2018届普通高等学校招生全国统一考试高三数学仿真卷(三)文
- 格式:doc
- 大小:1.35 MB
- 文档页数:13
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(三)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·乌鲁木齐质检]若集合{}|11A x x =-<<,{}|02B x x =<<,则A B =( ) A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x << D .{}|01x x <<【答案】D【解析】根据集合的交集的概念得到{} |01A B x x =<<,故答案为:D . 2.[2018·海南期末]设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( )班级 姓名 准考证号 考场号 座位号此卷只装订不密封A .()3,4-B .()5,4C .()3,2-D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .3.[2018·赣州期末]()()6221x x -+的展开式中4x 的系数为( ) A .-160 B .320 C .480 D .640【答案】B【解析】()()6622121x x x +-+,展开通项()666166C 21C 2kk k kk k k T x x ---+==⨯⨯,所以2k =时,2462C 2480⨯⨯=;3k =时,336C 2160⨯=,所以4x 的系数为480160320-=,故选B .4.[2018·晋城一模]某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+【答案】C【解析】由三视图可知该几何体为1个圆柱和14个球的组合体,其表面积为C . 5.[2018·滁州期末]过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( )A .1BCD .2【答案】B【解析】设1F ,2F 是双曲线的左、右焦点,也是题中圆的圆心,所以()22222124PM PN PF PF r -=---()()()22121212464PF PF PFPF r PF PF r =-++-=++-,显然其最小值为()26254r ⨯⨯+-58=,r =B .6.[2018·天津期末]其图象的一条对称轴在()f x 的最小正周期大于π,则ω的取值范围为( )A .1,12⎛⎫ ⎪⎝⎭B .()0,2C .()1,2D .[)1,2【答案】C【解析】k ∈Z k ∈Z ,k ∈Z ,∴3162k k ω+<<+,k ∈Z . 又()f x 的最小正周期大于π,∴02ω<<. ∴ω的取值范围为()1,2.选C .7.[2018·渭南质检]在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A B C D 【答案】C【解析】函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=-()0,B ∈π,0,3B π⎛⎤∴∈ ⎥⎝⎦C .8.[2018·荆州中学]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( ) (参考数据:sin150.2588≈,sin7.50.1305≈)A .12B .20C .24D .48【答案】C【解析】模拟执行程序,可得:6n =,333sin 60S == 不满足条件 3.10S ≥,12n =,6sin 303S =⨯=;不满足条件 3.10S ≥,24n =,12sin15120.2588 3.1056S =⨯=⨯=; 满足条件 3.10S ≥,退出循环,输出n 的值为24.故选C . 9.[2018·昌平期末]设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】作图cos y x =,2y x =,y x =,0,2x π⎛⎫∈ ⎪⎝⎭,可得2cos x x <cos x x <A .10.[2018·济南期末]欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )A B C .19D 【答案】B【解析】如图所示,1S =正,23924S π⎛⎫=π= ⎪⎝⎭圆B .11.[2018·闽侯六中]已知()cos23,cos67AB =,()2cos68,2cos22BC =,则ABC △的面积为( )A .2BC .1D 【答案】D【解析】根据题意,()cos23,cos67AB =,则()cos23,sin23BA =-︒︒,有|AB |=1, 由于,()2cos68,2cos22BC =︒︒()=2cos68,sin 68,则|BC |=2, 则()2cos 23cos 68sin 23sin 682cos 452BA BC ⋅=-⋅+⋅=-⨯=-,可得:cos 2BA BC B BA BC⋅∠==-, 则135B ∠=,则11sin 122222ABC S BA BC B =∠=⨯⨯⨯=△,故选:D . 12.[2018·晋城一模]已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数x 均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是( ) A .(),e -∞ B .()e,+∞C .(),1-∞D .()1,+∞【答案】D【解析】()'g x =()g x ∴在R 上是增函数,又()1e y f x =+-是奇函数,()1e f ∴=,()11g ∴=,原不等式为()()1g x g >,∴解集为()1,+∞,故选D .第Ⅱ卷本卷包括必考题和选考题两部分。
2018年普通高等学校招生全国统一考试仿真卷文科数学(三)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}|11A x x =-<<,{}|02B x x =<<,则A B = ( ) A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x <<D .{}|01x x <<2.设复数12i z =+(是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4-B .()5,4C .()3,2-D .()3,43.若向量()1,1,2=-a ,()2,1,3=-b ,则 )A B .C .3D4.某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+5.已知双曲线22221x y a b-=()0,0a b >>的一个焦点为()2,0F -双曲线的方程为( )A .2213x y -=B .2213y x -=C .2213y x -=D .2213x y -=班级 姓名 准考证号 考场号 座位号6()102f =-,则图中m 的值为( )A .1B .43C .2D .43或2 7.在ABC △中,内角A ,B ,C 的对边分别为,,,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A B C D 8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据:sin150.2588≈ ,sin7.50.1305≈ )A .12B .20C .24D .489.设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )ABC .19D11.已知点()4,3A 和点()1,2B ,点O)A.B .5 C .3 D12.已知函数()f x =()2220 1102x xx f x x +--+<⎧⎪⎨⎪⎩≤≤≤,则关于的方程()15x f x -=在[]2,2-上的根的个数为( ) A .3 B .4C .5D .6第Ⅱ卷本卷包括必考题和选考题两部分。
