高三数学一轮复习优质学案:第7讲 抛物线
- 格式:docx
- 大小:174.47 KB
- 文档页数:10
高考数学一轮复习第九章平面解析几何第7讲抛物线教案文新人教A 版第7讲 抛物线一、知识梳理 1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上. 2.抛物线的标准方程和几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线方程x =-p 2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈R x ≤0,y ∈Ry ≥0, x ∈Ry ≤0, x ∈R开口方向 向右 向左 向上 向下焦半径(其中P (x 0,y 0))|PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p2常用结论与焦点弦有关的常用结论(以图为依据)设A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为直线AB 的倾斜角).(3)1|AF |+1|BF |为定值2p. (4)以AB 为直径的圆与准线相切. (5)以AF 或BF 为直径的圆与y 轴相切. (6)过焦点垂直于对称轴的弦长等于2p (通径). 二、习题改编1.(选修11P58例1(2)改编)若抛物线的焦点是F ⎝ ⎛⎭⎪⎫0,-12,则抛物线的标准方程为 .答案:x 2=-2y2.(选修11P59练习T2改编)抛物线y 2+4x =0的准线方程 . 答案:x =13.(选修11P59练习T3(2)改编)抛物线y 2=12x 上与焦点的距离等于6的点的坐标是 .答案:(3,±6)一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( ) (3)若一抛物线过点P (-2,3),则其标准方程可写为y 2=2px (p >0).( ) (4)抛物线既是中心对称图形,又是轴对称图形.( ) 答案:(1)× (2)× (3)× (4)× 二、易错纠偏常见误区(1)不注意抛物线方程的标准形式; (2)忽视p 的几何意义.1.顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( ) A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8y解析:选D.设抛物线为y 2=mx ,代入点P (-4,-2),解得m =-1,则抛物线方程为y 2=-x ;设抛物线为x 2=ny ,代入点P (-4,-2),解得n =-8,则抛物线方程为x 2=-8y .2.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是 .解析:由已知可知双曲线的焦点为(-2,0),(2,0). 设抛物线方程为y 2=±2px (p >0), 则p2=2, 所以p =22,所以抛物线方程为y 2=±42x . 答案:y 2=±42x抛物线的定义(典例迁移)(1)(2020·安徽五校联盟第二次质检)已知抛物线C :x 2=2py (p >0)的焦点为F ,点P ⎝⎛⎭⎪⎫x 0,12在C 上,且|PF |=34,则p =( ) A.14 B.12 C.34D .1(2)设P 是抛物线y 2=4x 上的一个动点,F 为抛物线的焦点,若B (3,2),则|PB |+|PF |的最小值为 .【解析】 (1)抛物线的准线方程为y =-p 2,因为P ⎝ ⎛⎭⎪⎫x 0,12在抛物线上,所以点P 到准线的距离d =12+p 2=|PF |=34,则p =12,故选B.(2)如图,过点B 作BQ 垂直准线于点Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4. 即|PB |+|PF |的最小值为4. 【答案】 (1)B (2)4【迁移探究1】 (变条件)若将本例(2)中的B 点坐标改为(3,4),试求|PB |+|PF |的最小值.解:由题意可知点(3,4)在抛物线的外部. 因为|PB |+|PF |的最小值即为B ,F 两点间的距离, 所以|PB |+|PF |≥|BF |=42+22=16+4=25, 即|PB |+|PF |的最小值为2 5.【迁移探究2】 (变设问)若本例(2)条件不变,求P 到准线l 的距离与P 到直线3x +4y +7=0的距离之和的最小值是 .解析:由抛物线定义可知点P 到准线l 的距离等于点P 到焦点F 的距离,由抛物线y2=4x 及直线方程3x +4y +7=0可得直线与抛物线相离,所以点P 到准线l 的距离与点P 到直线3x +4y +7=0的距离之和的最小值为点F (1,0)到直线3x +4y +7=0的距离,即|3+7|32+42=2.答案:2抛物线定义的应用(1)利用抛物线的定义解决问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.即“看到准线想到焦点,看到焦点想到准线”.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2.1.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D .74解析:选C.如图所示,设抛物线的准线为l ,AB 的中点为M ,作AA 1⊥l 于点A 1,BB 1⊥l 于点B 1,MM 1⊥l 于点M 1,由抛物线的定义知p =12,|AA 1|+|BB 1|=|AF |+|BF |=3,则点M 到y 轴的距离为|MM 1|-p 2=12(|AA 1|+|BB 1|)-14=54.故选C.2.(2020·沈阳市质量监测(一))抛物线y 2=6x 上一点M (x 1,y 1)到其焦点的距离为92,则点M 到坐标原点的距离为 .解析:由y 2=6x ,知p =3,由焦半径公式得x 1+p 2=92,即x 1=3.代入得y 21=18,则|MO |=x 21+y 21=33(O 为坐标原点),故填3 3.答案:3 3抛物线的标准方程及性质(师生共研)(1)(2020·陕西榆林二模)已知抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,则抛物线的标准方程为( )A .y 2=x B .y 2=2x C .y 2=4xD .y 2=8x(2)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【解析】 (1)抛物线y 2=2px (p >0)上的点M 到其焦点F 的距离比点M 到y 轴的距离大12,由抛物线的定义可得x M +p 2=x M +12,所以p =1,所以抛物线方程为y 2=2x .故选B.(2)由题意,不妨设抛物线方程为y 2=2px (p >0), 由|AB |=42,|DE |=25,可取A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5,设O 为坐标原点,由|OA |=|OD |, 得16p 2+8=p 24+5,得p =4,故选B. 【答案】 (1)B (2)B(1)求抛物线标准方程的方法 ①先定位:根据焦点或准线的位置; ②再定形:即根据条件求p . (2)抛物线性质的应用技巧①利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程; ②要结合图形分析,灵活运用平面图形的性质简化运算.1.若抛物线的焦点在直线x -2y -4=0上,则此抛物线的标准方程为 . 解析:令x =0,得y =-2;令y =0,得x =4.所以抛物线的焦点是(4,0)或(0,-2),故所求抛物线的标准方程为y 2=16x 或x 2=-8y .答案:y 2=16x 或x 2=-8y2.(2020·沈阳质量检测(一))已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则△AOB 的边长是 .解析:如图,设△AOB 的边长为a ,则A ⎝ ⎛⎭⎪⎫32a ,12a ,因为点A 在抛物线y 2=3x 上,所以14a 2=3×32a ,所以a =6 3. 答案:6 33.(2020·东北四市模拟)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为 .解析:由题意知x 2=12y ,则F ⎝ ⎛⎭⎪⎫0,18,设P (x 0,2x 20), 则|PF |= x 2+⎝⎛⎭⎪⎫2x 20-182=4x 40+12x 20+164=2x 20+18,所以当x 20=0时,|PF |min =18.答案:18直线与抛物线的位置关系(师生共研)(2019·高考全国卷Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.【解】 设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F ⎝ ⎛⎭⎪⎫34,0,故|AF |+|BF |=x 1+x 2+32,由题设可得x 1+x 2=52. 由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x可得9x 2+12(t -1)x +4t 2=0,则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78.所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2. 由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x可得y 2-2y +2t =0. 所以y 1+y 2=2.从而-3y 2+y 2=2,故y 2=-1,y 1=3.。
第七讲 抛物线知识梳理·双基自测知识梳理知识点一 抛物线的定义 抛物线需要满足以下三个条件: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离__相等__; (3)定点F 与定直线l 的关系为__点F ∉l __. 知识点二 抛物线的标准方程与几何性质 标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F __⎝⎛⎭⎫p 2,0__F __⎝⎛⎭⎫-p2,0__ F __⎝⎛⎭⎫0,p2__ F __⎝⎛⎭⎫0,-p2__ 离心率 e =__1__准线方程 __x =-p2____x =p2____y =-p2____y =p 2__范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向 向右 向左 向上 向下 焦半径 (其中P (x 0,y 0))|PF |= __x 0+p 2__|PF |= __-x 0+p2__|PF |= __y 0+p 2__|PF |= __-y 0+p2__归纳拓展抛物线焦点弦的处理规律直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图.(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |=2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°. (7)A 、O 、D 三点共线;B 、O 、C 三点共线.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × ) (4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )题组二 走进教材2.(必修2P 69例4)(2021·甘肃张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( B )A .9B .8C .7D .6[解析] 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.