结OM,BM,当四边形POMB中有一组对边平行时,求所有满足条件的m的值.(4)作点O关于PC的对称点O',在点P的整个运动过程中,当点O'落在△APB的内部(含边界)时,请写出m的取值范围.24.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元.请解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为2600元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y元,求y与x之间的函数表达式;(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)25.在平面直角坐标系xOy中,四边形OADC为正方形,点D的坐标为(4,4),动点E沿边AO从A向O以每秒1cm的速度运动,同时动点F沿边OC从O向C以同样的速度运动,连接AF、DE交于点G.(1)试探索线段AF、DE的关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到AO中点时,点M是直线EC上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.2020年广西省南宁市中考数学模拟试卷(2)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)|−16|的相反数是( )A .16B .−16C .6D .﹣6 【解答】解:|−16|的相反数,即16的相反数是−16.故选:B .2.(3分)下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个【解答】解:第一个图是轴对称图形,是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个,故选:B .3.(3分)下列调查中,适合采用抽样调查的是( )A .对乘坐高铁的乘客进行安检B .调查本班学生的身高C .为保证某种新研发的战斗机试飞成功,对其零部件进行检查D .调查一批英雄牌钢笔的使用寿命【解答】解:A 、对乘坐高铁的乘客进行安检,必须普查;B 、调查本班学生的身高,必须普查;C 、为保证某种新研发的战斗机试飞成功,对其零部件进行检查,必须普查;D 、调查一批英雄牌钢笔的使用寿命,适合抽样调查;故选:D .4.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是( )A .268×103B .26.8×104C .2.68×105D .0.268×106【解答】解:将26.8万用科学记数法表示为:2.68×105.故选:C .5.(3分)下列运算正确的是( )A .(a +1)2=a 2+1B .a 8÷a 2=a 4C .3a •(﹣a )2=﹣3a 3D .x 3•x 4=x 7【解答】解:(a +1)2=a 2+2a +1≠a 2+1,故选项A 错误;a 8÷a 2=a 6≠a 4,故选项B 错误;3a •(﹣a )2=3a •a 2=3a 3≠﹣3a 3,故选项C 错误;x 3•x 4=x 3+4=x 7,故选项D 正确.故选:D .6.(3分)不等式组{2x −1<54x ≥3x +1的解集在数轴上表示为( ) A . B .C .D .【解答】解:不等式组整理得:{x <3x ≥1, 则不等式组的解集为1≤x <3,,故选:C .7.(3分)将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是( )A .1927B .49C .23D .827【解答】解:将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的小正方体只能在大正方体的8个角上,共8个,故恰有3个面涂有颜色的概率是827.故选:D .8.(3分)如图,在平面直角坐标系中,圆P 经过点A (0,√3)、O (0,0)、B (1,0),点C 在第一象限内的AB 上,则∠BCO 的度数为( )A .60°B .45°C .30°D .15°【解答】解:连接AB ,如图,∵∠AOB =90°,∴AB 为⊙P 的直径,∵A (0,√3)、B (1,0),∴OA =√3,OB =1,∴tan ∠OAB =OB OA =3=√33, ∴∠OAB =30°,∴∠C =∠OAB =30°.故选:C .9.(3分)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( ) A .x+12050−x 50+6=3 B .x 50−x 50+6=3 C .x 50−x+12050+6=3 D .x+12050+6−x 50=3【解答】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:x50−x+12050+6=3,故选:C.10.(3分)如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是()A.B.C.D.【解答】解:把x=a代入函数y=x2﹣x+m,得y=a2﹣a+m=a(a﹣1)+m,∵x=a时,y<0,即a(a﹣1)+m<0.由图象交y轴的正半轴于点C,得m>0,即a(a﹣1)<0.x=a时,y<0,∴a>0,a﹣1<0,∴一次函数y=(a﹣1)x+m的图象过一二四象限,故选:A.11.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30°,CD=4√3,则⊙O的直径的长为()A.2B.4C.6D.8【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=12CD=2√3,∵∠A=30°,∴AC=2CH=4√3,在Rt△ABC中,∠A=30°,∴AC=√3BC=4√3,AB=2BC,∴BC=4,AB=8,故选:D.12.(3分)如图,点A、B是反比例函数y=kx(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣6【解答】解:设A (m ,k m ),C (0,n ),则D (m ,0),E (13m ,0), ∵AB =BC ,∴B (m 2,k m+n 2),∵点B 在y =k x 上,∴m 2•k m +n 2=k , ∴k +mn =4k ,∴mn =3k ,连接EC ,OA .∵AB =BC ,∴S △AEC =2•S △AEB =14,∵S △AEC =S △AEO +S △ACO ﹣S △ECO ,∴14=12•(−13m )•k m +12•n •(﹣m )−12•(−13m )•n , ∴14=−16k −3k 2+k 2,∴k =﹣12.故选:A .二.填空题(共6小题,满分18分,每小题3分)13.(3分)使分式1x−4有意义的x 的取值范围是 x ≠4 .【解答】解:根据题意得:x ﹣4≠0,解得:x ≠4故答案为:x ≠414.(3分)把多项式x 2y ﹣6xy +9y 分解因式的结果是 y (x ﹣3)2 .【解答】解:原式=y (x 2﹣6x +9)=y (x ﹣3)2,故答案为:y (x ﹣3)215.(3分)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是23 .【解答】解:画树状图为:共有6种可等可能的结果数,其中组成两位数是偶数的结果数为4,所以组成一个两位数为偶数的概率=46=23.故答案为23. 16.(3分)如图,在边长为4的菱形ABCD 中,∠A =60°,点M 是AD 边的中点,连接MC ,将菱形ABCD 翻折,使点A 落在线段CM 上的点E 处,折痕交AB 于点N ,则线段EC 的长为 2√7−2 .【解答】解:如图所示:过点M 作MF ⊥DC 于点F ,∵在边长为4的菱形ABCD 中,∠A =60°,M 为AD 中点,∴2MD =AD =CD =4,∠FDM =60°,∴∠FMD =30°,∴FD =12MD =1,∴FM =DM ×cos30°=√3,∴MC =√FM 2+CF 2=2√7,∴EC =MC ﹣ME =2√7−2.故答案为:2√7−2.17.(3分)如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A 、B 两个尖端分别在线段l 的两端上,若CD =2,则AB 的长是 6 .【解答】解:根据题意,可知:△ABO ∽△DCO ,∴AB DC =AO DO ,即AB 2=3,∴AB =6.故答案为:6.18.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是 9 .【解答】解:设报4的人心想的数是x ,报1的人心想的数是10﹣x ,报3的人心想的数是x ﹣6,报5的人心想的数是14﹣x ,报2的人心想的数是x ﹣12,所以有x ﹣12+x =2×3,解得x =9.故答案为9.三.解答题(共8小题)19.计算(1)√18−2√18+14√32(2)(π﹣3)0+|√3−2|−√27÷√3−(12)﹣1 (3)(2x +3)2+(3x ﹣2)2(4)(2a ﹣b )(2a +b )(4a 2+b 2)【解答】解:(1)原式=3√2−√22+√2, =7√22.(2)原式=1+2−√3−3﹣2,=﹣2−√3.(3)原式=4x 2+12x +9+9x 2﹣12x +4,=13x 2+13,(4)原式=(4a 2﹣b 2)(4a 2+b 2),=16a 4﹣b 4.20.先化简,再求值:(x+1x−1−x+1x )÷x 2−x x 2−2x+1,其中x 满足x 2﹣x ﹣1=0. 【解答】解:(x+1x−1−x+1x )÷x 2−x x 2−2x+1=x(x+1)−(x+1)(x−1)x(x−1)⋅(x−1)2x(x−1) =x 2+x−x 2+1x 2 =x+1x 2, ∵x 2﹣x ﹣1=0∴x 2=x +1,∴原式=x+1x+1=1. 21.如图,△ABC 的三个顶点和点O 都在正方形网格的格点上,每个小正方形的边长都为1.(Ⅰ)将△ABC 先向右平移4个单位,再向上平移2个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(Ⅱ)请画出△A 2B 2C 2,使△A 2B 2C 2和△ABC 关于点O 成中心对称.【解答】解:(Ⅰ)所画△A1B1C1如图所示.(Ⅱ)所画△△A2B2C2如图所示.22.菲尔兹奖是国际上享有崇高荣誉的一个数学奖项,每4年评选一次,在国际数学家大会上颁给有卓越贡献的年龄不超过40岁的年轻数学家,美籍华人丘成桐1982年获得菲尔兹奖.为了让学生了解菲尔兹奖得主的年龄情况,我们查取了截止到2018年60名菲尔兹奖得主获奖时的年龄数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.截止到2018年菲尔兹奖得主获奖时的年龄数据的频数分布直方图如图1(数据分成5组,各组是28≤x<31,31≤x<34,34≤x<37,37≤x<40,x≥40):b.如图2,在a的基础上,画出扇形统计图;c.截止到2018年菲尔兹奖得主获奖时的年龄在34≤x<37这一组的数据是:3635343535343435363636363435d.截止到2018年时菲尔兹奖得主获奖时的年龄的平均数、中位数、众数如下:年份平均数中位数众数截止到201835.58m37,38根据以上信息,回答下列问题:(1)依据题意,补全频数直方图;(2)31≤x<34这组的圆心角度数是78度,并补全扇形统计图;(3)统计表中中位数m的值是;(4)根据以上统计图表试描述菲尔兹奖得主获奖时的年龄分布特征.【解答】解:(1)频数直方图如图所示:(2)31≤x<34这组的圆心角度数=360°×21.7%≈78°.扇形统计图如图所示.(3)统计表中中位数m的值是36.(4)答案不唯一,如:菲尔兹奖得主获奖时年龄集中在37岁至40岁.23.如图,在平面直角坐标系中,A(0,4),B(3,4),P为线段OA上一动点,过O,P,B三点的圆交x轴正半轴于点C,连结AB,PC,BC,设OP=m.