2018年普通高等学校招生全国统一考试高三数学仿真卷理三2018年普通高等学校招生全国统一考试高三数学仿真卷 理(三)本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·乌鲁木齐质检]若集合{}|11A x x =-<<,{}|02B x x =<<,则A B =( )A .{}|11x x -<<B .{}|12x x -<<C .{}|02x x <<D .{}|01x x <<【答案】D【解析】根据集合的交集的概念得到{} |01AB x x =<<,故答案为:D .2.[2018·海南期末]设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4- B .()5,4C .()3,2-D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .3.[2018·赣州期末]()()6221x x -+的展开式中4x 的系数为( )A .-160B .320C .480D .640【答案】B【解析】()()6622121x x x +-+,展开通项()666166C 21C 2kkk kk k k T x x ---+==⨯⨯,所以2k =时,2462C 2480⨯⨯=;3k =时,336C 2160⨯=,所以4x 的系数为480160320-=,故选B .4.[2018·晋城一模]某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+【答案】C【解析】由三视图可知该几何体为1个圆柱和14个球的组合体,其表面积为C . 5.[2018·滁州期末]过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PMPN -的最小值为58,则r =( )A .1 BC D .2【答案】B【解析】设1F ,2F 是双曲线的左、右焦点,也是题中圆的圆心,所以()22222124PM PN PF PF r -=---()()()22121212464PF PF PFPF r PF PF r =-++-=++-,显然其最小值为()26254r ⨯⨯+-58=,r =B .6.[2018·天津期末]其图象的一条对称轴在区间()f x 的最小正周期大于π,则ω的取值范围为( ) A .1,12⎛⎫⎪⎝⎭B .()0,2C .()1,2D .[)1,2【答案】Ck ∈Z k ∈Z ,k ∈Z ,∴3162k k ω+<<+,k ∈Z . 又()f x 的最小正周期大于π,∴02ω<<.∴ω的取值范围为()1,2.选C .7.[2018·渭南质检]在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A B C D 【答案】C【解析】函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=-()0,B ∈π,0,3B π⎛⎤∴∈⎥⎝⎦C . 8.[2018·荆州中学]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( ) (参考数据:sin150.2588≈,sin7.50.1305≈)A .12B .20C .24D .48【答案】C【解析】模拟执行程序,可得:6n =,333sin 602S ==; 不满足条件 3.10S ≥,12n =,6sin303S =⨯=;不满足条件 3.10S ≥,24n =,12sin15120.2588 3.1056S =⨯=⨯=; 满足条件 3.10S ≥,退出循环,输出n 的值为24.故选C . 9.[2018·昌平期末]设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】作图cos y x =,2y x =,y x =,0,2x π⎛⎫∈ ⎪⎝⎭,可得2cos x x <cos x x <A .10.[2018·济南期末]欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )A B C .19D 【答案】B【解析】如图所示,1S =正,23924S π⎛⎫=π= ⎪⎝⎭圆B .11.[2018·闽侯六中]已知()cos23,cos67AB =,()2cos68,2cos22BC =,则ABC △的面积为( )A .2 BC .1D .2【答案】D【解析】根据题意,()cos23,cos67AB =,则()cos23,sin23BA =-︒︒,有|AB |=1, 由于,()2cos68,2cos22BC =︒︒()=2cos68,sin 68,则|BC |=2, 则()2cos 23cos68sin 23sin 682cos 452BA BC ⋅=-⋅+⋅=-⨯=-,可得:cos 2BA BC B BA BC⋅∠==-, 则135B ∠=,则11sin 122222ABC S BA BC B =∠=⨯⨯⨯=△,故选:D . 12.[2018·晋城一模]已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数x 均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0xxf x ->的解集是( ) A .(),e -∞ B .()e,+∞C .(),1-∞D .()1,+∞【答案】D()'g x =()g x ∴在R 上是增函数,又()1e y f x =+-是奇函数,()1e f ∴=,()11g ∴=,原不等式为()()1g x g >,∴解集为()1,+∞,故选D .第Ⅱ卷本卷包括必考题和选考题两部分。
2017 — 2018学年度高三第三次调研测试文科数学本试卷共23小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试 题卷一并交回。
注意事项:1 •答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用 0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3•请按照题号在各题的答题区域 (黑色线框)内作答,超出答题区域书写的答案无效。
4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。
本大题共 12题,每小题5分,共60分,在每小题给出的四个选项中,只有个是符合题目要求。
设全集 U =Z , A ={-1,1,3,5,7,9}, B ={-1,5,7},贝V AplG u B)二B. {-1,5,7}D. {-1,1,3,5,9}__nA . -P : X 。
R,X o 2 乞3X oB . -p: x R,x 22< 3x2C . — p: 一x R,x ■ 2 3xnD . _p: x 0 R,x 0 2 _ 3x 。