(2021·河南郑州名校调研)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B )A .-1716B .-1516C .716D .1516[解析] 由抛物线的方程y =-4x 2,可得标准方程为x 2=-14y ,则焦点坐标为F ⎝⎛⎭⎫0,-116,准线方程为y =116,设M (x 0,y 0),则由抛物线的定义可得-y 0+116=1,解得y 0=-1516.故选B .题组三 走向高考4.(2019·课标全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p=( D )A .2B .3C .4D .8[解析] ∵抛物线y 2=2px (p >0)的焦点坐标为⎝⎛⎭⎫p 2,0, ∴椭圆x 23p +y 2p =1的一个焦点为⎝⎛⎭⎫p 2,0, ∴3p -p =p 24,∴p =8.故选D .5.(2020·新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( C )A .2B .3C .6D .9[解析] A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+p2=12⇒p =6;故选C .考点突破·互动探究考点一 抛物线的定义及应用——多维探究 角度1 轨迹问题例1 (1)动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是(D)A.直线B.椭圆C.双曲线D.抛物线[解析]设动圆的圆心为C,则C到定圆A:(x+2)2+y2=1的圆心的距离等于r+1,而动圆的圆心到直线x=1的距离等于r,所以动圆到直线x=2距离为r+1,即动圆圆心到定点(-2,0)和定直线x=2的距离相等,根据抛物线的定义知,动圆的圆心轨迹为抛物线,所以答案为D.角度2到焦点与到定点距离之和最小问题(2)①(2021·河北保定七校联考)已知M是抛物线x2=4y上一点,F为其焦点,C为圆(x +1)2+(y-2)2=1的圆心,则|MF|+|MC|的最小值为(B)A.2 B.3C.4 D.5②(2021·山西运城联考)已知抛物线C:x2=8y的焦点为F,O为原点,点P是抛物线C 的准线上的一动点,点A在抛物线C上,且|AF|=4,则|P A|+|PO|的最小值为(B) A.4 2 B.213C.313 D.4 6[解析]①设抛物线x2=4y的准线方程为l:y=-1,C为圆(x+1)2+(y-2)2=1的圆心,所以C的坐标为(-1,2),过M作l的垂线,垂足为E,根据抛物线的定义可知|MF|=|ME|,所以问题求|MF|+|MC|的最小值,就转化为求|ME|+|MC|的最小值,由平面几何的知识可知,当C,M,E在一条直线上时,此时CE⊥l,|ME|+|MC|有最小值,最小值为|CE|=2-(-1)=3,故选B.②由抛物线的定义知|AF|=y A+p2=y A+2=4,∴y A=2,代入x2=8y,得x A=±4,不妨取A(4,2),又O关于准线y=-2的对称点为O′(0,-4),∴|P A|+|PO|=|P A|+|PO′|≥|AO′|=(-4-2)2+(0-4)2=213,当且仅当A、P、O′共线时取等号,故选B.[引申]本例(2)①中,(ⅰ)|MC |-|MF |的最大值为__2__;最小值为__-2__;(ⅱ)若N 为⊙C 上任一点,则|MF |+|MN |的最小值为__2__.角度3 到准线与到定点距离之和最小问题(3)已知圆C :x 2+y 2+6x +8y +21=0,抛物线y 2=8x 的准线为l ,设抛物线上任意一点P 到直线l 的距离为d ,则d +|PC |的最小值为( A )A .41B .7C .6D .9[解析] 由题意得圆的方程为(x +3)2+(y +4)2=4,圆心C 的坐标为(-3,-4).由抛物线定义知,当d +|PC |最小时为圆心与抛物线焦点间的距离,即d +|PC |=(-3-2)2+(-4)2=41.角度4 到两定直线的距离之和最小问题(4)(2021·北京人大附中测试)点P 在曲线y 2=4x 上,过P 分别作直线x =-1及y =x +3的垂线,垂足分别为G ,H ,则|PG |+|PH |的最小值为( B )A .322B .2 2C .322+1D .2+2[解析] 由题可知x =-1是抛物线的准线,焦点F (1,0),由抛物线的性质可知|PG |=|PF |,∴|PG |+|PH |=|PF |+|PH |≤|FH |=|1-0+3|2=22,当且仅当H 、P 、F 三点共线时取等号,∴|PG |+|PH |的最小值为22.故选B .名师点拨利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线.(2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的关系进行相互转化.(3)看到准线想焦点,看到焦点想准线,这是解决抛物线焦点弦有关问题的重要途径. 〔变式训练1〕(1)(角度1)到定点A (0,2)的距离比到定直线l :y =-1大1的动点P 的轨迹方程为__x 2=8y __.(2)(角度1)(2021·吉林省吉林市调研)已知抛物线y 2=4x 的焦点F ,点A (4,3),P 为抛物线上一点,且P 不在直线AF 上,则△P AF 周长取最小值时,线段PF 的长为( B )A .1B .134C .5D .214(3)(角度2)(2021·山西大学附中模拟)已知点Q (22,0)及抛物线y =x 24上一动点P (x ,y ),则y +|PQ |的最小值是__2__.(4)(角度3)(2021·上海虹口区二模)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为( C )A .3716B .115C .2D .74[解析] (1)由题意知P 到A 的距离等于其到直线y =-2的距离,故P 的轨迹是以A 为焦点,直线y =-2为准线的抛物线,所以其方程为x 2=8y .(2)求△P AF 周长的最小值,即求|P A |+|PF |的最小值,设点P 在准线上的射影为D ,根据抛物线的定义,可知|PF |=|PD |,因此,|P A |+|PF |的最小值,即|P A |+|PD |的最小值.根据平面几何知识,可得当D ,P ,A 三点共线时|P A |+|PD |最小,此时P ⎝⎛⎭⎫94,3,且|PF |=94+1=134,故选B .(3)抛物线y =x 24即x 2=4y ,其焦点坐标为F (0,1),准线方程为y =-1.因为点Q 的坐标为(22,0),所以|FQ |=(22)2+12=3.过点P 作准线的垂线PH ,交x 轴于点D ,如图所示.结合抛物线的定义,有y +|PQ |=|PD |+|PQ |=|PH |+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=3-1=2,即y +|PQ |的最小值是2.(4)直线l 2:x =-1是抛物线y 2=4x 的准线,抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF ,过点F 作直线l 1:4x -3y +6=0的垂线,和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和到直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2,故选C .考点二 抛物线的标准方程——自主练透例2 (1)过点P (-3,2)的抛物线的标准方程为__y 2=-43x 或x 2=92y __.(2)焦点在直线x -2y -4=0上的抛物线的标准方程为__y 2=16x 或x 2=-8y __,准线方程为__x =-4或y =2__.(3)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( B )A .y 2=32xB .y 2=3xC .y 2=92xD .y 2=9x[解析] (1)设所求抛物线的方程为y 2=-2px (p >0)或x 2=2py (p >0). ∵过点(-3,2),∴4=-2p ·(-3)或9=2p ·2. ∴p =23或p =94.∴所求抛物线的标准方程为y 2=-43x 或x 2=92y .(2)令x =0,得y =-2,令y =0,得x =4. ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,p2=4,∴p =8,此时抛物线方程为y 2=16x ; 当焦点为(0,-2)时,p2=2,∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的标准方程为y 2=16x 或x 2=-8y , 对应的准线方程分别是x =-4,y =2.(3)如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30°. 在直角三角形ACE 中,∵|AE |=|AF |=3,|AC |=3+3a ,2|AE |=|AC |, ∴3+3a =6,从而得a =1.∵BD ∥FG ,∴|BD ||FG |=|BC ||FC |,即1p =23,求得p =32,因此抛物线的方程为y 2=3x .名师点拨求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,若焦点位置确定,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.一般焦点在x 轴上的抛物线的方程可设为y 2=ax (a ≠0);焦点在y 轴上的抛物线的方程可设为x 2=ay (a ≠0).〔变式训练2〕(1)(2021·重庆沙坪坝区模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点(p,0)且垂直于x 轴的直线与抛物线C 在第一象限内的交点为A ,若|AF |=1,则抛物线C 的方程为( A )A .y 2=43xB .y 2=2xC .y 2=3xD .y 2=4x(2)(2021·安徽蚌埠一中期中)已知抛物线的顶点在原点,焦点在y 轴上,其上的点P (m ,-3)到焦点的距离为5,则抛物线方程为( D )A .x 2=8yB .x 2=4yC .x 2=-4yD .x 2=-8y[解析] (1)由题意知x A =p ,又|AF |=x A +p 2=3p 2=1,∴p =23,∴抛物线C 的方程为y 2=43x ,故选A .(2)由题意可知抛物线的焦点在y 轴负半轴上,故设其方程为x 2=-2py (p >0),所以3+p2=5,即p =4,所以所求抛物线方程为x 2=-8y ,故选D .考点三,抛物线的几何性质——师生共研例3 (1)(2021·广西四校联考)已知抛物线y 2=2px (p >0)上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( C )A .4B .9C .10D .18(2)(理)(2021·四川眉山模拟)点F 为抛物线C :y 2=2px (p >0)的焦点,过F 的直线交抛物线C 于A ,B 两点(点A 在第一象限),过A 、B 分别作抛物线C 的准线的垂线段,垂足分别为M 、N ,若|MF |=4,|NF |=3,则直线AB 的斜率为( D )A .1B .724C .2D .247(文)(2021·四川师大附中期中)已知抛物线y 2=2px (p >0),F 为抛物线的焦点,O 为坐标原点A (x 1,y 1),B (x 2,y 2)为抛物线上的两点,A ,B 的中点到抛物线准线的距离为5,△ABO 的重心为F ,则p =( D )A .1B .2C .3D .4[解析] (1)抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线方程为x =-p 2.由题意可得4+p2=9,解得p =10,所以该抛物线的焦点到准线的距离为10.故选C .