(1)求证:当P与A重合时,四边形POCB是矩形.(2)连结PB,求tan∠BPC的值.(3)记该圆的圆心为M,连结OM,BM,当四边形POMB中有一组对边平行时,求所有满足条件的m的值.(4)作点O关于PC的对称点O',在点P的整个运动过程中,当点O'落在△APB的内部(含边界)时,请写出m的取值范围.【解答】解:(1)∵∠COA=90°∴PC是直径,∴∠PBC=90°∵A(0,4)B(3,4)∴AB⊥y轴∴当A与P重合时,∠OPB=90°∴四边形POCB是矩形(2)连结OB,(如图1)∴∠BPC=∠BOC∵AB∥OC∴∠ABO=∠BOC∴∠BPC=∠BOC=∠ABO∴tan∠BPC=tan∠ABO=AOAB=43(3)∵PC为直径∴M为PC中点①如图2,当OP∥BM时,延长BM交x轴于点N ∵OP∥BM∴BN⊥OC于N∴ON=NC,四边形OABN是矩形∴NC=ON=AB=3,BN=OA=4设⊙M半径为r,则BM=CM=PM=r∴MN=BN﹣BM=4﹣r∵MN2+NC2=CM2∴(4﹣r)2+32=r2解得:r =258∴MN =4−258=78∵M 、N 分别为PC 、OC 中点∴m =OP =2MN =74②如图3,当OM ∥PB 时,∠BOM =∠PBO ∵∠PBO =∠PCO ,∠PCO =∠MOC∴∠OBM =∠BOM =∠MOC =∠MCO在△BOM 与△COM 中{∠BOM =∠COM ∠OBM =∠OCM BM =CM∴△BOM ≌△COM (AAS )∴OC =OB =2+AB 2=5∵AP =4﹣m∴BP 2=AP 2+AB 2=(4﹣m )2+32∵∠ABO =∠BOC =∠BPC ,∠BAO =∠PBC =90° ∴△ABO ∽△BPC∴OB PC =AB BP∴PC =OB⋅BP AB=53BP ∴PC 2=259BP 2=259[(4﹣m )2+32]又PC 2=OP 2+OC 2=m 2+52∴259[(4﹣m )2+32]=m 2+52解得:m =52或m =10(舍去)综上所述,m =74或m =52(4)∵点O 与点O '关于直线对称∴∠PO 'C =∠POC =90°,即点O '在圆上当O '与O 重合时,得m =0当O '落在AB 上时,则m 2=4+(4﹣m )2,得m =52当O '与点B 重合时,得m =258∴0≤m ≤52或m =25824.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元.请解决下列问题:(1)直接写出:购买这种产品 90 件时,销售单价恰好为2600元;(2)设购买这种产品x 件(其中x >10,且x 为整数),该公司所获利润为y 元,求y 与x 之间的函数表达式;(3)该公司的销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使购买数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【解答】解:(1)购买这种产品 x 件时,销售单价恰好为2600元,由题意得:3000﹣5(x ﹣10)=2600,解得:x =90,故答案为:90;(2)由题意得:y =[3000﹣5(x ﹣10)﹣2400]x =﹣5x 2+650x (x >10);(3)要满足购买数量越大,利润越多.故y 随x 的增大而增大,y =200x ,y 随x 的增大而增大,y =3000﹣5(x ﹣10)=﹣5x 2+650x ,当10≤x ≤65时,y 随x 的增大而增大,若一次购买65件,设置为最低售价,则可以避免y 随x 增大而减小的情况发生, 故x =65时,设置最低售价为3000﹣5×(65﹣10)=2725(元),答:公司应将最低销售单价调整为2725元.25.在平面直角坐标系xOy 中,四边形OADC 为正方形,点D 的坐标为(4,4),动点E 沿边AO 从A 向O 以每秒1cm 的速度运动,同时动点F 沿边OC 从O 向C 以同样的速度运动,连接AF 、DE 交于点G .(1)试探索线段AF 、DE 的关系,写出你的结论并说明理由;(2)连接EF 、DF ,分别取AE 、EF 、FD 、DA 的中点H 、I 、J 、K ,则四边形HIJK 是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E 运动到AO 中点时,点M 是直线EC 上任意一点,点N 是平面内任意一点,是否存在点N 使以O ,C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【解答】解:(1)AF =DE .理由如下:∵四边形OADC 是正方形,∴OA =AD ,∠DAE =∠AOF =90°,由题意得:AE =OF ,在△AOF 和△DAE 中,{OA =AD∠AOF =∠DAE OF =AE,∴△AOF≌△DAE(SAS),∴AF=DE.(2)四边形HIJK是正方形.理由如下:如图①所示:∵H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=12AF,HK=IJ=12ED,HI∥AF,HK∥ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△AOF≌△DAE,∴∠ADE=∠OAF,∵∠ADE+∠AED=90°,∴∠OAF+∠AED=90°,∴∠AGE=90°,∴AF⊥ED,∵HI∥AF,HK∥ED,∴HI⊥HK,∴∠KHI=90°,∴四边形HIJK是正方形.(3)存在,理由如下:∵四边形OADC为正方形,点D的坐标为(4,4),∴OA=AD=OC=4,∴C(4,0),∵点E为AO的中点,∴OE=2,E(0,2);分情况讨论:如图②所示,①当OC是以O,C、M、N为顶点的菱形的对角线时,OC与MN互相垂直平分,则M 为CE的中点,∴点M的坐标为(2,1),∵点M 和N 关于OC 对称,∴N (2,﹣1);②当OC 是以O ,C 、M 、N 为顶点的菱形的边时,若M 在y 轴的左侧时,∵四边形OCM 'N '是菱形,∴OM '=OC =4,M 'N '∥OC ,∴△M 'FE ∽△COE ,∴M′F EF =OC OE =2,设EF =x ,则M 'F =2x ,OF =x +2,在Rt △OM 'F 中,由勾股定理得:(2x )2+(x +2)2=42,解得:x =65,或x =﹣2(舍去),∴M 'F =125,FN =4﹣M 'F =85,OF =2+65=165,∴N '(85,165);若M 在y 轴的右侧时,作N ''P ⊥OC 于P ,∵ON ''∥CM '',∴∠PON ''=∠OCE ,∴tan ∠PON ''=PN″OP =tan ∠OCE =OE OC =12,设PN ''=y ,则OP =2y ,在Rt △OPN ''中,由勾股定理得:y 2+(2y )2=42,解得:y =4√55,∴PN ''=4√55,OP =8√55,∴N ''(8√55,−4√55);综上所述,存在点N 使以O ,C 、M 、N 为顶点的四边形是菱形,点N 的坐标为(2,﹣1)或(85,165)或(8√55,−4√55).26.如图所示,抛物线y =x 2+bx +c 经过A 、B 两点,A 、B 两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E 为抛物线的顶点,点C 为抛物线与x 轴的另一交点,点D 为y 轴上一点,且DC =DE ,求出点D 的坐标;(3)在第二问的条件下,在直线DE 上存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC 相似,请你直接写出所有满足条件的点P 的坐标.【解答】解:(1)∵抛物线y =x 2+bx +c 经过A (﹣1,0)、B (0,﹣3),∴{1−b +c =0c =−3,解得{b =−2c =−3, 故抛物线的函数解析式为y =x 2﹣2x ﹣3;(2)令x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则点C 的坐标为(3,0),∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F ,∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m +4)2+12,∵DC =DE ,∴m 2+9=m 2+8m +16+1,解得m =﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO =DF =3,DO =EF =1,根据勾股定理,CD =√OC 2+OD 2=√32+12=√10,在△COD 和△DFE 中,∵{CO =DF∠COD =∠DFE =90°DO =EF,∴△COD ≌△DFE (SAS ),∴∠EDF =∠DCO ,又∵∠DCO +∠CDO =90°,∴∠EDF +∠CDO =90°,∴∠CDE =180°﹣90°=90°,∴CD ⊥DE ,①分OC 与CD 是对应边时,∵△DOC ∽△PDC ,∴OC DC =OD DP , 即√10=1DP, 解得DP =√103,过点P 作PG ⊥y 轴于点G ,则DG DF=PG EF =DP DE , 即DG 3=PG 1=√103√10,解得DG =1,PG =13,当点P 在点D 的左边时,OG =DG ﹣DO =1﹣1=0,所以点P (−13,0),当点P 在点D 的右边时,OG =DO +DG =1+1=2, 所以,点P (13,﹣2); ②OC 与DP 是对应边时,∵△DOC ∽△CDP ,∴OC DP =OD DC , 即3DP =√10, 解得DP =3√10,过点P 作PG ⊥y 轴于点G ,则DG DF =PG EF =DP DE , 即DG 3=PG 1=√10√10, 解得DG =9,PG =3,当点P 在点D 的左边时,OG =DG ﹣OD =9﹣1=8,所以,点P 的坐标是(﹣3,8),当点P 在点D 的右边时,OG =OD +DG =1+9=10,所以,点P 的坐标是(3,﹣10),综上所述,满足条件的点P共有4个,其坐标分别为(−13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).。
广西南宁市兴宁区中考三模数学试题一.选择题(共12小题,满分36分,每小题3分)1.(3分)在检测一批足球时,随机抽取了4个足球进行检测,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A.B.C.D.2.(3分)中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.中国探火CMEP B.中国探月CLEPC.中国行星探测MARS D.中国火箭CHINAROCKET3.(3分)如图,OB平分∠AOC,∠BOC=15°,则∠AOC的度数为( )A.5°B.10°C.15°D.30°4.(3分)如图,将平行四边形ABCD的一边BC延长至点E,若∠A=125°,则∠1=( )A.125°B.65°C.55°D.45°5.(3分)下列四个选项中,计算结果与其他三项不相同的是( )A.a2•a3B.(a2)3C.a4÷a﹣2D.a2•a46.(3分)在△ABC中,∠C=90°,AM、BN分别是BC、AC上的中线.若AB=2,则AM2+BN2的值为( )A.4B.5C.6D.87.(3分)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是( )A.70°B.105°C.125°D.155°8.(3分)如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A落在A1(0,﹣1),点B落在点B1,则点B1的坐标为( )A.(0,2)B.(1,3)C.(2,2)D.(1,1)9.(3分)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为( )A.B.C.D.10.(3分)下列命题正确的是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形11.