2. 已知复数 i z =1—i(i 为虚数单位),则z 的虚部为3.1 .A. i2已知命题P :X o1 .B.i 2R,x ; 2 3x 0,则命题 1 C.2p 的否命题为D.4. F 列各组向量中,可以作为基底的是A. q =(0,0), e ? =(1,2)B.eiC.e 1 = (3,5), e 2 = (6,10)D.6 = (-1,2),0 = (5,7)、选择题: 1.A. {1,3,9}C.{-1,1,3x - y 3 _ 0设x, y 满足约束条件*x + yZ0,则z = 3x + y 的最小值是x 兰2S n ,则 S n =,定点的坐标是是某几何体的三视图,则该几何体的体积为C. D.5.6. A. -5 B. 4 C. -3D. 11已知等差数列{务}的公差不为0,可=1,且32,34,38成等比数列,设{a n }的前n 项和A.n( n 1) 2B.2C. n 2 12 D.n(n 3) 47.以抛物线y 2=8x 上的任意一点为圆心作圆与直线X 二-2相切,这些圆必过一定点,则8. 9. A. (0,2)B. (2, 0)执行如图所示的程序框图,当输出则输入n 的值可以为A.B. C. D.如图,网格纸上小正方形的边长为 C.S =210 时,1,粗实线画出的 (4, 0) D. (0, 4)——n = n - 1否甲S = n ・S(■结束2)A.14二B.310二3 5-J IS = 1C 开始3*/ 输入n // 输岀S /n < 5 ?是俯视图正视图F I +•B 8;侧视图-10.已知锐角:•满足cos( ) =cos2>,则sin〉cos 等于414 411.朱世杰是历史上最伟大的数学家之一, 他所著的《四元玉鉴》卷中如像招数”五问有如下问题:今有官司差夫一千八百六十四人筑堤•只云初日差六十四人,次日转多七人,每 人日支米三升,共支米四百三石九斗二升, 问筑堤几日”.其大意为:官府陆续派遣1864人前往修筑堤坝,第一天派出 64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升,共发出大米40392升,问修筑堤坝多少天”.这个问题中, 前5天应发大米12•对于定义域为 R 的函数f(x),若同时满足下列三个条件:①且 X = 0 时,都有 xf (x)0 ;③当 x 1 ::: 0 x 2,且 I 片 |=| x 2 |时,都有 f (xj ::: f (x 2),则称f(x)为偏对称函数”.现给出下列三个函数:3 3 2 x ] ln(1—x), x 兰 0 f i (x)-X x ; f 2(x) = e - x-1; f 3(x)二212x, x > 0则其中是偏对称函数”的函数个数为 A. 0B. 1C. 2D. 3二、填空题:本大题共 4个小题,每小题5分。
绝密 ★ 启用前普通高等学校招生全国统一考试仿真卷理科数学(三)本试题卷共22页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·乌鲁木齐质检]若集合{}|11A x x =-<<,{}|02B x x =<<,则A B = ( ) A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x <<D .{}|01x x <<2.[2018·海南期末]设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4-B .()5,4C .()3,2-D .()3,43.[2018·赣州期末]()()6221x x -+的展开式中4x 的系数为( ) A .-160B .320C .480D .6404.[2018·晋城一模]某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+5.[2018·滁州期末]过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( ) A .1BCD .26.[2018·天津期末]()f x 的最小正周期大于π,则ω的取值范围为( ) A .1,12⎛⎫ ⎪⎝⎭B .()0,2C .()1,2D .[)1,27.[2018·渭南质检]在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是() ABCD 8.[2018·荆州中学]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( )班级 姓名 准考证号 考场号 座位号此卷只装订不密封(参考数据:sin150.2588≈ ,sin7.50.1305≈ )A .12B .20C .24D .489.[2018·昌平期末]设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.[2018·济南期末]欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )ABC .19D11.[2018·闽侯六中]已知()cos23,cos67AB =,()2cos68,2cos22BC = ,则ABC △的面积为( )A .2 BC .1 D.12.[2018·晋城一模]已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数x 均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是( ) A .(),e -∞B .()e,+∞C .(),1-∞D .()1,+∞第Ⅱ卷本卷包括必考题和选考题两部分。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x=-≥,{}012B=,,,则A B=A.{}0B.{}1C.{}12,D.{}012,,2.()()1i2i+-=A.3i--B.3i-+C.3i-D.3i+3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin3α=,则cos2α=A.89B.79C.79-D.89-5.522xx⎛⎫+⎪⎝⎭的展开式中4x的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦, D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0。
6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C = A .π2 B .π3 C .π4 D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93则三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A .5B .2C .3D .212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若 90AMB =︒∠,则k =________.三、解答题:共70分。