(2)(理)由抛物线定义知|AM |=|AF |,|BN |=|BF |, ∴∠AFM +∠BFM =360°-∠MAF -∠NBF2=90°,∴∠MFN =90°, 又|MF |=4,|NF |=3, ∴|MN |=5,∴p =|KF |=|MF |·|NF ||MN |=125, 又∠AFM =∠AMF =∠MFK ,∴k AB =tan(180°-2∠MFK )=-2tan ∠MFK 1-tan 2∠MFK =-831-⎝⎛⎭⎫432=247.故选D .(文)x 1+x 22+p 2=5,x 1+x 2+03=p 2,∴10-p =3p2,所以p =4.故选D .名师点拨在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.〔变式训练3〕(1)(2021·广东茂名五校联考)设抛物线y 2=2px (p >0)的焦点为F (1,0),过焦点的直线交抛物线于A 、B 两点,若|AF |=4|BF |,则|AB |=__254__. (2)(2021·湖北荆州模拟)从抛物线y 2=4x 在第一象限内的一点P 引抛物线准线的垂线,垂足为M ,且|PM |=9,设抛物线的焦点为F ,则直线PF 的斜率为( C )A .627B .1827C .427D .227[解析] (1)∵p2=1,∴p =2,不妨设直线AB 方程为x =my +1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=4x x =my +1,得y 2-4my -4=0, ∴y 1y 2=-4,又|AF |=4|BF |,∴y 1=-4y 2, ∴y 2=-1,从而x 2=14,∴|BF |=1+14=54,∴|AB |=5|BF |=254. (2)设P (x 0,y 0),由抛物线y 2=4x , 可知其焦点F 的坐标为(1,0), 故|PM |=x 0+1=9,解得x 0=8,故P 点坐标为(8,42), 所以k PF =0-421-8=427.故选C .考点四,直线与抛物线的综合问题——师生共研例4 (1)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y 24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( B )A .28B .32C .20D .40(2)(2021·陕西师大附中期中)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是( B )A .y =x -1B .y =2x -1C .y =-x +2D .y =-2x +3(3)(2021·湖南五市十校联考)已知抛物线C :y 2=2px (p >0),直线y =x -1与C 相交所得的长为8.①求p 的值;②过原点O 的直线l 与抛物线C 交于M 点,与直线x =-1交于H 点,过点H 作y 轴的垂线交抛物线C 于N 点,求证:直线MN 过定点.[解析] (1)双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0).因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y 2=16x ,y =x -4,可得x 2-24x +16=0,故x 1+x 2=24. 故|AB |=x 1+x 2+p =24+8=32.故选B . (2)设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2,由⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,知k AB =y 1-y 2x 1-x 2=4y 1+y 2=2,∴AB 的方程为y -1=2(x -1),即2x -y -1=0,故选B .(3)①由⎩⎪⎨⎪⎧y 2=2px y =x -1,消x 可得y 2-2py -2p =0,∴y 1+y 2=2p ,y 1y 2=-2p , ∴弦长为1+12·(y 1+y 2)2-4y 1y 2=2·4p 2+8p =8,解得p =2或p =-4(舍去), ∴p =2,②由①可得y 2= 4x ,设M ⎝⎛⎭⎫14y 20,y 0, ∴直线OM 的方程y =4y 0x ,当x =-1时,∴y H =-4y 0,代入抛物线方程y 2=4x ,可得x N =4y 20,∴N ⎝⎛⎭⎫4y2,-4y 0, ∴直线MN 的斜率k =y 0+4y 0y 204-4y 20=4y 0y 20-4,直线MN 的方程为y -y 0=4y 0y 20-4⎝⎛⎭⎫x -14y 20, 整理可得y =4y 0y 20-4(x -1),故直线MN 过点(1,0).名师点拨(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要将两方程联立,消元,用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率问题一般用“点差法”求解. 〔变式训练4〕(1)(2021·甘肃诊断)直线l 过抛物线y 2=2px (p >0)的焦点,且交抛物线于A ,B 两点,交其准线于C 点,已知|AF |=4,CB →=3BF →,则p =( C )A .2B .43C .83D .4(2)(2021·安徽皖南八校模拟)已知抛物线C :y 2=2px (p >0)的焦点F 到直线x -y +1=0的距离为2.①求抛物线C 的方程;②过点F 的直线l 与C 交于A ,B 两点,交y 轴于点P .若|AB →|=3|BP →|,求直线l 的方程. [解析] (1)过A ,B 分别作准线的垂线交准线于E ,D 两点, 设|BF |=a ,根据抛物线的性质可知,|BD |=a , |AE |=4,根据平行线段比例可知|BD ||AE |=|CB ||AC |,即a 4=3a 3a +a +4,解得a =2, 又|BD ||GF |=|BC ||CF |,即a p =3a4a, 解得p =43a =83,故选C .(2)①由抛物线C :y 2=2px (p >0),可得焦点F ⎝⎛⎭⎫p 2,0, 因为焦点到x -y +1=0的距离为2,即⎪⎪⎪⎪p 2+12=2,解得p =2,所以抛物线C 的方程y 2=4x .②由①知焦点F (1,0),设直线l :y =k (x -1), A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,整理得k 2x 2-(2k 2+4)x +k 2=0, 所以x 1+x 2=2+4k 2,①x 1x 2=1,②又由|AB →|=3|BP →|,得AB →=3BP →, 可得x 1=4x 2,③由②③,可得x 1=2,x 2=12,代入①,可得2+4k 2=52,解得k =±22,所以直线l 的方程为22x - y -22=0或22x +y -22=0.名师讲坛·素养提升巧解抛物线的切线问题例5 (1)抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =(D )A .316B .38C .233D .433(2)(2019·新课标Ⅲ,节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[解析] (1)抛物线C 1:x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),两点连线的方程为y =-p4(x -2),联立⎩⎨⎧y =-p4(x -2),y =12p x 2,得2x 2+p 2x -2p 2=0.设点M 的横坐标为m ,易知在M 点处切线的斜率存在,则在点M 处切线的斜率为y ′⎪⎪⎪⎪x =m=⎝⎛⎭⎫12p x 2′x =m =m p. 又双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,所以m p =33,即m =33p ,代入2x 2+p 2x -2p 2=0,得p =433或p =0(舍去).(2)设D ⎝⎛⎭⎫t ,-12,A (x 1,y 1), 则x 21=2y 1,由于y ′=x ,∴切线DA 的斜率为x 1,故y 1+12x 1-t =x 1,整理得:2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0,即y -12=tx .∴直线AB 过定点⎝⎛⎭⎫0,12.名师点拨利用导数工具解决抛物线的切线问题,使问题变得巧妙而简单,若用判别式解决抛物线的切线问题,计算量大,易出错.注意:直线与抛物线只有一个公共点是直线与抛物线相切的必要不充分条件,过抛物线外一点与抛物线只有一个公共点的直线有0条或3条;过抛物线上一点和抛物线只有一个公共点的直线有2条.〔变式训练5〕(1)已知抛物线C :y 2=2px (p >0),过点M ⎝⎛⎭⎫-p2,0作C 的切线,则切线的斜率为__±1__. (2)已知抛物线x 2=8y ,过点P (b,4)作该抛物线的切线P A ,PB ,切点为A ,B ,若直线AB恒过定点,则该定点为( C )A .(4,0)B .(3,2)C .(0,-4)D .(4,1)[解析] (1)设斜率为k ,则切线为y =k ⎝⎛⎭⎫x +p 2代入y 2=2px 中得k 2x 2+p (k 2-2)x +k 2p 24=0. Δ=0,即p 2(k 2-2)2-4·k 2·k 2p 24=0.解得k 2=1,∴k =±1.(2)设A ,B 的坐标为(x 1,y 1),(x 2,y 2), ∵y =x 28,y ′=x4,∴P A ,PB 的方程y -y 1=x 14(x -x 1),y -y 2=x 24(x -x 2),由y 1=x 218,y 2=x 228,可得y =x 14x -y 1,y =x 24x -y 2,∵切线P A ,PB 都过点P (b,4), ∴4=x 14×b -y 1,4=x 24×b -y 2,故可知过A ,B 两点的直线方程为4=b4x -y ,当x =0时,y =-4,∴直线AB 恒过定点(0,-4).故选C .。
第七讲 抛物线A 组基础巩固一、选择题1.(2021·某某某某质检)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线上一点M (2,m )满足|MF |=6,则抛物线C 的方程为( D )A .y 2=2xB .y 2=4xC .y 2=8xD .y 2=16x[解析]设抛物线的准线为l ,作MM ′⊥直线l 于点M ′,交y 轴于M ″,由抛物线的定义可得:MM ′=MF =6,结合x M =2可知:M ′M ″=6-2=4,即p2=4,∴2p =16,据此可知抛物线的方程为:y 2=16x .选D .2.(理)(2021·某某皖南八校联考)已知双曲线y 2a2-x 2b 2=1(a >0,b >0)的两条渐近线互相垂直,且焦距为26,则抛物线y 2=2bx 的准线方程为( B )A .x =-3B .x =-32 C .y =-3D .y =-32(文)(2021·某某某某期末)抛物线y =4x 2的准线方程是( A ) A .y =-116B .y =116C .x =1D .x =-1[解析](理)由题意a 2=b 2=12⎝ ⎛⎭⎪⎪⎫2622=3,∴b =3.∴抛物线y 2=2bx 的准线方程为x =-32.故选B .(文)抛物线标准方程为x 2=14y ,∴p =18,∴准线方程为y =-p 2,即y =-116,故选A .3.(2021·某某八校联考)斜率为33的直线l 过抛物线C :y 2=2px (p >0)的焦点F ,若直线l 与圆M :(x -2)2+y 2=4相切,则p =( A )A .12B .8C .10D .6 [解析]抛笔线C :y 2=2px (p >0)的焦点F ⎝ ⎛⎭⎪⎫p 2,0, 直线l 的方程为3y =x -p2,又直线l 与圆M :(x -2)2+y 2=4相切,可得⎪⎪⎪⎪⎪⎪2-p 23+1=2,解得p =12,故选A .4.