(3分)二次函数y=mx2﹣4mx+c(m>0)的图象点A(0,y 1),B,C(﹣1,y3),则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2<y1<y3 12.(3分)如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ 上.若点D在∠BAC的平分线上,则CP的长为( )A.5B.5.5C.6D.6.5二.填空题(共6小题,满分12分,每小题2分)13.(2分)计算:(﹣1)﹣(﹣2)= .14.(2分)如果x1与x2的平均数是5,那么x1+1与x2+5的平均数是 .15.(2分)如图所示,若B,C两点把线段MN分成三部分,且MB:BC:CN=2:3:4,点P是MN的中点,PC=2cm,则MN的长为 .16.(2分)一个六边形的六个内角都是120度,连续四边的长为1,3,4,2,则该六边形的周长是 .17.(2分)小亮从家步行到公交站台,等公交车去学校,图中折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系,下列说法:①他离家8km共用了30min;②他等公交车的时间是6min;③他步行的速度是100m/min;④公交车的速度是350m/min正确的有 .(只填正确说法的序号)18.(2分)如图,利用四边形的不稳定性,将矩形变形为平行四边形,则称sinα的值为这个平行四边形的“变化系数”,若矩形的面积为10,将其变形后的平行四边形的面积为8,则这个平行四边形的“变化系数”为 .三.解答题(共8小题,满分72分)19.(6分)计算:(2﹣π)0+|4﹣3|﹣()﹣1.20.(6分)化简:(﹣)÷,然后从﹣2,﹣1,0,1.2中选择一个合适的值代入求解.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,射线AM∥BC.(1)在原图上用尺规作图完成以下基本作图:在射线AM上截取线段AD,使AD=BC;连结CD,作∠ABC的角平分线交CD于点E,连结AE.(保留作图痕迹,不写作法)(2)小陈在(1)所作的图形中发现AE⊥EB,并给出了以下证明,请你将他的证明过程补充完整:证明:∵AD∥BC,AD=BC,∴ ①,∴AB=CD,∠ADC=∠ABC=60°,BA∥CD,∴∠ABE=∠BEC,∵ ②,∴,∠BEC=∠EBC=30°,∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,∴AB=2BC,∵∠BEC=∠EBC,∴,∴DE=AD,又∵ ③,∴△ADE是等边三角形,∠AED=60°,∠AEB=180°﹣∠BEC﹣∠AED= ④,∴AE⊥EB.22.(10分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了20名学生每天用于课外阅读的时间,以下是部分数据和不完整的统计图表:阅读时间在40≤x <60范围内的数据:40,50,45,50,40,55,45,40不完整的统计图表:课外阅读时间x(min )0≤x <2020≤x <4040≤x <60x ≥60等级D C B A 人数3a 8b 结合以上信息回答下列问题:(1)统计表中的a = ;(2)统计图中B 组对应扇形的圆心角为 度;(3)阅读时间在40≤x <60范围内的数据的众数是 ;调查的20名同学课外阅读时间的中位数是 ;(4)根据调查结果,请你估计全校800名同学课外阅读时间不少于40min 的人数.(5)A 等级学生中只有一名男生,从A 等级学生中选两名学生对全校学生作读书的收获和体会的报告,用列举法或树状图法求恰好选择两名女生的概率.23.(10分)如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 为EF 中点,连接BD 、DG .(1)试判断△ECF 的形状,并说明理由;(2)求∠BDG 的度数.24.(10分)广西的“三月三“是壮族的传统节目,为庆祝“三月三”,某学校准备举办“壮乡三月三歌舞节”,学校计划购买杜鹃花和满天星两种花卉共46盆,且柱鹃花盆数不少于满天星盆数的2倍.已知杜鹃花每盆9元,满天星每盆6元.(1)采购组计划将预算经费390元全部用于购买杜鹃花和满天星,问可购买杜鹃花和满天星各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种花卉总费用的最小值.25.(10分)如图1所示,在边长为6cm的等边△ABC中,动点P以1cm/s的速度从点A 出发,沿线段AB向点B运动.设点P的运动时间为t(s),t>0.(1)当t= 时,△PAC是直角三角形;(2)如图2,若另一动点Q从点C出发,沿线段CA向点A运动,且动点P,Q均以1cm/s 的速度同时出发.那么当t取何值时,△PAQ是直角三角形?请说明理由;(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动,且动点P,Q均以1cm/s 的速度同时出发,当点P到达终点B时,点Q也随之停止运动,连接PQ交AC于点D,过点P作PE⊥AC于E.试问线段DE的长度是否变化?若变化,请说明如何变化;若不变,请求出DE的长度.26.(10分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0),B(6,0)两点,与y轴交于点C(0,﹣3).(1)求抛物线的表达式;(2)点P在直线BC下方的抛物线上,连接AP交BC于点M,当最大时,求点P的坐标;(3)在(2)的条件下,过点P作x轴的垂线l,在l上是否存在点D,使△BCD是直角三角形若存在,请求出点D的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:∵|0.5|<|﹣1.0|<|+2.5|<|﹣3.5|,∴0.5最接近标准,故选:B.2.解:选项A、B、C不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项D能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:D.3.解:∵OB平分∠AOC,∴∠BOC=∠AOB,又∵∠BOC=15°,∴∠AOB=15°,∴∠AOC=15°+15°=30°,故选:D.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=125°,∴∠1=180°﹣∠BCD=55°.故选:C.5.解:A、a2•a3=a2+3=a5,符合题意;B、(a2)3=a2×3=a6,不符合题意;C、a4÷a﹣2=a4﹣(﹣2)=a6,不符合题意;D、a2•a4=a2+4=a6,不符合题意;故选:A.6.解:设AN=CN=x,CM=BM=y,∵△ACM与△BCN是直角三角形,∴,∴AM2+BN2=5x2+5y2,∵AC2+BC2=AB2,∴4x2+4y2=4,∴x2+y2=1,∴AM2+BN2=5.故选:B.7.解:如图,连接BC,∵∠BAC=70°,∴∠BOC=2∠BAC=140°,∵OB=OC,∴∠OBC=∠OCB==20°,∵点P为OB上任意一点(点P不与点B重合),∴0°<∠OCP<20°,∵∠BPC=∠BOC+∠OCP=140°+∠OCP,∴140°<∠BPC<160°,故选:D.8.解:通过平移线段AB,点A(﹣3,﹣1)落在(0,﹣1),即线段AB沿x轴向右移动了3格.如图,点B1的坐标为(1,1).故选:D.9.解:∵函数y=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称轴为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间,故选:D.10.解:A、例如等腰梯形,故本选项错误;B、对角线相等且互相平分的平行四边形是矩形,故本选项错误;C、一组邻边相等的矩形是正方形,故本选项正确;D、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误.故选:C.11.解:∵二次函数y=mx2﹣4mx+c(m>0),∴该函数的对称轴为直线x=﹣=2,开口向上,∴当x<2时,y随x的增大而减小,∵﹣1<0<<2,∴y3>y1>y2,故选:D.12.解:连接AD,∵在Rt△ABC中,AB=15,BC=9,∴AC===12.∵,=,∴,∵∠C=∠C,∴△PQC∽△BAC,∴∠CPQ=∠B,∴PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△CPQ中,PQ=5x,又∵PD=PC=3x,∴DQ=2x,∵AQ=12﹣4x,∴12﹣4x=2x,∴x=2,∴CP=3x=6,故选:C.二.填空题(共6小题,满分12分,每小题2分)13.解:原式=﹣1+2=1.故答案为:1.14.解:∵x1与x2的平均数是5,∴x1+x2=5×2=10,∴x1+1与x2+5的平均数===8.故答案为:8.15.解:设MN为12x,则CN=4x,PN=6x,∴PC=6x﹣4x=2x=2,∴x=1,∴MN的长度为12cm.故答案为:12cm.16.解:如图所示,∵六个内角都是120°,∴三角形的每个内角都是60°,即△CDE,△BFG,△AHI,△ABC都为等边三角形,∴CE=2,BF=3,∴BC=2+4+3=9,∴AH=AB﹣GH﹣BG=9﹣1﹣3=5,∴DI=AC﹣AI﹣CD=9﹣5﹣2=2,HI=AH=5,∴该六边形的周长是:1+3+4+2+2+5=17.故答案为17.17.解:依题意得他离家8km共用了30min,故①正确;依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故②正确;他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故③正确;公交车(30﹣16)min走了(8﹣1)km,故公交车的速度为7000÷14=500m/min,故④错误.综上所述,正确的有:①②③.故答案为:①②③18.解:如图,过平行四边形的顶点A作AE⊥BC于点E,∵S矩形=BC•AB=10,S平行四边形=BC•AE=8,∴AB=,AE=,∴sinα===,即这个平行四边形的“变化系数”为,故答案为:.三.解答题(共8小题,满分72分)19.解:原式=1+3﹣4﹣3=﹣3.20.解:(﹣)÷,===,将x=0代入,原式=,21.解:(1)以点A为圆心,以BC为半径画弧交AM于点D,此时AD=BC,故点D为所求,以点B为圆心,以适当的长为半径画弧交BC,BA于F,G,分别以F,G为圆心,以待遇1/2FG为半径画弧,两弧在∠ABC内部交于点H,作射线BH交CD于E,此时BE为∠ABC的平分线,故BE为所求.(2)证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形①,∴AB=CD,∠ADC=∠ABC=60°,BA∥CD,∴∠ABE=∠BEC,∵BE是∠ABC的平分线②,∴,∠BEC=∠EBC=30°,在Rt△ABC中,∠ACB=90°,∠ABC=60°,∴AB=2BC,∵∠BEC=∠EBC,∴,∴DE=AD,又∵∠ADC=60°③,∴△ADE是等边三角形,∠AED=60°,∠AEB=180°﹣∠BEC﹣∠AED=90°④,∴AE⊥EB.故答案为:四边形ABCD为平行四边形;BE是∠ABC的平分线;∠ADC=60°;90°.22.解:(1)由题意得,a=20×25%=5,b=20﹣3﹣5﹣8=4.故答案为:5;(2)统计图中B组对应扇形的圆心角为360°×=144°,故答案为:144;(3)由题意可知,阅读时间在40≤x<60范围内的数据的众数是40,调查的20名同学课外阅读时间的中位数是=42.5.故答案为:40,42.5;(4)800×=480(名),答:估计全校800名同学课外阅读时间不少于40min的人数大约为480名;(5)画树状图如下:∴一共有12中等可能的情况,其中恰好选择两名女生的情况有6种,∴恰好选择两名女生的概率为=.23.