试卷类型:A2018年高考数学仿真试题(三)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷 (选择题 共60分)一、 选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式(1+x )(1-|x |)>0的解集是A.{x |-1<x <1}B.{x |x <1}C.{x |x <-1或x >1=D.{x |x <1且x ≠-1=2.对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是 A.(-∞,-2) B.[-2,+∞) C.[-2,2] D.[0,+∞)3.设O 为矩形ABCD 的边CD 上一点,以直线CD 为旋转轴,旋转这个矩形所得体积为V ,其中以OA 为母线的圆锥体积为4V,则以OB 为母线的圆锥的体积等于A.12V B. 9VC. 15VD. 4V4.设偶函数f (x )=log a |x -b |在(-∞,0)上递增,则f (a +1)与f (b +2)的大小关系是A.f (a +1)=f (b +2)B.f (a +1)>f (b +2)C.f (a +1)<f (b +2)D.不确定5.复数z 1、z 2在复平面上对应点分别是A 、B ,O 为坐标原点,若z 1=2(cos60°+i sin 60°)z 2,|z 2|=2,则△AOB 的面积为A.43B.23C.3D.26.如果二项式(xx 23-)n的展开式中第8项是含3x 的项,则自然数n 的值为 A.27 B.28 C.29 D.30 7.A 、B 、C 、D 、E ,5个人站成一排,A 与B 不相邻且A 不在两端的概率为 A.103B.53 C.101D.以上全不对8.把函数y =cos x -3sin x 的图象向左平移m 个单位(m >0)所得的图象关于y 轴对称,则m 的最小值是A.6π B.3π C.32π D.65π 9.已知抛物线C 1:y =2x 2与抛物线C 2关于直线y =-x 对称,则C 2的准线方程是 A.x =-81 B.x =21 C.x =81 D.x =-21 10.6人一个小组,其甲为组长,乙为副组长,从6人中任选4人排成一排,若当正、副组长都入选时,组长必须排在副组长的左边(可以不相邻),则所有不同排法种数是A.288B.276C.252D.7211.如图△ABD ≌△CBD ,则△ABD 为等腰三角形,∠BAD =∠BCD =90°,且面ABD ⊥面BCD ,则下列4个结论中,正确结论的序号是①AC ⊥BD ②△ACD 是等边三角形 ③AB 与面BCD 成60°角 ④AB 与CD 成60°角A.①②③B.①②④C.①③④D.②③④12.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为A.0.5小时B.1小时C.1.5小时D.2小时第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.在△ABC 中,3cos(B +C )+cos(2π+A )的取值范围是 . 14.函数f (x )= 13+-x ax (x ≠-1),若它的反函数是f -1(x )= xx -+13,则a = .15.S n 是等差数列{a n }的前n 项和,a 5=2,a n -4=30(n ≥5,n ∈N ),S n =336,则n 的值是 .16.给出四个命题:①两条异面直线m 、n ,若m ∥平面α,则n ∥平面α ②若平面α∥平面β,直线m ⊂α,则m ∥β ③平面α⊥平面β,α∩β=m ,若直线m ⊥直线n ,n ⊂β,则n ⊥α ④直线n ⊂平面α,直线m ⊂平面β,若n ∥β,m ∥α,则α∥β,其中正确的命题是 .三、解答题(本大题共6小题,共74 17.(本小题满分12分)解关于x 的方程:log a (x 2-x -2)=log a (x -a2)+1(a >0且a ≠1). 18.(本小题满分12分)已知等差数列{a n }中,a 2=8,S 10=185. (Ⅰ)求数列{a n }的通项公式a n ;(Ⅱ)若从数列{a n }中依次取出第2,4,8, (2),…项,按原来的顺序排成一个新数列{b n },试求{b n }的前n 项和A n .19.(本小题满分12分)在Rt △ABC 中,∠ACB =30°,∠B =90°,D 为AC 中点,E 为BD 的中点,AE 的延长线交BC 于F ,将△ABD 沿BD 折起,二面角A —BD —C 大小记为θ.(Ⅰ)求证:面AEF ⊥面BCD ; (Ⅱ)θ为何值时,AB ⊥CD . 20.(本小题满分12分)某公司取消福利分房和公费医疗,实行年薪制工资结构改革,该公司从2000年起每人的工资由三个项目并按下表规定实施如果公司现有5名职工,计划从明年起每年新招5(Ⅰ)若今年(2000年)算第一年,试把第n 年该公司付给职工工资总额y (万元)表示成年限n 的函数;(Ⅱ)试判断公司每年发给职工工资总额中,房屋补贴和医疗费的总和能否超过基础工资总额的20%? 21.(本小题满分12分)设双曲线C 的中心在原点,以抛物线y 2=23x -4的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线l:y =2x +1与双曲线C 交于A 、B 两点,求|AB |;(Ⅲ)对于直线y =kx +1,是否存在这样的实数k ,使直线l 与双曲线C 的交点A 、B 关于直线y =ax (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.22.(本小题满分14分)已知函数f (x )=ax 2+bx +c (a >b >c )的图象上有两点A (m ,f (m 1))、B (m 2,f (m 2)),满足f (1)=0且a 2+(f (m 1)+f (m 2))·a +f (m 1)·f (m 2)=0.(Ⅰ)求证:b ≥0;(Ⅱ)求证:f (x )的图象被x 轴所截得的线段长的取值范围是[2,3); (Ⅲ)问能否得出f (m 1+3)、f (m 2+3)中至少有一个为正数?请证明你的结论.2018年高考数学仿真试题(三)答案一、1.D 2.B 3.A 4.B 5.B 6.C 7.D 8.C9.C 10.A 11.B 12.B二、13.[-2,3] 14. 1 15. 21 16.②③ 三、17.解:原方程可化为log a (x 2-x -2)=log a (ax -2)2分 ⎩⎨⎧-=---⇔22022ax x x ax 4分 由②得x =a +1或x =0,当x =0时,原方程无意义,舍去.8分 当x =a +1由①得1022 a a a a ⇒⎩⎨⎧-+10分 ∴a >1时,原方程的解为x =a +112分18.解:(Ⅰ)设{a n }首项为a 1,公差为d ,则⎪⎩⎪⎨⎧=+=+1852)92(10811d a d a ,解得⎩⎨⎧==351d a∴a n =5+3(n -1),即a n =3n +26分(Ⅱ)设b 1=a 2,b 2=a 4,b 3=a 8, 则b n =a 2n =3×2n +2∴A n =(3×2+2)+(3×22+2)+…+(3×2n +2) =3×(2+22+…+2n )+2n=3×12)12(2--n +2n=6×2n -6+2n12分① ②19.(Ⅰ)证明:在Rt △ABC 中,∠C =30°,D 为AC 的中点,则△ABD 是等边三角形 又E 是BD 的中点,∵BD ⊥AE ,BD ⊥EF , 折起后,AE ∩EF =E ,∴BD ⊥面AEF ∵BD ⊂面BCD ,∴面AEF ⊥面BCD 6分(Ⅱ)解:过A 作AP ⊥面BCD 于P ,则P 在FE 的延长线上,设BP 与CD 相交于Q ,令AB =1,则△ABD 是边长为1的等边三角形,若AB ⊥CD ,则BQ ⊥CD 6331==⇒AE PE ,又AE =23∴折后有cos AEP =31=AE PE 由于∠AEF =θ就是二面角A —BD —C 的平面角, ∴当θ=π-arccos31时,AB ⊥CD12分20.