(2020·)设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线( B )A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP[解析]由抛物线定义知|PQ |=|PF |,∴FQ 的垂直平分线必过P ,故选B .5.(2021·某某某某一中调研)已知F 为抛物线C :y 2=8x 的焦点,M 为C 上一点,且|MF |=4,则M 到x 轴的距离为( A )A .4B .4 2C .8D .16[解析]设M (x 1,y 1),由抛物线性质得:x 1=4-2=2,∴y 21=8·2=16⇒|y 1|=4,故M 到x 的距离为4,故选A .6.(2021·某某某某模拟)已知抛物线C :y 2=4x 的焦点为F ,点M (x 0,y 0)在抛物线C 上,若|MF |=4,则( C )A .x 0=5B .y 0=23C .|OM |=21D .F 的坐标为(0,1)[解析]由题可知F (1,0),由|MF |=x 0+1,所以x 0=3,y 20=12,|OM |=x 20+y 20=9+12=21.故选C .7.(2021·某某某某质检)已知点A 在圆(x -2)2+y 2=1上,点B 在抛物线y 2=8x 上,则|AB |的最小值为( A )A .1B .2C .3D .4[解析]由题得圆(x -2)2+y 2=1的圆心为(2,0),半径为1. 抛物线y 2=8x 的焦点C (2,0), 则|BC |=x -22+y 2=x -22+8x =x +2,∴|BC |min =2,∴|AB |min =2-1=1,故选A .8.(2021·某某某某统测)抛物线方程为x 2=4y ,动点P 的坐标为(1,t ),若过P 点可以作直线与抛物线交于A ,B 两点,且点P 是线段AB 的中点,则直线AB 的斜率为( A )A .12B .-12C .2D .-2[解析]设A (x 1,y 1),B (x 2,y 2),由题得⎩⎪⎨⎪⎧x 21=4y 1x 22=4y 2,∴(x 1+x 2)(x 1-x 2)=4(y 1-y 2), 所以k =y 2-y 1x 2-x 1=12,故选A .9.(2021·某某高邮一中检测)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (3,23)的直线l 交抛物线于另一点N ,则|NF ||FM |等于( B )A .1 2B .1 3C .14 D .13[解析]∵F (1,0),∴k l =23-03-1=3,∴l :y =3(x -1),由⎩⎪⎨⎪⎧y 2=4xy =3x -1解得x N =13,x M =3,∴|NF ||FM |=13+13+1=13.故选B . 10.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( D )A .34B .32C .1D .2[解析]如图F 为抛物线的焦点,则|FA |+|FB |≥|AB |=6(当且仅当A 、F 、B 共线时取等号), 即y A +y B +2≥6,∴y A +y B2≥2,故选D .11.(2021·某某某某期末改编)已知抛物线C :y 2=4x 的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点P (x 1,y 1),Q (x 2,y 2),点P 在l 上的射影为P 1,则下列结论错误的是( D )A .若x 1+x 2=6,则|PQ |=8B .以PQ 为直径的圆与准线l 相切C .设M (0,1),则|PM |+|PP 1|≥2D .过点M (0,1)与抛物线C 有且仅有一个公共点的直线至多有2条[解析]对于选项A ,因为p =2,所以x 1+x 2+2=|PQ |,则|PQ |=8,故A 正确;对于选项B ,设N 为PQ 中点,设点N 在l 上的射影为N 1,点Q 在l 上的射影为Q 1,则由梯形性质可得NN 1=PP 1+QQ 12=PF +QF 2=PQ2,故B 正确;对于选项C ,因为F (1,0),所以|PM |+|PP 1|=|PM |+|PF |≥|MF |=2,故C 正确;对于选项D ,显然直线x =0,y =1与抛物线只有一个公共点,设过M 的直线为y =kx +1,联立⎩⎪⎨⎪⎧y =kx +1y 2=4x,可得k 2x 2+(2k-4)x +1=0,令Δ=0,则k =1,所以直线y =x +1与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误;故选D .二、填空题12.(2020·某某)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=163.[解析]由题意可得抛物线焦点F (1,0), 直线l 的方程为y =3(x -1),代入y 2=4x 并化简得3x 2-10x +3=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103,由抛物线的定义知|AB |=x 1+x 2+p =103+2=163.13.(2021·某某某某质检)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),线段FA 与抛物线交于点B ,且FB →=2BA →,则|BF |9[解析]由题意知F ⎝ ⎛⎭⎪⎫p 2,0,又A (0,2),且FB →=2BA →,∴B ⎝ ⎛⎭⎪⎫p 6,43,∴⎝ ⎛⎭⎪⎫432=2p ·p 6,解得p=433,∴|BF |=p 6+p 2=2p 3=839.14.(2021·某某调研改编)设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,A 为C 上一点,以F 为圆心,|FA |为半径的圆交l 于B ,D 两点,若∠ABD =90°,且△ABF 的面积为93,则__②③④__. ①|BF |=3②△ABF 是等边三角形 ③点F 到准线的距离为3 ④抛物线C 的方程为y 2=6x[解析]如图,由题意知|AB |=2|FH |=2p ,∴x A =3p2,从而y A =3p ,又S △ABF =12|AB |·y A =3p 2=93,∴p =3,∴C 的方程为y 2=6x ,④正确,③正确, ∴|BF |=|AF |=3p 2+p2=2p =6,①错,又|AB |=2p =6,∴△ABF 为等边三角形, ∴②正确,故答案为②③④. 三、解答题15.(2021·某某某某部分示X 高中协作体联考)如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)若直线PA 和PB 的倾斜角互补,求y 1+y 2的值及直线AB 的斜率. [解析](1)设抛物线解析式为y 2=2px , 把(1,2)的坐标代入得p =2,∴抛物线解析式为y 2=4x ,准线方程为x =-1. (2)∵直线PA 和PB 的倾斜角互补, ∴k PA +k PB =0, ∴y 1-2x 1-1+y 2-2x 2-1=y 1-2y 214-1+y 2-2y 224-1=0,∴1y 1+2+1y 2+2=0,∴y 1+y 2=-4,k AB =y 2-y 1x 2-x 1=y 2-y 1y 224-y 214=4y 2+y 1=-1.16.已知动点P 到定直线l :x =-2的距离比到定点F ⎝ ⎛⎭⎪⎫12,0的距离大32. (1)求动点P 的轨迹C 的方程;(3)过点D (2,0)的直线交轨迹C 于A ,B 两点,直线OA ,OB 分别交直线l 于点M ,N ,证明以MN 为直径的圆被x 轴截得的弦长为定值,并求出此定值.[解析](1)解法一:设点P 的坐标为(x ,y ),因为定点F ⎝ ⎛⎭⎪⎫12,0在定直线l :x =-2的右侧,且动点P 到定直线l :x =-2的距离比到定点F ⎝ ⎛⎭⎪⎫12,0的距离大32,所以x >-2且⎝ ⎛⎭⎪⎫x -122+y 2=|x +2|-32,化简得⎝ ⎛⎭⎪⎫x -122+y 2=x +12,即y 2=2x ,∴轨迹C 的方程为y 2=2x .解法二:由题意可知动点P 到直线l ′:x =-12的距离与到定点F ⎝ ⎛⎭⎪⎫12,0的距离相等,∴轨迹C 是以F 为焦点l ′为准线的抛物线,显然p 2=12,即p =1,∴轨迹C 的方程为y 2=2x . (2)证明:设A (2t 21,2t 1),B (2t 22,2t 2)(t ·t 2≠0), 则DA →=(2t 21-2,2t 1),DB →=(2t 22-2,2t 2). ∵A ,D ,B 三点共线,∴2t 2(2t 21-2)=2t 1(2t 22-2),∴(t 1-t 2)(t 1t 2+1)=0, 又t 1≠t 2,∴t 1t 2=-1,直线OA 的方程为y =1t 1x ,令x =-2,得M (-2,-2t 1).同理,可得N ⎝⎛⎭⎪⎫-2,-2t 2.所以以MN 为直径的圆的方程为(x +2)(x +2)+⎝ ⎛⎭⎪⎫y +2t 1⎝ ⎛⎭⎪⎫y +2t 2=0,即(x +2)2+y 2+2×t 1+t 2t 1t 2+4t 1t 2=0.将t 1t 2=-1代入上式,可得(x +2)2+y 2-2(t 1+t 2)y -4=0, 令y =0,得x =0或x =-4,故以MN 为直径的圆被x 轴截得的弦长为定值4.B 组能力提升1.(2021·某某某某一模)位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为5 m ,跨径为12 m ,则桥形对应的抛物线的焦点到准线的距离为( D )A .2512 mB .256 mC .95 mD .185m[解析]建立如图所示的平面直角坐标系.设抛物线的解析式为x 2=-2py (p >0),∵抛物线过点(6,-5),∴36=10p ,可得p =185,则桥形对应的抛物线的焦点到准线的距离为185m ,故选D .2.(2021·某某适应性考试)已知抛物线C :y 2=2px (p >0)的焦点到准线的距离为1,若抛物线C 上存在关于直线l :x -y -2=0对称的不同两点P 和Q ,则线段PQ 的中点坐标为( A )A .(1,-1)B .(2,0)C .⎝ ⎛⎭⎪⎫12,-32D .(1,1)[解析]因为焦点到准线的距离为p ,则p =1, 所以y 2=2x .设点P (x 1,y 1),Q (x 2,y 2).则⎩⎪⎨⎪⎧y 21=2x 1y 22=2x 2,则(y 1-y 2)(y 1+y 2)=2(x 1-x 2),∴k PQ =2y 1+y 2,又∵P ,Q 关于直线l 对称.∴k PQ =-1,即y 1+y 2=-2,∴y 1+y 22=-1,又∵PQ 的中点一定在直线l 上, ∴x 1+x 22=y 1+y 22+2=1.∴线段PQ 的中点坐标为(1,-1).故选:A .3.(2021·某某师大附中月考)如图所示,点F 是抛物线y 2=8x 的焦点,点A ,B 分别在抛物线y 2=8x 及圆(x -2)2+y 2=16的实线部分上运动,且AB 总是平行于x 轴,则△FAB 的周长的取值X 围是( C )A .(2,6)B .(6,8)C .(8,12)D .(10,14)[解析]抛物线的准线l :x =-2,焦点F (2,0),由抛物线定义可得|AF |=x A +2,圆(x -2)2+y 2=16的圆心为(2,0),半径为4,∴三角形FAB 的周长为|AF |+|AB |+|BF |=(x A +2)+(x B -x A )+4=6+x B ,由抛物线y 2=8x 及圆(x -2)2+y 2=16可得交点的横坐标为2,则x B ∈(2,6),所以6+x B ∈(8,12),故选C .4.(2021·某某、某某调研)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( C )A .5B .6C .163D .203[解析]如图,设l 与x 轴交于点M ,过点A 作AD ⊥l 交l 于点D ,由抛物线的定义知,|AD |=|AF |=4,由F 是AC 的中点,知|AD |=2|MF |=2p ,所以2p =4,解得p =2,所以抛物线的方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =3+13+2=163.