(1)解:△ECF是等腰直角三角形;理由如下:∵四边形ABCD是矩形,∴AD∥BC,∠DAB=∠ABC=∠BCD=90°,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE=45°,∴∠BEA=∠BAE=45°,∴∠CEF=45°,AB=BE,∴∠F=90°﹣45°=45°,∴EC=FC,又∵∠ECF=90°,∴△ECF是等腰直角三角形;(2)∵四边形ABCD是矩形,∴AB=CD,∵AB=BE,∴BE=CD,∵EC=FC,∠ECF=90°,∴CG=EF=EG,∠ECG=∠ECF=45°,∴∠DCG=90°+45°=135°,∵∠BEG=180°﹣45°=135°,∴∠DCG=∠BEG,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS),∴DG=BG,∠DGC=∠BGE,∴∠BGD=∠EGC=90°,又∵DG=BG,∴∠BDG=45°.24.解:(1)设购买杜鹃花x盆,购买满天星y盆,由题意得:,解得:,答:购买杜鹃花38盆,购买满天星8盆;(2)设购买杜鹃花m盆,购买满天星(46﹣m)盆,购买两种花卉总费用为w,由题意得:m≥(46﹣m),解得:m≥30,由题意的:w=9m+6(46﹣m)=3m+276,∵3>0,∴w随m的最大而增大,∵m≥30,∴当m=31时,w取最小值,此时w=3×31+276=369,答:购买两种花卉总费用的最小值为369元.25.解:(1)∵△ABC是等边三角形,∴AB=BC=AC=6,∠A=∠B=∠ACB=60°,若△PAC是直角三角形,则∠APC=90°,∴∠ACP=30°,∴AP=AC=3,∴t=3÷1=3(s),故答案为:3s;(2)分两种情况:①当∠APQ=90°时,如图2﹣1所示:则∠AQP=90°﹣∠A=30°,∴AQ=2AP,由题意可得:AP=BQ=t,则AQ=6﹣t,∴6﹣t=2t,解得:t=2;②当∠AQP=90°时,如图2﹣2所示:则∠APQ=90°﹣∠A=30°,∴AP=2AQ,∴t=2(6﹣t),解得:t=4;综上,当t为2s或4s时,△PAQ是直角三角形;(3)线段DE的长度不变化,理由如下:过点Q作QF⊥AC,交AC的延长线于F,如图3所示:∵PE⊥AC,QF⊥AC,∴∠AEP=∠DEP=∠CFQ=90°,∵∠QCF=∠ACB=60°,∴∠A=∠QCF,又∵AP=CQ,∴△APE≌△CQF(AAS),∴AE=CF,PE=QF,又∵∠PDE=∠QDF,∴△PDE≌△QDF(AAS),∴DE=DF=EF,∵EF=CE+CF,AC=CE+AE,∴EF=AC=6,∴DE=EF=3,即线段DE的长度不变,为定值3.26.解:(1)将点A(﹣2,0)、B(6,0)、C(0,﹣3)代入y=ax2+bx+c,得,解得,∴y=x2﹣x﹣3;(2)如图1,过点A作AE⊥x轴交直线BC于点E,过P作PF⊥x轴交直线BC于点F,∴PF∥AE,∴=,设直线BC的解析式为y=kx+d,∴,∴,∴y=x﹣3,设P(t,t2﹣t﹣3),则F(t,t﹣3),∴PF=t﹣3﹣t2+t+3=﹣t2+t,∵A(﹣2,0),∴E(﹣2,﹣4),∴AE=4,∴===﹣t2+t=﹣(t﹣3)2+,∴当t=3时,有最大值,∴P(3,﹣);(3)过点P作x轴的垂线l,在l上存在点D,使△BCD是直角三角形若存在;理由如下:∵P(3,﹣),D点在l上,如图2,当∠CBD=90°时,过点B作GH⊥x轴,过点D作DG⊥y轴,DG与GH交于点G,过点C作CH⊥y轴,CH 与GH交于点H,∴∠DBG+∠GDB=90°,∠DBG+∠CBH=90°,∴∠GDB=∠CBH,∴△DBG∽△BCH,∴=,即=,∴BG=6,∴D(3,6);如图3,当∠BCD=90°时,过点D作DK⊥y轴交于点K,∵∠KCD+∠OCB=90°,∠KCD+∠CDK=90°,∴∠CDK=∠OCB,∴△OBC∽△KCD,∴=,即=,∴KC=6,∴D(3,﹣9);如图4,当∠BDC=90°时,线段BC的中点T(3,﹣),BC=3,设D(3,m),∵DT=BC,∴|m+|=,∴m=﹣或m=﹣﹣,∴D(3,﹣)或D(3,﹣﹣);综上所述:△BCD是直角三角形时,D点坐标为(3,6)或(3,﹣9)或(3,﹣﹣)或(3,﹣).。
广西省南宁市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程(x+2017)2=1的解为( )A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20172.x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.13.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°4.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°5.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<26.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是()A.﹣1 B.±2 C.2 D.﹣27.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3 B.4 C.5 D.68.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.9.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.510.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率mn,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是1n.其中正确的个数()A.1 B.2 C.3 D.411.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 12.估算18的值是在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.14.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.15.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.16.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.17.如果当a≠0,b≠0,且a≠b时,将直线y=ax+b和直线y=bx+a称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.18.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)20.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.21.(6分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米, ).3 1.73222.(8分)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.(8分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=23,求平行四边形ABCD的周长.24.(10分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据是.(2)如图②,在△ABC中,∠B=15°,2,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.25.(10分)解方程(2x+1)2=3(2x+1)26.(12分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<60 8 0.1660≤x<70 12 a70≤x<80 ■0.580≤x<90 3 0.0690≤x≤100 b c合计■ 1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.27.(12分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.2.B【解析】试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故选B.考点:一元一次方程的解.3.C【解析】【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边 为等腰直角三角形.相等,故CEF4.C【解析】【详解】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.5.B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.6.D【解析】【分析】根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.7.A 【解析】解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=12AB=12×8=1.在Rt△AOC中,OA=5,∴OC=2222543OA AC-=-=,即圆心O到AB的距离为2.故选A.8.A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.9.B【解析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=1.10.A 【解析】 【分析】根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得. 【详解】①平分弦(不是直径)的直径垂直于弦,故此结论错误; ②在n 次随机实验中,事件A 出现m 次,则事件A 发生的频率mn,试验次数足够大时可近似地看做事件A 的概率,故此结论错误;③各角相等的圆外切多边形是正多边形,此结论正确;④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;⑤若一个事件可能发生的结果共有n 种,再每种结果发生的可能性相同是,每一种结果发生的可能性是1n.故此结论错误; 故选:A . 【点睛】本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义. 11.B 【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【详解】∵原正方形的周长为acm ,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm , 故选B .【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 12.C 【解析】求出16<18<25,推出4<18<5,即可得出答案.【详解】∵16<18<25,∴4<18<5,∴18的值是在4和5之间.故选:C.【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出16<18<25,题目比较好,难度不大.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=12(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°14.【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【详解】设大和尚x人,小和尚y人,由题意可得.故答案为.。