解:(Ⅰ)第n 年共有5n 个职工,那么基础工资总额为5n (1+101)n(万元) 医疗费总额为5n ×0.16万元,房屋补贴为5×0.18+5×0.18×2+5×0.18×3+…+5×0.18×n =0.1×n (n +1)(万元)2分∴y =5n (1+101)n+0.1×n (n +1)+0.8n =n [5(1+101)n+0.1(n +1)+0.8](万元)6分(Ⅱ)5(1+101)n×20%-[0.1(n +1)+0.8]=(1+101)n -101(n +9)=101[10(1+101)n -(n +9)] ∵10(1+101)n =10(1+C n 1C n 1101+C n 21001+…)>10(1+10n)>10+n >n +9故房屋补贴和医疗费总和不会超过基础工资总额的20% 12分21.解:(Ⅰ)由抛物线y 2=23x -4,即y 2=23 (x -32),可知抛物线顶点为(32,0),准线方程为x =63.在双曲线C 中,中心在原点,右焦点(32,0),右准线x =63,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧+===33213363322222c b a b a c c a c ∴双曲线c 的方程3x 2-y 2=14分(Ⅱ)由0241)12(3131222222=++⇒=+-⇒⎩⎨⎧=-+=x x x x y x x y ∴|AB |=2108分(Ⅲ)假设存在实数k ,使A 、B 关于直线y =ax 对称,设A (x 1,y 1)、B (x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧+⋅=+++=+-=222)(121212121x x a y y x x k y y ka 由022)3(1312222=---⇒⎩⎨⎧-=+=kx x k x y kx y ④ 由②③,有a (x 1+x 2)=k (x 1+x 2)+2 ⑤ 由④知:x 1+x 2=232kk-代入⑤ 整理得ak =3与①矛盾,故不存在实数k ,使A 、B 关于直线y =ax 对称. 12分 22.(Ⅰ)证明:因f (m 1),f (m 2)满足a 2+[f (m 1)+f (m 2)]a +f (m 1)f (m 2)=0 即[a +f (m 1)][a +f (m 2)]=0 ∴f (m 1)=-a 或f (m 2)=-a ,∴m 1或m 2是f (x )=-a 的一个实根, ∴Δ≥0即b 2≥4a (a +c ). ∵f (1)=0,∴a +b +c =0 且a >b >c ,∴a >0,c <0, ∴3a -c >0,∴b ≥0 5分 (Ⅱ)证明:设f (x )=ax 2+bx +c =0两根为x 1,x 2,则一个根为1,另一根为ac, 又∵a >0,c <0, ∴ac<0, ∵a >b >c 且b =-a -c ≥0, ∴a >-a -c >c ,∴-2<ac≤-1 2≤|x 1-x 2|<310分(Ⅲ)解:设f (x )=a (x -x 1)(x -x 2)=a (x -1)(x -ac ) 由已知f (m 1)=-a 或f (m 2)=-a 不妨设f (m 1)=-a 则a (m 1-1)(m 1-ac)=-a <0, ∴ac<m 1<1 ∴m 1+3>ac+3>1②③∴f(m1+3)>f(1)>0∴f(m1+3)>0 12分同理当f(m2)=-a时,有f(m2+3)>0,∴f(m2+3)或f(m1+3)中至少有一个为正数14分。
2018年普通高等学校招生全国统一考试模拟试题文数(三)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}=06,232,x M x x N x M N ≤≤=≤⋃=则 A .(],6-∞ B .(],5-∞ C .[0,6] D .[0,5]2.已知i 为虚数单位,则20181i i =-A.1 B .2C D .123.函数()23sin cos f x x x x =+的最小正周期是A .4πB .2πC .πD .2π 4.求“方程23log log 0x x +=的解”有如下解题思路:设函数()23log log f x x x =+,则函数()()0f x +∞在,上单调递增,且()10f =,所以原方程有唯一解1x =.类比上述解题思路,方程()51134x x -+-=的解集为A .{}1B .{}2C .{}1,2D .{}35.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于20里A .3B .4C .5D . 66.已知圆锥O 的底面半径为2,高为4,若区域M 表示圆锥O 及其内部,区域N 表示圆锥O 内到底面的距离小于等于1的点组成的集合,若向区域M 中随机投一点,则所投的点落入区域N 中的概率为A .12B .716C .2764D .37647.函数sin sin 122x x y =+的部分图象大致是A .B .C .D .8.一个几何体的三视图如图所示,则该几何体的最长棱的长度为A .B .5C D .6 9.在ABC ∆中,内角A ,B ,C 所对的边分别为sin 1,,sin 2B a b c C =,若,()2213cos 2a b B BA BC -=⋅,则角C= A .6π B. 3π C. 2π D. 32ππ或 10.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点A ,点P 在抛物线上,点P 到准线l 的距离为d ,点O 关于准线l 的对称点为点B ,BP 交y 轴于点M ,若2,3BP a BM OM d ==,则实数a 的值是 A .34 B .12 C .23 D .3211.已知不等式组20,24,0,x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩表示的平面区域为M ,若m 是整数,且平面区域M 内的整点(x ,y )恰有3个(其中整点是指横、纵坐标都是整数的点),则m 的值是A .1B .2C .3D .412.已知函数()f x 的导函数为()f x ',且满足()()3212,23f x x ax bx f x '=++++ ()()4,6ln 2f x f x x x '=-≥+若恒成立,则实数b 的取值范围为A .[)64ln3,++∞B .[)5ln5,++∞C .[)66ln6,++∞D . [)4ln2,++∞第Ⅱ卷本卷包括必考题和选考题两部分。
2018年普通高考模拟考试文科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的. 1.设全集{}{}{}=12571,5,2,7U U M a C M =-=,,,,,则实数a 的值为 (A)10(B)9(C)7(D)62.已知12ia i++为纯虚数,i 为虚数单位,则实数a = (A)2 (B)1 (C) 1- (D) 2-3.函数()f x =(A)(0,3] (B)(0,3) (C)(3,+∞) (D)[3,+∞)4.我国古代数学算经《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣 (A)104人 (B)108人 (C)112人 (D)120人5.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线:2l y x =+,一个焦点在直线l 上,则双曲线的方程为(A)22122x y -= (B) 22144x y -= (C) 22133x y -= (D) 221x y -= 6.