故选C .另解:因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163.故选C .5.(2021·某某省某某市期末)如图,已知点F 为抛物线C :y 2=2px (p >0)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,|MN |=16.(1)求抛物线C 的方程;(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.[解析](1)当直线l 的倾斜角为45°,则l 的斜率为1, ∵F ⎝ ⎛⎭⎪⎫p 2,0,∴l 的方程为y =x -p 2. 由⎩⎪⎨⎪⎧ y =x -p 2,y 2=2px ,得x 2-3px +p 24=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=3p ,∴|MN |=x 1+x 2+p =4p =16, p =4,∴抛物线C 的方程为y 2=8x .(2)假设满足条件的点P 存在,设P (a,0),由(1)知F (2,0),①当直线l 不与x 轴垂直时,设l 的方程为y =k (x -2)(k ≠0),由⎩⎪⎨⎪⎧ y =k x -2,y 2=8x ,得k 2x 2-(4k 2+8)x +4k 2=0, Δ=(4k 2+8)2-4·k 2·4k 2=64k 2+64>0,x 1+x 2=4k 2+8k2,x 1x 2=4. ∵直线PM ,PN 关于x 轴对称,∴k PM +k PN =0,k PM =k x 1-2x 1-a ,k PN =k x 2-2x 2-a .∴k (x 1-2)(x 2-a )+k (x 2-2)(x 1-a )=k [2x 1x 2-(a +2)(x 1+x 2)+4a ]=-8a +2k =0,∴a =-2时,此时P (-2,0).②当直线l与x轴垂直时,由抛物线的对称性,易知PM,PN关于x轴对称,此时只需P与焦点F不重合即可.综上,存在唯一的点P(-2,0),使直线PM,PN关于x轴对称.。
第7节 抛物线考试要求 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质. 知识梳理 1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的 .(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质图形标准方程y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)p 的几何意义:焦点F 到准线l 的距离性质顶点对称轴焦点离心率准线方程 y =p2 范围 开口方向向左3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点). 自主检测1.顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.2. 抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.3.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( ) A.2 B.3 C.4 D.84.已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34B.1C.54D.745.已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________. 典型例题考点一 抛物线的定义、标准方程及其性质【例1】 (1)已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( ) A.y 2=±22x B.y 2=±2x C.y 2=±4x D.y 2=±42x(2)设抛物线y 2=4x 的焦点为F ,准线为l ,P 为该抛物线上一点,P A ⊥l ,A 为垂足,若直线AF 的斜率为-3,则△P AF 的面积为( ) A.2 3 B.4 3 C.8 D.8 3(3)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.【训练1】 (1)设抛物线y 2=2px 的焦点在直线2x +3y -8=0上,则该抛物线的准线方程为( ) A.x =-4 B.x =-3 C.x =-2 D.x =-1(2)已知抛物线x 2=2py (p >0)的焦点为F ,准线为l ,点P (4,y 0)在抛物线上,K 为l 与y 轴的交点,且|PK |=2|PF |,则y 0=________.考点二 与抛物线有关的最值问题 角度1 到焦点与定点距离之和(差)最值问题【例2-1】 点P 为抛物线y 2=4x 上的动点,点A (2,1)为平面内定点,F 为抛物线焦点,则: (1)|P A |+|PF |的最小值为________;(2)(多填题)|P A |-|PF |的最小值为________,最大值为________. 角度2 到点与准线的距离之和最值问题【例2-2】 设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.角度3 动弦中点到坐标轴距离最短问题【例2-3】 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34 B.32 C.1 D.2角度4 焦点弦中距离之和最小问题【例2-4】 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.角度5 到定直线的距离最小问题【例2-5】 抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.【训练2】 (1)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为( ) A.⎝⎛⎭⎫-14,1 B.⎝⎛⎭⎫14,1 C.(-2,-22) D.(-2,22)(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是________. 考点三 直线与抛物线的综合问题【例3】 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求直线l 的方程; (2)若AP →=3PB →,求|AB |.【训练3】 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.当堂检测1.已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( ) A.y 2=4x B.y 2=-4x C.y 2=8x D.y 2=-8x2.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|F A |=3,则直线F A 的倾斜角为( ) A.π3 B.π4 C.π3或2π3 D.π4或3π43.设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|F A →|+|FB →|+|FC →|的值为________.4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.5.已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴、 y 轴交于M ,N 两点,点A (2,-4)且AP →=λAM →+μAN →,则λ+μ的最小值为________.6.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.7.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.。
第7讲抛物线【2013年高考会这样考】1.考查抛物线定义、标准方程.2.考查抛物线的焦点弦问题.3.与向量知识交汇考查抛物线的定义、方程、性质等.【复习指导】熟练掌握抛物线的定义及四种不同的标准形式,会根据抛物线的标准方程研究得出几何性质及会由几何性质确定抛物线的标准方程;掌握代数知识,平面几何知识在解析几何中的作用.基础梳理1.抛物线的定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质一个结论焦半径:抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p2.两种方法(1)定义法:根据条件确定动点满足的几何特征,从而确定p 的值,得到抛物线的标准方程. (2)待定系数法:根据条件设出标准方程,再确定参数p 的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x 轴的,设为y 2=ax (a ≠0),焦点在y 轴的,设为x 2=by (b ≠0).双基自测1.(人教A 版教材习题改编)抛物线y 2=8x 的焦点到准线的距离是( ). A .1 B .2 C .4 D .8 解析 由2p =8得p =4,即焦点到准线的距离为4. 答案 C2.(2012·金华模拟)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ).A .x 2=-12y B .x 2=12y C .y 2=-12xD .y 2=12x解析 p2=3,∴p =6,∴x 2=-12y .答案 A3.(2011·陕西)设抛物线的顶点在原点,准线方程x =-2,则抛物线的方程是( ).A .y 2=-8x B .y 2=-4x C .y 2=8x D .y 2=4x解析 由准线方程x =-2,顶点在原点,可得两条信息:①该抛物线焦点为F (2,0);②该抛物线的焦准距p =4.故所求抛物线方程为y 2=8x . 答案 C4.(2012·西安月考)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ).A .4B .6C .8D .12解析 据已知抛物线方程可得其准线方程为x =-2,又由点P 到y 轴的距离为4,可得点P 的横坐标x P =4,由抛物线定义可知点P 到焦点的距离等于其到准线的距离,即|PF |=x P +p2=x P +2=4+2=6. 答案 B5.(2012·长春模拟)抛物线y 2=8x 的焦点坐标是________.解析 ∵抛物线方程为y 2=8x ,∴2p =8,即p =4.∴焦点坐标为(2,0). 答案 (2,0)考向一 抛物线的定义及其应用【例1】►(2011·辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ). A.34 B .1 C.54 D.74[审题视点] 由抛物线定义将|AF |+|BF |转化为线段AB 的中点到准线的距离即可. 解析设抛物线的准线为l ,作AA 1⊥l 于A 1,BB 1⊥l 于B 1,由抛物线的定义知|AA 1|+|BB 1|=|AF |+|BF |=3,则AB 的中点到y 轴的距离为12(|AA 1|+|BB 1|)-14=54.答案 C涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.【训练1】 (2011·济南模拟)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ). A.172 B .3 C. 5 D.92解析 由抛物线的定义知,点P 到该抛物线的距离等于点P 到其焦点的距离,因此点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和即为点P 到点(0,2)的距离与点P 到焦点的距离之和,显然,当P 、F 、(0,2)三点共线时,距离之和取得最小值,最小值等于⎝ ⎛⎭⎪⎫0-122+-2=172. 