广西南宁市第三中学2019-2020学年中考数学模拟试卷一、选择题1.如图1,一辆汽车从点M 处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是( )A. B.C. D.2.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为( )A. B. C.6 D.32,0,﹣1,其中最小的是( )A B .2 C .0 D .﹣1 4.方程1235x x =+的解为( ). A .1x =-B .0x =C .3x =-D .1x = 5.点(1,-4)在反比例函数k y x =的图像上,则下列各点在此函数图像上的是( ) A .(1,4) B .(-12,-8) C .(-1,-4) D .(4,-1) 6.如图,直径为单位1 的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A ,则点A 表示的数是( )A .2BC .πD .47.如图是由5个相同的小正方体组成的几何体,其左视图是( )A .B .C .D .8.已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为( )A .B .C .或.或9.已知坐标平面内一点A(2,1),O 为原点,B 是x 轴上一个动点,如果以点B ,O ,A 为顶点的三角形是等腰三角形,那么符合条件的动点B 的个数为( )A.2个B.3个C.4个D.5个10.如图,数轴上有A ,B ,C ,D 四点,则所表示的数与5最接近的是( )A.点AB.点BC.点CD.点D11.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则K 的值不可能是( )A .-5B .-2C .3D .512.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别于函数1y x=-,4y x =的图像交于B 、A 两点,则∠OAB 大小的变化趋势为 ( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变 二、填空题13.分式方程3512x x =++的解为_____. 14.定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB >BC ,M 是弧ABC 的中点,MF ⊥AB 于F ,则AF =FB+BC .如图2,△ABC 中,∠ABC =60°,AB =8,BC =6,D 是AB 上一点,BD =1,作DE ⊥AB 交△ABC 的外接圆于E ,连接EA ,则∠EAC =_____°.15.不等式组()32241x x x --⎩+≥⎧⎨>的解集为 . 16的结果是 . 17.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.18.如图,在平面直角坐标系中,一次函数y =x+1的图象l 与y 轴交于点C ,A 1的坐标为(1,0),点B 1在直线l 上,且A 1B 1平行于y 轴,连接CA 1、OB 1交于点P 1,过点A 1作A 1B 2∥OB 1交直线l 于点B 2,过点B 1作B 1A 2∥CA 1交x 轴于点A 2,A 1B 2与B 1A 2交于点P 2,……,按此进行下去,则点P 2019的坐标为_____.三、解答题19.我市组织开展“遵纪守规明礼,安全文明出行”为主题的“交通安全日”活动,引起了市民对交通安全的极大关注,某学校积极响应号召,以答卷的形式对全校学生就交通安全知识的了解情况进行了调查,并随机抽取部分学生的成绩绘制如下不完整的统计图表:(1)这次参与调查的学生人数为(2)频数分布表中a=,b=(3)请补全条形统计图(4)学校准备对成绩不高于70分的学生进行交通安全教育,若全校共有学生1680人,请你统计该校来参加这次教育活动的学生约有多少人?20.抛物线L:y=a(x﹣x1)(x﹣x2)(常数a≠0)与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x1•x2<0,AB=4,当直线l:y=﹣3x+t+2(常数t>0)同时经过点A,C时,t=1.(1)点C的坐标是;(2)求点A,B的坐标及L的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L的大致图象;(4)将L向右平移t个单位长度,平移后y随x的增大而增大部分的图象记为G,若直线l与G有公共点,直接写出t的取值范围.21.如图,在由边长为1的小正方形组成的网格图中,已知点O及△ABC的顶点均为网格线的交点.(1)将△ABC绕着点B顺时针旋转90°,得到△A1BC1,请在网格中画出△A1BC1;(2)以点O为位似中心,将△ABC放大为原来的三倍,得到△A'B'C',请在网格中画出△A'B'C'.22.如图,二次函数y=﹣14x2+bx+c的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.(1)求此二次函数的解析式;(2)证明:AO平分∠BAC;(3)在二次函数对称轴上是否存在一点P使得AP=BP?若存在,请求出点P的坐标;若不存在,请说明理由.23.如图所示,在等腰Rt△ABC中,∠CAB=90°,P是△ABC内一点,将△PAB绕A逆时针旋转90°得△DAC.(1)试判断△PAD的形状并说明理由;(2)连接PC,若∠APB=135°,PA=1,PB=3,求PC的长.24.某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处。
广西省南宁市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.2.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为()A.y=x+1 B.y=x-1 C.y=x D.y=x-23.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣54.下列二次根式中,与a是同类二次根式的是()A.2a B.2a C.4a D.4a5.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有()A.B.C.D.6.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为()A.()12n n+B.()22n n+C.()32n n+D.()42n n+7.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.148.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2﹣3)B.(﹣4,﹣2+3)C.(﹣2,﹣2+3)D.(﹣2,﹣2﹣3)9.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣410.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A.16B.13C.12D.2311.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A .a =32b B .a =2b C .a =52b D .a =3b12.已知e r是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v vvD .11a b a b=v v v v二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,AB=3,AD=1,把该矩形绕点A 顺时针旋转α度得矩形AB′C′D′,点C′落在AB 的延长线上,则图中阴影部分的面积是_____.14.一个不透明的口袋中有2个红球,1个黄球,1个白球,每个球除颜色不同外其余均相同.小溪同学从口袋中随机取出两个小球,则小溪同学取出的是一个红球、一个白球的概率为_____. 15.一个圆的半径为2,弦长是23,求这条弦所对的圆周角是_____.16.在矩形ABCD 中,AB=4, BC=3, 点P 在AB 上.若将△DAP 沿DP 折叠,使点A 落在矩形对角线上的处,则AP 的长为__________.17.若正n 边形的内角为140︒,则边数n 为_____________.18.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为_____度. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD . 求证:PD =AB .如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BECE的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.20.(6分)(14分)如图,在平面直角坐标系中,抛物线y=mx 2﹣8mx+4m+2(m >2)与y 轴的交点为A ,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.21.(6分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.22.(8分)如图①,一次函数y=12x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=12x2+bx+c的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.23.(8分)解方程组:2207441x y x y ++=⎧⎨-=-⎩ .24.(10分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线. (2)如果⊙O 的半径为5,sin ∠ADE =45,求BF 的长.25.(10分)如图,在△ABC 中,∠ACB =90°,∠ABC =10°,△CDE 是等边三角形,点D 在边AB 上.(1)如图1,当点E 在边BC 上时,求证DE =EB ;(2)如图2,当点E 在△ABC 内部时,猜想ED 和EB 数量关系,并加以证明;(1)如图1,当点E 在△ABC 外部时,EH ⊥AB 于点H ,过点E 作GE ∥AB ,交线段AC 的延长线于点G ,AG =5CG ,BH =1.求CG 的长. 26.(12分) (1)计算:()1201631(1)2384π-⎛⎫---+-⨯+ ⎪⎝⎭(2)先化简,再求值:2214()244x x x x x x x +---÷--+,其中x 是不等式371x +>的负整数解. 27.(12分)如图,在菱形ABCD 中,作⊥BE AD 于E ,BF ⊥CD 于F ,求证:AE CF =.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】根据题意,将运动过程分成两段.分段讨论求出解析式即可. 【详解】∵BD=2,∠B=60°,∴点D 到AB 当0≤x≤2时,y=212x x x ;当2≤x≤4时,y=12x x . 根据函数解析式,A 符合条件. 故选A . 【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式. 2.A【解析】向左平移一个单位长度后解析式为:y=x+1. 故选A.点睛:掌握一次函数的平移. 3.B 【解析】 【分析】由科学计数法的概念表示出0.0000025即可. 【详解】0.0000025=2.5×10﹣6. 故选B. 【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.4.C【解析】【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.【详解】A=|a|B不是同类二次根式;C=是同类二次根式;D不是同类二次根式.故选C.【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.5.D【解析】【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C【解析】【分析】由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=()32n n+.