已知数列{}n a 满足11255,,n n a a a a a +-=,且成等比数列,则该数列的前六项和6S =(A)60 (B)75 (C)90 (D)1057.下列命题中正确的是(A)若p q ∧为假命题,则p q ∨为假命题(B)“1m =-”是“直线()602320x my m x y ++=-++=与平行”的充分必要条件(C)命题“若234014x x x x --==-=,则或”的逆否命题为“若14x x ≠-≠或,则2340x x --≠”(D)若命题0:p x R ∃∈,使得220010:10x x p x R x x --<⌝∀∈--≥,则,使得 8.设,x y 满足约束条件1,230,,y x x y z y x x t ⎧≥⎪⎪+-≤=-⎨⎪≥⎪⎩且的最大值是1,则t 的值为(A) 1- (B)1 (C)2 (D) 2- 9.已知,,01a b R a b ∈<<<,则下列不等式错误的是 (A) 33a b < (B) 2a b <2 (C) 23log log a b > (D) log 2log 2a b >10.如图是某几何体的三视图:则该几何体的体积为(A) 13π+(B) 223π+(C) 23π+(D) 123π+11.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象如图所示,为得到函数()cos g x x ω=的图象,可将函()f x 的图象(A)向左平移12π个单位长度 (B)向左平移6π个单位长度(C)向右平移12π个单位长度(D)向右平移6π个单位长度12.设抛物线24y x =的焦点为F ,过F 的直线l 交抛物线于A ,B 两点,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则直线l 的方程为(A)0y --=(B) 10x -=(C) 0y += (D) 10x +-= 二、填空题:本题共4小题。
黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(三)数学试题(文)第Ⅰ卷一、选择题1. 设全集,集合,,则()A. B. C. D.2. 设为复数的共轭复数,则()A. B. C. D.3. 已知函数,则下列结论正确的是()A. 是偶函数,递增区间是B. 是偶函数,递减区间是C. 是奇函数,递增区间是D. 是奇函数,递增区间是4. 已知双曲线的一条渐近线方程是,它的一个焦点坐标为,则双曲线方程为()A. B. C. D.5. 从数字,,,,中任取个,组成一个没有重复数字的两位数,则这个两位数大于的概率是()A. B. C. D.6. 已知函数的部分图象如图所示,且,,则()A. B. C. D.7. 我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有坦厚十尺,两鼠对穿,初日各一尺,大鼠日自信,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果()A. B. C. D.8. ()A. B. C. D.9. 不等式组的解集为,下列命题中正确的是()A. ,B. ,C. ,D. ,10. 已知抛物线的焦点为,准线为,是上一点,是直线与的一个交点,若,则()A. B. C. D.11. 设函数,若存在,使,则的取值范围是()A. B. C. D.12. 已知,则A. B. C. D.第Ⅱ卷二、填空题13. 已知单位向量,的夹角为,则向量与的夹角为__________.14. 在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀,当他们被问到谁得到了优秀时,丙说:“甲没有得优秀”;乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是__________.15. 已知函数则__________.16. 在中,角、、所对的边分别为、、,且,当取最大值时,角的值为__________.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17. 已知数列中,,又数列是首项为、公差为的等差数列.(1)求数列的通项公式;(2)求数列的前项和.18. 某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(个月)和市场占有率()的几组相关对应数据:10.02(1)根据上表中的数据,用最小二乘法求出关于的线性回归方程;(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过(精确到月).19. 如图,矩形和梯形所在的平面互相垂直,,,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.20. 已知椭圆的离心率为,其左顶点在圆上.(1)求椭圆的方程;(2)若点为椭圆上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.21. 设函数.(1)讨论的单调性;(2)若为正数,且存在使得,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,圆的参数方程为(为参数).(1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆的极坐标方程;(2)已知,,圆上任意一点,求面积的最大值.23. 选修4-5:不等式选讲(1)已知,都是正数,且,求证:;(2)已知,,都是正数,求证:.【参考答案】第Ⅰ卷一、选择题1. 【答案】A【解析】由已知中全集,根据补集的性质及运算方法,先求出,再求出其补集,即可求出答案.全集,集合,,,,故选:A.2. 【答案】A【解析】先求出,从而求出的值即可.,共轭复数,则.故选:A.3. 【答案】D【解析】由奇偶性的定义可得函数为奇函数,去绝对值结合二次函数可得单调性.由题意可得函数定义域为R,函数,,为奇函数,当时,,由二次函数可知,函数在单调递增,在单调递减;由奇函数的性质可得函数在单调递增,在单调递减.综合可得函数的递增区间为.故选:D.4. 【答案】C【解析】直接利用双曲线的渐近线方程以及焦点坐标,得到关系式,求出、,即可得到双曲线方程.双曲线的一条渐近线方程是,可得,它的一个焦点坐标为,可得,即,解得,所求双曲线方程为:.故选:C.5. 【答案】C【解析】可以构成的两位数的总数为20种,因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种.所以所求概率为.本题选择B选项.6. 【答案】D【解析】由图象可得A值和周期,由周期公式可得,代入点可得值,从而得解析式,再由和同角三角函数基本关系可得.由图象可得,,解得,故,代入点可得,,即有,,又,,故.又,.,.故选:D.7. 【答案】A【解析】模拟执行程序,依次写出每次循环得到的的值,当,满足条件,退出循环,输出的值为4,从而得解.模拟执行程序,可得,,不满足条件,执行循环体,,不满足条件,执行循环体,,不满足条件,执行循环体,,满足条件,退出循环,输出的值为4.故选:A.8. 【答案】B【解析】原式.9. 【答案】B【解析】如下图所示,画出不等式组所表示的区域,作直线:,平移,从而可知当,时,,即,故只有B成立,故选B.10. 【答案】A【解析】设与x轴的交点为M,过Q向准线作垂线,垂足为N,由,可得,又,根据抛物线的定义即可得出.设与x轴的交点为M,过Q向准线作垂线,垂足为N,,,又,,,.故选:A.11. 