答案 A考向二 抛物线的标准方程及性质【例2】►(1)(2011·南京模拟)以原点为顶点,坐标轴为对称轴,并且经过P (-2,-4)的抛物线方程为________.(2)(2010·浙江)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.[审题视点] (1)为求抛物线的方程问题,用待定系数法求解,根据题设条件,按焦点所在位置的可能情况,分类讨论.(2)抓住FA 的中点B 在抛物线上,求出p . 解析 (1)由于点P 在第三象限.①当焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0), 把点P (-2,-4)代入得:(-4)2=-2p ×(-2), 解得p =4,∴抛物线方程为y 2=-8x .②当焦点在y 轴负半轴上时,设方程为x 2=-2py (p >0),把点P (-2,-4)代入得:(-2)2=-2p ×(-4).解得p =12.∴抛物线方程为x 2=-y .综上可知抛物线方程为y 2=-8x 或x 2=-y .(2)抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,则线段FA 的中点B 的坐标为⎝ ⎛⎭⎪⎫p4,1,代入抛物线方程得1=2p ×p 4,解得p =2,故点B 的坐标为⎝ ⎛⎭⎪⎫24,1,故点B 到该抛物线准线的距离为24+22=324. 答案 (1)y 2=-8x 或x 2=-y (2)324求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.【训练2】 已知F 为抛物线x 2=2py (p >0)的焦点,M 为其上一点,且|MF |=2p ,则直线MF 的斜率为( ). A .-33 B .±33C .- 3D .± 3 解析 依题意,得F ⎝ ⎛⎭⎪⎫0,p 2,准线为y =-p2,过点M 作MN 垂直于准线于N ,过F 作FQ 垂直于MN 于Q ,则|MN |=|MF |=2p ,|MQ |=p ,故∠MFQ =30°,即直线MF 的倾斜角为150°或30°,斜率为-33或33. 答案 B考向三 抛物线的综合应用【例3】►(2011·江西)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.[审题视点] (1)联立方程,利用焦点弦公式求解;(2)先求出A 、B 坐标,利用关系式表示出点C 坐标,再利用点C 在抛物线上求解.解 (1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4,由抛物线定义得:|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0, 从而x 1=1,x 2=4,y 1=-22,y 2=42, 从而A (1,-22),B (4,42);设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22), 又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1), 即(2λ-1)2=4λ+1,解得λ=0,或λ=2.本题综合考查了直线与抛物线的位置关系、抛物线的标准方程与几何性质、平面向量知识,以及数形结合思想和化归思想.其中直线与圆锥曲线的相交问题一般是联立方程,设而不求,借助根的判别式及根与系数的关系进行转化.【训练3】 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A 、B 两点. (1)设L 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.(1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=x 2-x 12+y 2-y 12=2·x 1+x 22-4x 1x 2=2·36-4=8.(2)证明 设直线L 的方程为x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,y 2=4x得y 2-4ky -4=0.∴y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2).∵OA →·OB →=x 1x 2+y 1y 2 =(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2 =-4k 2+4k 2+1-4=-3. ∴OA →·OB →是一个定值.阅卷报告14——忽视“判别式”致误【问题诊断】 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判断式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误.【防范措施】 解题后任何情况下都来检验判别式Δ.【示例】►(2010·福建)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. 实录 (1)将点A (1,-2)代入y 2=2px ,得p =2,故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.错因 遗漏判别式的应用.(2)假设存在直线l ,设l :y =-2x +t , 由直线OA 与l 的距离d =55,得|t |5=15,解得t =±1.故符合题意的直线l 存在,其方程为2x +y -1=0或2x +y +1=0.正解 (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t , 由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞, 所以符合题意的直线l 存在,其方程为2x +y -1=0.【试一试】 (2012·杭州模拟)在直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=53.(1)求C 1的方程;(2)平面上的点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与C 1交于A 、B 两点,若OA →·OB →=0,求直线l 的方程.[尝试解答] (1)由C 2:y 2=4x ,知F 2(1,0), 设M (x 1,y 1),M 在C 2上, 因为|MF 2|=53,所以x 1+1=53,得x 1=23,y 1=263.所以M ⎝ ⎛⎭⎪⎫23,263.M 在C 1上,且椭圆C 1的半焦距c =1,于是⎩⎪⎨⎪⎧49a 2+83b2=1,b 2=a 2-1,消去b 2并整理得9a 4-37a 2+4=0.解得a =2⎝ ⎛⎭⎪⎫a =13不合题意,舍去. 故b 2=4-1=3.故椭圆C 1的方程为x 24+y 23=1.(2)由MF 1→+MF 2→=MN →,知四边形MF 1NF 2是平行四边形,其中心为坐标原点O , 因为l ∥MN ,所以l 与OM 的斜率相同. 故l 的斜率k =26323= 6.设l 的方程为y =6(x -m ).由⎩⎪⎨⎪⎧x 24+y 23=1,y =6x -m消去y 并整理得9x 2-16mx +8m 2-4=0. 设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=16m 9,x 1x 2=8m 2-49.因为OA →⊥OB →,所以x 1x 2+y 1y 2=0. 所以x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m 9+6m 2=19(14m 2-28)=0. 所以m =± 2.此时Δ=(16m )2-4×9(8m 2-4) =-32m 2+144=-32×2+144>0.故所求直线l 的方程为y =6x -23,或y =6x +2 3.。
第七节抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.2.抛物线的标准方程和几何性质1.抛物线2x 2+y =0的准线方程为________. 解析:∵抛物线的标准方程为x 2=-12y ,∴2p =12,∴ p 2=18,故准线方程为y =18. 答案:y =182.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 解析:M 到准线的距离等于M 到焦点的距离, 又准线方程为y =-116,设M (x ,y ),则y +116=1,所以y =1516.答案:15163.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为________.解析:由题意知,抛物线的准线为x =-p2.因为点P (2,y 0)到其准线的距离为4,所以⎪⎪⎪⎪⎪⎪-p 2-2=4,所以p =4.所以抛物线的标准方程为y 2=8x . 答案:y 2=8x1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视,只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.[小题纠偏]1.平面内到点(1,1)与到直线x +2y -3=0的距离相等的点的轨迹是________. 答案:一条直线2.抛物线8x 2+y =0的焦点坐标为________. 解析:由8x 2+y =0,得x 2=-18y .所以2p =18,p =116,所以焦点为⎝ ⎛⎭⎪⎫0,-132. 答案:⎝⎛⎭⎪⎫0,-132考点一 抛物线定义及应用重点保分型考点——师生共研[典例引领]1.(2019·徐州调研)在平面直角坐标系xOy 中,抛物线y 2=16x 上横坐标为1的点到其焦点的距离为________.解析:抛物线y 2=16x 中,p =8,∴准线方程为x =-4,∵抛物线y 2=16x 上横坐标为1的点到其焦点的距离即为到其准线的距离, ∴d =1-(-4)=5. 答案:52.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则PF 的最小值为________. 解析:设点P 到准线的距离为d ,则有PF =d , 又抛物线的方程为y =2x 2,即x 2=12y,则其准线方程为y =-18,所以当点P 在抛物线的顶点时,d 有最小值18,即PF 的最小值为18.答案:183.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是________.解析:由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于PF ,故动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.答案:2[由题悟法]应用抛物线定义的2个关键点(1)涉及抛物线的焦点和准线的有关问题,应充分利用抛物线的定义求解.由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离PF =|x |+p 2或PF =|y |+p2.[即时应用]1.(2018·南京、盐城二模)在平面直角坐标系xOy 中,抛物线y 2=6x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.若直线AF 的斜率k =-3,则线段PF 的长为________.解析:由题意AF 与x 轴正半轴所成角为120°,PA =PF ,所以△PAF 为正三角形. 因为p =3,所以PF =AF =2p =6. 答案:62.(2019·镇江调研)已知抛物线y 2=2px (p >0)上一点P 到焦点的距离为5,到y 轴的距离为3,则p =________.