【详解】第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个, 第(3)个图形中面积为1的正方形有2+3+4=9个, …, 按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)= ()32n n +个. 【点睛】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律. 7.A 【解析】 【分析】根据菱形的四条边都相等求出AB ,再根据菱形的对角线互相平分可得OB=OD ,然后判断出OE 是△ABD 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可. 【详解】解:∵菱形ABCD 的周长为28, ∴AB=28÷4=7,OB=OD , ∵E 为AD 边中点, ∴OE 是△ABD 的中位线, ∴OE=12AB=12×7=3.1. 故选:A . 【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键. 8.D 【解析】解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AD=AB AC BC ⋅BD=2AB BC .∵点B 坐标为(1,0),∴A 点的坐标为(4.∵BD=1,∴BD 1=1,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣2.∵再向下平移2个单位,∴A′的坐标为(﹣22).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.9.D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/ 6 ="1/" 3 .故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .11.B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】 由图形可知,S 2=(a-b )2+b (a+b )+ab=a 2+2b 2, S 1=(a+b )2-S 2=2ab-b 2, ∵S 2=2S 1,∴a 2+2b 2=2(2ab ﹣b 2), ∴a 2﹣4ab+4b 2=0, 即(a ﹣2b )2=0, ∴a =2b , 故选B . 【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解. 12.B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.24π- 【解析】 【分析】 【详解】∵在矩形ABCD 中,,∠DAC=60°,∴DC=3,AD=1.由旋转的性质可知:D′C′=3,AD′=1,∴tan∠D′AC′=31=3,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=12×1×3=3,S扇形BAB′=230(3)π=4π.S阴影=S△AB′C′-S扇形BAB′=3-4π.故答案为32-4π.【点睛】错因分析中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.14.1 3【解析】【分析】先画树状图求出所有等可能的结果数,再找出从口袋中随机摸出2个球,摸到的两个球是一红一白的结果数,然后根据概率公式求解.【详解】解:根据题意画树状图如下:共有12种等可能的结果数,其中从口袋中随机摸出2个球,摸到的一个红球、一个白球的结果数为4,所以从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率为41 123=.故答案为13.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.60°或120°【解析】【分析】首先根据题意画出图形,过点O作OD⊥AB于点D, 通过垂径定理, 即可推出∠AOD的度数, 求得∠AOB 的度数, 然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.【详解】解:如图:连接OA,过点O作OD⊥AB 于点D,Q OA=2,AB=323∴3:2,∴∠AOD=60o,∠∴AOB=120o,∴∠AMB=60o,∴∠ANB=120o.故答案为: 60o或120o.【点睛】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.16.32或94【解析】【详解】①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=32,∴AP=32;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP ∽△ABC , ∴AD AB AP BC =, ∴AP=AD BC AB g =334⨯=94. 故答案为32或94.17.9【解析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可. 详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n 边形的内角和=180(n-2). 18.130【解析】分析:n 边形的内角和是()2180n -⋅︒,因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.详解:设多边形的边数为x ,由题意有(2)1802750x o o ,-⋅= 解得51718x =, 因而多边形的边数是18,则这一内角为()1821802750130.-⨯-=o o o故答案为130点睛:考查多边形的内角和公式,熟记多边形的内角和公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析(2)222-(3)2【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2a,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴22222BE BP aCE CD a===;(3)2由(2)可知BF=BP=AB-AP ,∵AP=AD ,∴BF=AB-AD ,∵BQ=BC ,∴AQ=AB-BQ=AB-BC ,∵BC=AD ,∴AQ=AB-AD ,∴BF=AQ ,∴QF=BQ+BF=BQ+AQ=AB ,∵AB=CD ,∴QF=CD ,∵QM=CN ,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=122⨯×2=2. 【点睛】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键. 20.(1);(2)12;(3)t=或t=或t=1.【解析】 试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B ,C 的坐标代入解析式计算即可;(2)(2)分0<t <6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t >6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考点:二次函数综合题.21.(1)1月份B 款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A 款的数量乘以,即可得出一月份B 款运动鞋销售量;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.试题解析:(1)根据题意,用一月份A 款的数量乘以:50×=40(双).即一月份B 款运动鞋销售了40双;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A 款运动鞋销售量逐月增加,比B 款运动鞋销量大,建议多进A 款运动鞋,少进或不进B 款运动鞋.考点:1.折线统计图;2.条形统计图.22.(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值3;(3)点M 的坐标为(52,12)或(52,21. 【解析】【分析】(1)先求出A 、B 的坐标,然后把A 、B 的坐标分别代入二次函数的解析式,解方程组即可得到结论; (2)先证明△PDE ∽△OAB ,得到PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -),PD +PE =3PE ,然后配方即可得到结论.(3)分两种情况讨论:①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.求出圆心O 1的坐标和半径,利用MO 1=半径即可得到结论.②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.求出点O 2的坐标,算出DM 的长,即可得到结论.【详解】解:(1)令y =122x -=0,得:x =4,∴A (4,0). 令x =0,得:y =-2,∴B (0,-2).∵二次函数y =212x bx c -++的图像经过A 、B 两点, ∴8402b c c -++⎧⎨-⎩==,解得:522b c ⎧⎪⎨⎪-⎩==, ∴二次函数的关系式为y =215222x x -+-. 令y =215222x x -+-=0,解得:x =1或x =4,∴C (1,0). (2)∵PD ∥x 轴,PE ∥y 轴,∴∠PDE =∠OAB ,∠PED =∠OBA ,∴△PDE ∽△OAB .∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,215222m m -+-), 则E (m ,122m -). ∴PD +PE =3PE =3×[(215222m m -+-)-(122m -)]=2362m m -+=()23262m --+. ∵0<m <4,∴当m =2时,PD +PE 有最大值3.(3)①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ). ∴()22522t ⎛⎫+- ⎪⎝⎭=22512t ⎛⎫-+ ⎪⎝⎭,解得:t =2, ∴圆心O 1的坐标为(52,-2),∴半径为52. 设M (52,y ).∵MO 1=52,∴522y +=, 解得:y=12,∴点M 的坐标为(5122,). ②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA .∵O 1B ∥x 轴,∴∠O 1BA =∠OAB , ∴∠O 1AB =∠OAB ,O 2在x 轴上,∴点O 2的坐标为 (32,0),∴O 2D =1,∴DM =225()12-=212,∴点M 的坐标为(52,21-). 综上所述:点M 的坐标为(52,12)或(52,212-).点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC 外接圆的圆心坐标.23.532x y =-⎧⎪⎨=⎪⎩【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】解:方程组整理得:227441x y x y +=-⎧⎨-=-⎩①②, ①2⨯+②得:9x=-45,即x=-5,把x=-代入①得:522y -+=-,解得:32y = 则原方程组的解为532x y =-⎧⎪⎨=⎪⎩【点睛】本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法.24.(1)答案见解析;(2)907.