【答案】D【解析】求出函数的导数,通过讨论的范围,确定函数的单调性,求出的最大值,得到关于的不等式,解出即可.的定义域是,,当时,,则在上单调递增,且,故存在,使;当时,令,解得,令,解得,在上单调递增,在上单调递减,,解得.综上,的取值范围是.故选:D.12. 【答案】D【解析】先将用两角和正弦公式化开,然后与合并后用辅助角公式化成一个三角函数,最后再由三角函数的诱导公式可得答案.,,,.故选:D.第Ⅱ卷二、填空题13. 【答案】【解析】分别求出,,,从而代入求余弦值,从而求角.单位向量,的夹角为,,,,设向量与的夹角为,则,.故答案为:.14. 【答案】丙【解析】利用反证法,即可得出结论.假设丙说的是假话,即甲得优秀,则乙也是假话,不成立;假设乙说的是假话,即乙没有得优秀,又甲没有得优秀,故丙得优秀.故答案为:丙.15. 【答案】【解析】根据分段函数由里到外逐步求解即可.∵∴f(﹣3)=e﹣3+2=e﹣1,f(f(﹣3)=f(e﹣1)=lne﹣1=﹣1.故答案为:﹣1.16. 【答案】【解析】由正弦定理得,即,,,故最大角为.考点:解三角形.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17. 解:(1)∵数列是首项为,公差为的等差数列,∴,解得.(2)∵.∴.18. 解:(1)经计算,,所以线性回归方程为;(2)由上面的回归方程可知,上市时间与市场占有率正相关,即上市时间每增加个月,市场占有率都增加个百分点;由,解得,19. (1)证明:设与交于点,连接,在矩形中,点为中点,∵为的中点,∴,又∵平面,平面,∴平面.(2)解:取中点为,连接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的长即为四棱锥的高,在梯形中,,∴四边形是平行四边形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.20. 解:(1)因为椭圆的左顶点在圆上,令,得,所以,又离心率为,所以,所以,所以,所以的方程为.(2)设点,,设直线的方程为,与椭圆方程联立得化简得到,因为为方程的一个根,所以,所以,所以.因为圆心到直线的距离为,所以,因为,代入得到,显然,所以不存在直线,使得.21. 解:(1),(),①当时,,在上单调递增;②当时,,;,,所以在上单调递减,在上单调递增.(2)因为,由(1)知的最小值为,由题意得,即.令,则,所以在上单调递增,又,所以时,,于是;时,,于是.故的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 解:(1)圆的参数方程为(为参数)所以普通方程为.圆的极坐标方程:.(2)点到直线:的距离为的面积所以面积的最大值为23. (1)证明:.因为都是正数,所以.又因为,所以.于是,即所以;(2)证明:因为,所以. ①同理. ②. ③①②③相加得从而.由都是正数,得,因此.。
2018年普通高等学校招生全国统一考试仿真卷文科数学(三)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}|11A x x =-<<,{}|02B x x =<<,则A B =( )A .{}|11x x -<<B .{}|12x x -<<C .{}|02x x <<D .{}|01x x <<2.设复数12i z =+(是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4-B .()5,4C .()3,2-D .()3,43.若向量()1,1,2=-a ,()2,1,3=-b ,则 )AB .C .3D4.某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+5.已知双曲线22221x y a b-=()0,0a b >>的一个焦点为()2,0F -则该双曲线的方程为( )A .2213x y -=B .2213y x -=C .2213y x -=D .2213x y -=6()102f =-,则图中m 的值为( )A .1B .43C .2D .43或2 7.在ABC △中,内角A ,B ,C 的对边分别为,,,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A B C D 8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据:sin150.2588≈,sin7.50.1305≈)A .12B .20C .24D .489.设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )ABC .19D11.已知点()4,3A 和点()1,2B ,点O 为坐标原点,(OA tOB t +∈R () A .B .5C .3D 12.已知函数()f x =()2220 1102x xx f x x +--+<⎧⎪⎨⎪⎩≤≤≤,则关于的方程()15x f x -=在[]2,2-上的根的个数为( ) A .3 B .4C .5D .6第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题考生都必须作答。
第(22)~(23)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.已知实数,y 满足约束条件01 0x y x y x ⎧⎪⎩-⎪+⎨≤≤≥,则2z x y =+的最大值_______.14.如果1P ,2P ,…,10P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,10x ,是抛物线C 的焦点,若121010x x x +++=,则1210PF P F P F +++=_________.15.已知ABC △的内角A ,B ,C 的对边分别为,,,若1cos 4B =,4b =,sin 2sin AC =,则ABC △的面积为__________.16.已知四棱椎P ABCD -中,底面ABCD 是边长为2的菱形,且PA PD ⊥,则四棱锥P ABCD -体积的最大值为________.三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.已知数列{}n a 是等差数列,21a t t =-,24a =,23a t t =+. (1)求数列{}n a 的通项公式;(2)若数列{}n a 为递增数列,数列{}n b 满足2log n n b a =,求数列(){}1nn ab -的前项和n S .18.“双十二”是继“双十一”之后的又一个网购狂欢节,为了刺激“双十二”的消费,某电子商务公司决定对“双十一”的网购者发放电子优惠券.为此,公司从“双十一”的网购0.1,0.2,消费者中用随机抽样的方法抽取了100人,将其购物金额(单位:万元)按照[) [)0.2,0.3,,[]0.9,1分组,得到如下频率分布直方图:根据调查,该电子商务公司制定了发放电子优惠券的办法如下:(1)求购物者获得电子优惠券金额的平均数;(2)从这100名购物金额不少于0.8万元的人中任取2人,求这两人的购物金额在0.8~0.9万元的概率.19.如图,已知直三棱柱111ABC A B C -的侧面是正方形11ACC A,4AC =,3BC =,M 在棱1CC 上,且13C M MC =. (1)证明:平面1ABC ⊥平面1A BC ;(2)若平面1A BM 将该三棱柱分成上、下两部分的体积分别记为1V 和2V ,求12V V 的值.20.