解析:抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p2,由题意可得P 到准线的距离为5,又P 到y 轴的距离为3,故p2=5-3,解得p =4.答案:4考点二 抛物线的标准方程与几何性质 题点多变型考点——多角探明[锁定考向]抛物线的标准方程及性质是高考的热点. 常见的命题角度有: (1)根据性质求方程; (2)抛物线的对称性;(3)抛物线性质的实际应用.[题点全练]角度一:根据性质求方程1.顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是________. 解析:设抛物线为y 2=mx ,代入点P (-4,-2),解得m =-1,则抛物线方程为y 2=-x ;设抛物线为x 2=ny ,代入点P (-4,-2),解得n =-8,则抛物线方程为x 2=-8y .答案:y 2=-x 或x 2=-8y 角度二:抛物线的对称性2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________.解析:双曲线的渐近线方程为y =±b ax , 因为双曲线的离心率为2,所以1+b 2a 2=2,ba= 3. 由⎩⎨⎧y =3x ,y 2=2px ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2p 3,y =23p 3.由曲线的对称性及△AOB 的面积得,2×12×23p 3×2p3=3,解得p 2=94,即p =32⎝ ⎛⎭⎪⎫p =-32舍去.答案:32角度三:抛物线性质的实际应用3.如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m ,水位下降1 m 后,水面宽________ m.解析:建立如图所示的平面直角坐标系,设水面与拱桥的一个交点为A ,则点A 的坐标为(2,-2).设抛物线方程为x 2=-2py (p>0),则22=-2p ×(-2),得p =1.所以抛物线方程为x 2=-2y .设水位下降1 m 后水面与拱桥的交点坐标为(x 0,-3),则x 20=6,解得x 0=±6,所以水面宽为2 6 m.答案:2 6[通法在握]求抛物线标准方程的方法(1)抛物线的标准方程有四种不同的形式,要掌握焦点到准线的距离,顶点到准线、焦点的距离,通径长与标准方程中系数2p 的关系.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).(3)焦点到准线的距离简称为焦准距,抛物线y 2=2px (p >0)上的点常设为⎝ ⎛⎭⎪⎫y 22p ,y .[提醒] 求抛物线的标准方程时,一定要先确定抛物线的焦点坐标,即抛物线标准方程的形式,否则极易发生漏解的情况.[演练冲关]1.已知抛物线的顶点在原点,对称轴是x 轴,焦点在直线3x -4y -12=0上,则该抛物线的方程为________.解析:由题意知,抛物线的焦点在x 轴上. ∵直线3x -4y -12=0交x 轴于点(4,0), ∴抛物线的焦点为(4,0). 设抛物线方程为y 2=2px (p >0),由p2=4,得p =8,∴该抛物线的方程为y 2=16x . 答案:y 2=16x2.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点A (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为________.解析:依题意设P 在抛物线准线的射影为P ′,抛物线的焦点为F ,则F ⎝ ⎛⎭⎪⎫12,0,由抛物线的定义知P 到该抛物线准线的距离PP ′=PF ,则点P 到点A (0,2)的距离与点P 到该抛物线准线的距离之和d =PF +PA ≥AF =⎝ ⎛⎭⎪⎫122+22=172. 答案:172考点三 直线与抛物线的位置关系重点保分型考点——师生共研 [典例引领]已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且OP =PB ,求△FAB 的面积.解:(1)易知直线与抛物线的交点坐标为(8,-8), 所以(-8)2=2p ×8,所以2p =8, 所以抛物线的方程为y 2=8x .(2)由直线l 2与l 1垂直,且不过原点,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0,Δ=64+32m >0,所以m >-2. y 1+y 2=8,y 1y 2=-8m ,所以x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, 所以m =8或m =0(舍去),所以直线l 2的方程为x =y +8,M (8,0). 故S △FAB =S △FMB +S △FMA =12·FM ·|y 1-y 2|=3y 1+y 22-4y 1y 2=24 5.[由题悟法]解决直线与抛物线的位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线相交的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式AB =|x A |+|x B |+p 或AB =|y A |+|y B |+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[提醒] 涉及弦的中点、斜率时一般用“点差法”求解.[即时应用]已知过点(2,0)的直线l 1交抛物线C :y 2=2px (p >0)于A ,B 两点,直线l 2:x =-2交x 轴于点Q.(1)设直线Q A ,Q B 的斜率分别为k 1,k 2,求k 1+k 2的值;(2)点P 为抛物线C 上异于A ,B 的任意一点,直线PA ,PB 交直线l 2于M ,N 两点, OM ―→·ON ―→=2,求抛物线C 的方程.解:(1)设直线l 1的方程为x =my +2,点A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =my +2,y 2=2px ,得y 2-2pmy -4p =0,则y 1+y 2=2pm ,y 1y 2=-4p . 由题意知,点Q(-2,0), 所以k 1+k 2=y 1x 1+2+y 2x 2+2=y 1my 1+4+y 2my 2+4=2my 1y 2+4y 1+y 2my 1+4my 2+4=-8mp +8mpmy 1+4my 2+4=0.(2)设点P (x 0,y 0),直线PA :y -y 1=y 1-y 0x 1-x 0(x -x 1), 当x =-2时,y M =-4p +y 1y 0y 1+y 0,同理y N =-4p +y 2y 0y 2+y 0.因为OM ―→·ON ―→=2,所以4+y N y M =2,即-4p +y 2y 0y 2+y 0·-4p +y 1y 0y 1+y 0=16p 2-4py 0y 2+y 1+y 20y 1y 2y 2y 1+y 0y 2+y 1+y 20=16p 2-8p 2my 0-4py 20-4p +2pmy 0+y 20=-4p -4p +2pmy 0+y 2-4p +2pmy 0+y 2=-2,故p =12,所以抛物线C 的方程为y 2=x .一抓基础,多练小题做到眼疾手快1.在平面直角坐标系xOy 中,若抛物线y 2=2px (p >0)上横坐标为2的点到焦点的距离为4,则该抛物线的准线方程为________.解析:抛物线y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,准线方程x =-p2,由抛物线的定义可知,2+p2=4,则p =4,∴抛物线的准线方程为x =-2.答案:x =-22.(2018·扬州期末)若抛物线y 2=2px (p >0)的焦点也是双曲线x 2-y 2=8的一个焦点,则p =________.解析:抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0,双曲线x 2-y 2=8的右焦点为(4,0),故p2=4,即p =8.答案:83.已知P 为抛物线y 2=8x 上动点,定点A (3,1),F 为该抛物线的焦点,则PF +PA 的最小值为________.解析:易知点A 在抛物线内部,抛物线的准线方程为x =-2,过点P 作准线的垂线,垂足为M ,则PF +PA =PM +PA ,当A ,P ,M 三点共线时取得最小值,所以PF +PA =3-(-2)=5.答案:54.(2018·前黄中学检测)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为________.解析:由于抛物线y 2=2px (p >0)的准线方程为x =-p 2,由题意得-p2=-1,p =2,所以焦点坐标为 (1,0) . 答案:(1,0)5.已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x Px P --1=12,解得x P =1,所以y 2P =4,所以|y P |=2.答案:26.(2019·连云港模拟)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则S △BCFS △ACF=________. 解析:∵抛物线方程为y 2=2x ,∴焦点F 的坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.如图,设A (x 1,y 1),B (x 2,y 2),过A ,B 分别向抛物线的准线作垂线,垂足分别为E ,N ,则BF =BN =x 2+12=2,∴x 2=32,把x 2=32代入抛物线y 2=2x ,得y 2=-3,∴直线AB 过点M (3,0)与B ⎝ ⎛⎭⎪⎫32,-3. 则直线AB 的方程为3x +⎝ ⎛⎭⎪⎫32-3y -3=0,与抛物线方程联立,解得x 1=2, ∴AE =2+12=52.∵在△AEC 中,BN ∥AE ,∴BC AC =BN AE =252=45,故S △BCF S △ACF =12BC ·h12AC ·h=45. 答案:45二保高考,全练题型做到高考达标1.(2019·宿迁一模)抛物线x 2=4y 的焦点坐标为________.解析:∵抛物线x 2=4y 的焦点在y 轴上,开口向上,且2p =4,∴p2=1.∴抛物线x 2=4y 的焦点坐标为(0,1). 答案:(0,1)2.过抛物线x 2=-12y 的焦点F 作直线垂直于y 轴,交抛物线于A ,B 两点,O 为抛物线的顶点,则△OAB 的面积是________.解析:由题意F (0,-3),将y =-3代入抛物线方程得x =±6, 所以AB =12,所以S △OAB =12×12×3=18.答案:183.已知过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则AF BF=________.解析:设A (x 1,y 1),B (x 2,y 2),由题意知AB 所在的直线方程为y =3⎝ ⎛⎭⎪⎫x -p 2,联立⎩⎪⎨⎪⎧y 2=2px ,y =3⎝ ⎛⎭⎪⎫x -p 2得x 2-5p 3x +p24=0,解得x 1=3p 2,x 2=p6,所以AF BF =32p +p 2p 2+p6=3.答案:34.(2019·南通调研)已知F 是抛物线C :y 2=12x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 是FN 的中点,则FN 的长度为________.解析:∵F (3,0),∴由题意可得M 的横坐标为32,∴FM =32+3=92,FN =2FM =9.答案:95.已知抛物线y 2=2x 的弦AB 的中点的横坐标为32,则AB 的最大值为________.解析:设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3,由抛物线的定义可知,AF +BF =x 1+x 2+1=4,由图可知AF +BF ≥AB ,AB ≤4,当且仅当直线AB过焦点F 时,AB 取得最大值4.