【解析】试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=325,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.试题解析:(1)证明:连结OD∵OD=OB∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB =∠C∴OD ∥AC又DE⊥AC∴DE ⊥OD∴EF是⊙O的切线.(2)∵AB是直径∴∠ADB=90 °∴∠ADC=90 °即∠1+∠2=90 °又∠C+∠2=90 °∴∠1=∠C∴∠1 =∠3∴4sin sin35AD ADEAB ∠==∠=∴4510AD =∴AD=8在Rt△ADB中,AB=10∴BD=6在又Rt△AED中,4sin5AE ADEAD ∠==∴483255 AE⨯==设BF=x∵OD ∥AE∴△ODF∽△AEF∴OD OFAE AF=,即5532105xx+=+,解得:x=90 725.(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】【分析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE 全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO 全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.26.(1)5;(2)2xx-,3.【解析】试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;(2)先化简,再求得x的值,代入计算即可.试题解析:(1)原式=1-2+1×2+4=5;(2)原式=()()()()2212x x x xx x+----×()224xx--=2xx-,当3x +7>1,即 x >-2时的负整数时,(x =-1)时,原式=121---=3.. 27.见解析【解析】【分析】 由菱形的性质可得BA BC =,A C ∠=∠,然后根据角角边判定≅V V ABE CBF ,进而得到AE=CF .【详解】证明:∵菱形ABCD ,∴BA BC =,A C ∠=∠,∵BE AD ⊥,BF CD ⊥,∴90BEA BFC ∠=∠=o ,在ABE △与CBF V 中,BEA BFC A CBA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABE CBF AAS ≅V V (), ∴AE=CF .【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.。
中学自主招生数学试卷一、选择题1. 某车间2019年4月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的 【 】A.众数是4B.中位数是1.5C.平均数是2D.方差是1.252. 如图所示,A ,B ,C 均在⊙O 上,若∠OAB =40O ,ACB 是优弧,则∠C 的度数为 【 】A. 40OB.45OC. 50OD. 55O3. 若二次函数y=ax 2+bx +c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则x 取x 1+x 2时,函数值为 【 】A. a +cB. a - cC. - cD. c4. 已知在锐角△ABC 中,∠A =550 ,AB ﹥BC 。
则∠B 的取值范围是 【 】A.35o ﹤∠B ﹤55oB. 40o ﹤∠B ﹤55oC. 35o ﹤∠B ﹤70oD. 70o ﹤∠B ﹤90o5. 正比例函数y 1=k 1x (k 1>0)与反比例函数22k y x(k 2>0)部分图象如图所示,则不等式k 1x >2k x的解集在数轴上表示正确的是 【 】A. B.C.D.6. 定义运算符号“*”的意义为(a 、b 均不为0).下面有两个结论: ①运算“*”满足交换律; ②运算“*”满足结合律 其中 【 】A.只有①正确B. 只有②正确C.①和②都正确 D. ①和②都不正确7. 已知00x y >>,且22231x xy y xy ⎧-=⎪⎨⎪+=⎩,那么()2x y +的值为 【 】 A. 2 B. 3 C. 4 D.58. 如图,点A 的坐标为(0,1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰直角 △ABC ,使∠BAC=90O ,设点 B 的横坐标为 x ,点 C 的纵坐标为 y ,能表示 y 与x 的函数关系的图象大致是( )A BC D9.已知△ABC 是⊙O 的内接正三角形,△ABC 的面积为a ,DEFG 是半圆O 的内接正方形,面积等于b ,那么ab 的值为 【 】A. 2B.2 C. 5 D. 1610. 横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数是【 】A .2个B .3个C .4个D .5个二、填空题11.如图,五边形ABCDE 是正五边形,若12//l l , 则12∠-∠= .12.实数a 、b 、c 满足a 2-6b = -17,b 2+8c = - 23,c 2+2a =14,则a +b +c =_______ 13.把抛物线2y x bx c =++的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是221y x x =-+,则b=_______,c=________ 14.对于正数x ,规定21()21x f x x +=-,则122018()()()______201920192019f f f +++=15.如图,在△ABC 内的三个小三角形的面积分别 是10、16、20,若△ABC 的面积S ,则S=_____16.工人师傅在一个长为25cm 、宽为18cm 的矩形铁皮上剪去一个和三边都相切的⊙A 后,在剩余部分的废料上再剪出一个最大的⊙B ,则圆B 的半径是___cm 三、解答题17. (本题满分10分)甲、乙两船从河中A 地同时出发,匀速顺水下行至某一时刻,两船分别到达B 地和C 地.已知河中各处水流速度相同,且A 地到B 地的航程大于A 地到C 地的航程.两船在各自动力不变情况下,分别从B 地和C 地驶回A 地所需的时间为t 1和t 2.试比较t 1和t 2的大小关系.18. (本题满分10分) 关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ+=+① ()cos cos cos sin sin αβαβαβ+=-②()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-≠-其中③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:()(2tan 45tan 60tan105tan 45601tan 45tan 601422o o oooo o +=+==-++===-+-根据上面的知识,你可以选择适当的公式解决下面实际问题:如图所示,直升机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60o,底端C点的俯角 为75 o,此时直升机与建筑物CD的水平距离BC为42米,求建筑物CD的高。
19. (本题满分12分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.(图1)(图2)请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.20.(本题满分12分)阅读以下的材料:(1)如果两个正数a,b,即a>0,b>0,有下面的不等式:当且仅当a=b时取到等号,我们把叫做正数的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。
它在数学中有广泛的应用,是解决最值问题的有力工具。
(2)茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。
茎叶图的思路是将一组数中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
例如:将2、10、15、20、23、27这6个数据用茎叶图表示如右图。
下面举两个例子: 例1:已知x>0,求函数的最小值。
解:令a =x ,,则有,得,当且仅当即x=2时,函数有最小值,最小值为2。
例2:已知a >0,b >0,且121a b a b+=+,则的最小值是_______. 解:因为a >0,b >0,所以()122333b a a b a b a b a b a b⎛⎫+=++=++⎪⎝⎭≥+=+当且仅当2=b a a b即1,2a b ==+时取等号,3a b ++的最小值是根据上面回答下列问题:①已知x>1,则当x=______时,函数41y x x =+-取到最小值,最小值为______; ②为保障中考期间的食品安全,某县城对各考点进行食品检查,如图所示是某食品中微量元素含量数据的茎叶图,已知该组数据的平均数为11.5,若m>0,n>0且m+n=a+b 求41m n+的最小值; ③已知x>0,则自变量x 取何值时,函数 224xy x x =++取到最大值,最大值为多少?21.(本题满分12分) 如此巧合!下面是小刘对一道题目的解答.题目:如图,Rt ABC △的内切圆与斜边AB 相切于点D ,3AD =,4BD =,求ABC △的面积.解:设ABC △的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x . 根据切线长定理,得3AE AD ==,4BF BD ==,CF CE x ==. 根据勾股定理,得()()()2223434x x +++=+.整理,得2712x x +=. 所以12ABC S AC BC =⋅△()()1342x x =++()217122x x =++()112122=⨯+12=. 小刘发现12恰好就是34⨯,即ABC △的面积等于AD 与BD 的积.这仅仅是巧合吗?请你帮他完成下面的探索.已知:ABC △的内切圆与AB 相切于点D ,AD m =,BD n =. 可以一般化吗?(1)若90C ∠=,求证:ABC △的面积等于mn .倒过来思考呢?(2)若2AC BC mn ⋅=,求证90C ∠=. 改变一下条件…… (3)若60C ∠=,用m中学自主招生数学试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.C(第4题)1ABDE8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上) 11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题(第9题)BADCEF15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分)先化简,再求值:121a aaa a--⎛⎫÷-⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=,∠DAC=30°,求△ABC的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者AB D CFE共有多少名?24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道 A 、B 、C 中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A 通道通过的概率是 ;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB =12厘米,动点P 从点A 出发向点B 运动,动点Q 从点B 出 发向点A 运中学自主招生数学试卷二、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上)1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.