已知椭圆C()0,1P,离心率e =(1)求C 的方程;(2)设直线经过点()2,1Q -且与C 相交于A ,B 两点(异于点P ),记直线PA 的斜率为1k ,直线PB 的斜率为2k ,证明:12k k +为定值.21.已知函数()2ln f x x ax x =-+,a ∈R . (1)讨论函数()f x 的单调性;(2)已知0a >,若函数()0f x ≤恒成立,试确定的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C :2cos sin x y θθ=⎧⎨=⎩(为参数),在以O 为极点,轴的非负半轴为极轴的极坐标系中,曲线2C :()cos sin 4p θθ-=. (1)写出曲线1C 和2C 的普通方程;(2)若曲线1C 上有一动点M ,曲线2C 上有一动点N ,求使MN 最小时M 点的坐标.23.已知是常数,对任意实数,不等式1212x x a x x +--≤≤++-恒成立. (1)求的取值集合;(2)设0m n >>绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(三)答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分 1.D 2.A 3.D 4.C 5.B 6.B 7.C8.C9.A10.B 11.D12.D第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题考生都必须作答。
第(22)~(23)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.214.201516.43三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.【答案】(1)2n a n =;(2)()1654209n nn S +-+=. 【解析】(1)由题意得22228t t t t t -++==,所以2t =±,···········2分2t =时,12a =,公差2d =,所以2n a n =;···········4分2t =-时,16a =,公差2d =-,所以82n a n =-.···········6分(2)若数列{}n a 为递增数列,则2n a n =, 所以2log 2n b n =,4n n b =,()()1214n n n a b n -=-⋅,···········8分所以()()231143454234214n n n S n n -=⋅+⋅+⋅++-⋅+-⋅,·········9分 ()()23414143454234214n n n S n n +=⋅+⋅+⋅++-⋅+-⋅,所以()23134242424214n n n S n +-=+⋅+⋅++⋅--⋅()()211414422143n n n -+-=+⨯---()1206543n n +---=,···········10分所以()1654209n nn S +-+=.···········12分 18.【答案】(1)64(元);(2)1021. 【解析】(1)购物者获得50元优惠券的概率为:()1.52 2.50.10.6++⨯=,····1分 购物者获得100元优惠券的概率为:()1.50.50.10.2+⨯=,···········2分 购物者获得200元优惠券的概率为:()0.50.20.10.07+⨯=,···········3分 ∴获得优惠券金额的平均数为:500.61000.22000.0764⨯+⨯+⨯=(元).····6分 (2)这100名购物者购物金额不少于0.8万元的共有7人,不妨记为A ,B ,C ,D ,E ,F ,G ,其中购物金额在0.8~0.9万元有5人(为A ,B ,C ,D ,E ),利用画树状图或列表的办法易知从购物金额不少于0.8万元7人中选2人,有21种可能;这两人来自于购物金额在0.8~0.9万元的5人,共有10种可能,所以,相应的概率为1021.···········12分 19.【答案】(1)证明见解析;(2)75.【解析】(1)证明:因为111ABC A B C -是直三棱柱, 所以1CC ⊥底面ABC ,所以1CC BC ⊥,BC AC ⊥,且1CC AC C =,所以11BC ACC A ⊥平面,···3分 ∴1BC AC ⊥,又11A C AC ⊥,且1AC BC C =,所以1AC ⊥平面1A BC ,····6分又1AC ⊂平面1ABC ,所以平面1ABC ⊥平面1A BC .···········7分 (2)解:因为()1111343141432A BMCB V V -+⨯==⨯⨯=,···········9分 V 柱体1434242⎛⎫=⨯⨯⨯= ⎪⎝⎭,···········11分所以1241410V =-=,12147105V V ==.···········12分20.【答案】(1)2214x y +=;(2)见解析. 【解析】(1)因为椭圆()2222:10x y C a b a b+=>>经过点()0,1P , 所以1b =.···········1分又e =c a =2a =.···········3分 故而可得椭圆的标准方程为:2214x y +=.···········4分 (2)若直线AB 的斜率不存在,则直线的方程为2x =,此时直线与椭圆相切,不符合题意.···········5分设直线AB 的方程为()12y k x +=-,即21y kx k =--,···········7分 联立,得()()222148211616k x k k x k k +-+++=.···········8分 设()11,A x y ,()22,B x y ,则12121211y y k k x x --+=+=()()2112122222x kx k x kx k x x --+-- ()()121212222kx x k x x x x -++==()()1212222k x x k x x ++- ()()()228212161k k k k k k +⋅+=-=+()2211k k -+=-, 所以12k k +为定值,且定值为1-.···········12分21.【答案】(1)答案见解析;(2)[)1,+∞.【解析】(1)由()2ln f x x ax x =-+,得:0x >, (1)当0a ≤时,()0f x '>在()0,+∞上恒成立,函数()f x 在()0,+∞上单调递增;···········3分当0a >时,令()'0f x =,则2210ax x -++=,得1x =,2x =, ∵12102x x a=-<,∴120x x <<, ∴令()0f x '>得()20,x x ∈,令()0f x '<得()2,x x ∈+∞,∴()f x在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减.········6分(2)由(1)可知,当0a >时,函数()f x 在()20,x 上单调递增,在()2,x +∞上单调递减, ∴()()2max f x f x =,即需()20f x ≤,即2222ln 0x ax x -+≤,···········8分又由()20f x '=得22212x ax +=,代入上面的不等式得222ln 1x x +≤,···········9分 由函数()2ln h x x x =+在()0,+∞上单调递增,()11h =,所以201x <≤,·······10分所以的取值范围是[)1,a ∈+∞.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。