答案:46.一个顶点在原点,另外两点在抛物线y 2=2x 上的正三角形的面积为________. 解析:如图,根据抛物线的对称性得∠AOx =30°. 直线OA 的方程y =33x , 代入y 2=2x ,得x 2-6x =0, 解得x =0或x =6. 即得A 的坐标为(6,23).∴AB =43,正三角形OAB 的面积为12×43×6=12 3.答案:12 37.(2018·无锡调研)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且PA =12AB ,则点A 到抛物线C 的焦点的距离为________.解析:设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为D ,E (图略),因为PA =12AB ,所以⎩⎪⎨⎪⎧3x 1+2=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.答案:538.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且MF =4OF ,△MFO 的面积为43,则抛物线的方程为________.解析:设M (x ,y ),因为OF =p 2,MF =4OF ,所以MF =2p ,由抛物线定义知x +p2=2p ,所以x =32p ,所以y =±3p .又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p=-4舍去).所以抛物线的方程为y 2=8x .答案:y 2=8x9.已知抛物线y 2=2x 的焦点为F ,点P 是抛物线上的动点,点A (3,2),求PA +PF 的最小值,并求取最小值时点P 的坐标.解:将x =3代入抛物线方程y 2=2x ,得y =± 6. 因为6>2,所以A 在抛物线内部.设抛物线上的点P 到准线l :x =-12的距离为d ,由定义知PA +PF =PA +d .当PA ⊥l 时,PA +d 最小,最小值为72,即PA +PF 的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,所以点P 的坐标为(2,2).10.(2018·扬州中学检测)在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于A ,B 两点.(1)如果直线l 过抛物线的焦点,求OA ―→·OB ―→的值;(2)如果OA ―→·OB ―→=-4,证明直线l 必过一定点,并求出该定点. 解:(1)由题意:抛物线焦点为(1,0), 设l :x =ty +1,代入抛物线y 2=4x , 消去x ,得y 2-4ty -4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4, 所以OA ―→·OB ―→=x 1x 2+y 1y 2=(ty 1+1)(ty 2+1)+y 1y 2 =t 2y 1y 2+t (y 1+y 2)+1+y 1y 2=-4t 2+4t 2+1-4=-3. (2)证明:设l :x =ty +b ,代入抛物线y 2=4x ,消去x ,得y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4b ,所以OA ―→·OB ―→=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2=t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2=-4bt 2+4bt 2+b 2-4b =b 2-4b . 令b 2-4b =-4,得b 2-4b +4=0,解得b =2. 所以直线l 过定点(2,0).三上台阶,自主选做志在冲刺名校1.(2018·连云港二模)从抛物线x 2=4y 上一点P 引抛物线准线的垂线,垂足为M ,且PM =5,设抛物线的焦点为F ,则△MPF 的面积S =________.解析:设P (x 0,y 0),依题意可知抛物线的准线方程为y =-1, ∴y 0=5-1=4,∴|x 0|=4×4=4, ∴△MPF 的面积S =12PM ·|x 0|=12×5×4=10.答案:102.过抛物线x 2=4y 的焦点F 作直线AB ,CD 与抛物线交于A ,B ,C ,D 四点,且AB ⊥CD ,则FA ―→·FB ―→+FC ―→·FD ―→的最大值等于________.解析:依题意可得,FA ―→·FB ―→=-(|FA ―→|·|FB ―→|).又因为|FA ―→|=y A +1,|FB ―→|=y B +1, 所以FA ―→·FB ―→=-(y A y B +y A +y B +1). 设直线AB 的方程为y =kx +1(k ≠0), 联立x 2=4y ,可得x 2-4kx -4=0, 所以x A +x B =4k ,x A x B =-4. 所以y A y B =1,y A +y B =4k 2+2. 所以FA ―→·FB ―→=-(4k 2+4). 同理FC ―→·FD ―→=-⎝ ⎛⎭⎪⎫4k 2+4.所以FA ―→·FB ―→+FC ―→·FD ―→=-⎝⎛⎭⎪⎫4k 2+4k2+8≤-16.当且仅当k =±1时等号成立. 答案:-163.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1), 因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2), 所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).。
第七节 抛物线[考纲传真] 1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合思想.3.了解抛物线的实际背景及抛物线的简单应用.1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上. 2.抛物线的标准方程与几何性质1.y 2=ax (a ≠0)的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0,准线方程为x =-a4.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长度等于2p ,通径是过焦点最短的弦.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( ) (3)若一抛物线过点P (-2,3),则其标准方程可写为y 2=2px (p >0).( ) (4)抛物线既是中心对称图形,又是轴对称图形.( ) [答案] (1)× (2)× (3)× (4)× 2.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-2A [∵y =14x 2,∴x 2=4y ,∴准线方程为y =-1.]3.(教材改编)顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( ) A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8yD [若焦点在y 轴上,设抛物线方程为x 2=my ,由题意可知16=-2m ,∴m =-8,即x 2=-8y .若焦点在x 轴上,设抛物线方程为y 2=nx ,由题意,得4=-4n ,∴n =-1, ∴y 2=-x .综上知,y 2=-x 或x 2=-8y .故选D.]4.(教材改编)若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1716 B.1516C.78D .0B [M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,∴y =1516.]5.(教材改编)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于________.8 [|PQ |=x 1+x 2+p =6+2=8.]抛物线的定义及应用【例1】 (1)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ) A.34 B .1 C.54D.74(2)已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,A (3,2),则|PA |+|PF |的最小值为________,取最小值时点P 的坐标为________.(1)C (2)72 (2,2) [(1)如图所示,设抛物线的准线为l ,AB 的中点为M ,作AA 1⊥l 于A 1,BB 1⊥l 于B 1,MM 1⊥l 于M 1,由抛物线的定义知p =12,|AA 1|+|BB 1|=|AF |+|BF |=3,则点M 到y 轴的距离为|MM 1|-p 2=12(|AA 1|+|BB 1|)-14=54.故选C.(2)将x =3代入抛物线方程y 2=2x ,得y =± 6.因为6>2,所以点A 在抛物线内部,如图所示.过点P 作PQ ⊥l 于点Q ,则|PA |+|PF |=|PA |+|PQ |, 当PA ⊥l ,即A ,P ,Q 三点共线时,|PA |+|PQ |最小,最小值为72,即|PA |+|PF |的最小值为72,此时点P 的纵坐标为2,代入y 2=2x ,得x =2,所以所求点P 的坐标为(2,2).] 由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化注意灵活运用抛物线上一点P x 0,0到焦点(1)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.(2)(2017· 全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.(1)y 2=4x (2)6 [(1)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .(2)如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF . 由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF ,∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.]抛物线的标准方程及其性质【例2】 (1)如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=4,则抛物线的方程为( ) A .y 2=8x B .y 2=4x C .y 2=2x D .y 2=x(2)在平面直角坐标系xOy 中,设抛物线y 2=4x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的倾斜角为120°,那么|PF |=_______.(1)B (2)4 [(1)如图,分别过点A ,B 作准线的垂线,交准线于点E ,D ,设准线与x 轴交于点G ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30° ,则在Rt△ACE 中,2|AE |=|AC |,又|AF |=4,∴|AC |=4+3a ,|AE |=4,∴4+3a=8,从而得a =43,∵AE ∥FG ,∴FG AE =CF AC ,即p 4=48,p =2.∴抛物线的方程为y 2=4x .故选B. (2)法一:抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.因为直线AF 的倾斜角为120°,所以∠AFO =60°.又tan 60°=y A1--,所以y A =2 3.因为PA ⊥l ,所以y P =y A =2 3.将其代入y 2=4x ,得x P =3,所以|PF |=|PA |=3-(-1)=4.法二:