第10题C(第4题)1ABDE(第9题)BADCEF9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题第17题第18题18. 如图,一次函数与反比例函数的图像交于A(1,12)和B(6,2)两点,点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图像于点M、N,则四边形PMON面积的最大值是.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:10 1()2cos60(2) 2π--︒+-20.(本题满分5分)解不等式组:1123(2)4xx x⎧-<⎪⎨⎪--≤⎩21.(本题满分6分)先化简,再求值:121a aaa a--⎛⎫÷-⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=,∠DAC=30°,求△ABC的周长.AB D CFE23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学自主招生数学试卷一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.已知a是方程x2﹣5x+1=0的一个根,那么a4+a﹣4的末位数字是()A.3B.5C.7D.92.某个一次函数的图象与直线y=x+3平行,与x轴,y轴的交点分别为A,B,并且过点(﹣2,﹣4),则在线段AB上(包括点A,B),横、纵坐标都是整数的点有()A.3个B.4个C.5个D.6个3.菱形的两条对角线之和为L,面积为S,则它的边长为()A.B.C.D.4.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8B.6C.3D.25.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()A.B.C.D.6.如图,在梯形ABCD中,AB∥DC,AB⊥BC,E是AD的中点,AB+BC+CD=6,,则梯形ABCD的面积等于()A.13B.8C.D.47.如图,已知圆心为A,B,C的三个圆彼此相切,且均与直线l相切.若⊙A,⊙B,⊙C 的半径分别为a,b,c(0<c<a<b),则a,b,c一定满足的关系式为()A.2b=a+c B.=C.D.8.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金元.10.若a+x2=2010,b+x2=2011,c+x2=2012,且abc=24.则的值为.11.如下左图,小明设计了一个电子游戏:一电子跳蚤从横坐标为t(t>0)的P1点开始,按点的横坐标依次增加1的规律,在抛物线y=ax2(a>0)上向右跳动,得到点P2、P3,这时△P1P2P3的面积为.12.在直角梯形ABCD中,∠A为直角,AB∥CD,AB=7,CD=5,AD=2.一条动直线l 交AB于P,交CD于Q,且将梯形ABCD分为面积相等的两部分,则点A到动直线l的距离的最大值为.13.如图,把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,已知正方形的边长为4,那么折痕EF的长为.14.点D是△ABC的边AB上的一点,使得AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则的值为.15.观察下列图形,根据图①、②、③的规律,若图①为第1次分割,图②为第2次分割,图③为第3次分割,按照这个规律一直分割下去,进行了n(n≥1)次分割,图中一共有个三角形(用含n的代数式表示).三、简答题(本题有4小题,共45分.务必写出解答过程)16.(9分)已知,一次函数(k是不为0的自然数,且是常数)的图象与两坐标轴所围成的图形的面积为S k(即k=1时,得S1,k=2时,得S2,…).试求S1+S2+S3+…+S2012的值.17.(12分)如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN 的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.18.(12分)若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?19.(12分)对非负实数x,“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果,则<x>=n.试解决下列问题:(1)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(2)求满足的所有非负实数x的值;(3)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足的所有整数k的个数记为b.求证:a=b=2n.参考答案一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.【解答】解:根据韦达定理可得:方程x2﹣5x+1=0的两根之积为1,两根之和为5,∵a是方程x2﹣5x+1=0的一个根,∴另一个根为a﹣1,∴a+a﹣1=5,∴a4+a﹣4=(a2+a﹣2)2﹣2=[(a+a﹣1)2﹣2]2﹣2,∵232末位数字是9,∴a4+a﹣4末位数字为7.故选:C.2.【解答】解:根据题意,设一次函数的解析式为y=x+b,由点(﹣2,﹣4)在该函数图象上,得﹣4=×(﹣2)+b,解得b=﹣3.所以,y=x﹣3.可得点A(6,0),B(0,﹣3).由0≤x≤6,且x为整数,取x=0,2,4,6时,对应的y是整数.因此,在线段AB上(包括点A、B),横、纵坐标都是整数的点有4个.故选:B.3.【解答】解:设边长为m,一条对角线为2a,另外一条为2b,则a+b=L,2ab=S∵m2=a2+b2=(a+b)2﹣2ab=L2﹣S∴m=.故选:C.4.【解答】解:把第一季度的销售额看作单位1;则有56%×(1+23%)+(1﹣56%)•(1﹣a%)=1+12%,解可得:a=2;故选:D.5.【解答】解:掷骰子有6×6=36种情况.根据题意有:4n﹣m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选:C.6.【解答】解:如图,过点E作EF∥AB交BC于点F,则BF=BC,EF=(AB+CD)=(6﹣BC),又∵AB⊥BC,∴EF⊥BC,∴在Rt△BFE中,EF2+BF2=BE2.∴,即BC2﹣6BC+8=0,解得BC=2或BC=4,则EF=2或EF=1,∴S梯形ABCD=EF•BC=4.故选:D.7.【解答】解:过点A、B、C分别向直线l引垂线,垂足分别为A1、B1、C1,易得:A1B1==2,同理B1C1==2,A1C1==2;又有A1C1+B1C1=A1B1,可得=+,两边同除以可得:.故选:D.8.【解答】解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.【解答】解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360,解得:x≤4,整数解为0、1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.故答案为:3520.10.【解答】解:∵a+x2=2010,b+x2=2011,c+x2=2012,∴2010﹣a=2011﹣b=2012﹣c,∴b=a+1,c=a+2,又abc=24,则=﹣====.故答案为:.11.【解答】解:作P1A⊥x轴,P2B⊥x轴,P3C⊥x轴,垂足分别为A,B,C.由题意得A(t,0),B(t+1,0),C(t+2,0),P1(t,at2),P2[t+1,a(t+1)2],P3[t+2,a(t+2)2]==a.12.【解答】解:设M、N分别是AD,PQ的中点∵S梯形ABCD=(DC+AB)•AD=12若直线l将梯形ABCD分为面积相等的两部分,则S梯形AQPD=(DP+AQ)•AD=6,∴DP+AQ=6∴MN=3∴N是一个定点若要A到l的距离最大,则l⊥AN此时点A到动直线l的距离的最大值就是AN的长在Rt△AMN中,AM=1,MN=3∴AN==.13.【解答】解:过E点作EH⊥BC于H点,MD′交AD于G点,如图,∵把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,∴FC=FM,BM=AB=×4=2,ED=ED′,∠D′MF=∠C=90°,∠D′=∠D =90°,设MF=x,则BF=4﹣x,在Rt△BFM中,MF2=BF2+BM2,即x2=(4﹣x)2+22,∴x=,∴MF=FC=,BF=4﹣=,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,∴Rt△AGM∽Rt△BMF,∴==,即==,∴AG=,MG=,设DE=t,则D′E=t,GE=4﹣t﹣=﹣t,易证得Rt△D′GE∽Rt△AGM,∴=,即=,解得t=,∴HC=ED=,∴FH=4﹣﹣=2,在Rt△EFH中,EH=DC=4,FH=2,∴EF===2.故答案为2.14.【解答】解:连接AP,∵∠APB与∠ACB是所对的圆周角,∴∠APB=∠ACB,∵∠ADP=∠ACB,∴∠APB=∠ACB=∠ADP,∵∠DAP=∠DAP,∴△APB∽△ADP,∴==,∴AP2=AD•AB=AD•(3AD)=3AD2,∴===.故答案为:.15.【解答】解:依题意,n次分割,所得三角形个数为:5+3×4+3×3×4+…+3n﹣1×4个,设S=5+3×4+3×3×4+…+3n﹣1×4 ①则3S=15+3×3×4+…+3n﹣1×4+3n×4 ②②﹣①得,2S=3n×4+15﹣5﹣3×4=4×3n﹣2,S=2×3n﹣1.故答案为:2×3n﹣1.三、简答题(本题有4小题,共45分.务必写出解答过程)16.【解答】解:令x=0,得y=,y=0,得x=,∴S=××=(﹣),∴S1+S2+S3+…+S2012=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.17.【解答】解:(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2﹣CN﹣CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠MAN=∠MAL=45°(2)设CM=x,CN=y,MN=z,则x2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z于是(2﹣y﹣z)2+y2=z2整理得2y2+(2z﹣4)y+(4﹣4z)=0∴△=4(z﹣2)2﹣32(1﹣z)≥0即(z+2+)(z+2﹣)≥0又∵z>0∴z≥﹣2当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.18.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y ﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.19.【解答】解:(1)①证明:设<x>=n,则为非负整数;∴,且n+m为非负整数,∴<x+m>=n+m=m+<x>.②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(2)∵x≥0,为整数,设x=k,k为整数,则∴∴,∵O≤k≤2,∴k=0,1,2,∴x=0,,.(3)∵函数,n为整数,当n≤x<n+1时,y随x的增大而增大,∴,即,①∴,∵y为整数,∴y=n2﹣n+1,n2﹣n+2,n2﹣n+3,…,n2﹣n+2n,共2n个y,∴a=2n,②∵k>0,<>=n,则,∴,③比较①,②,③得:a=b=2n.中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.。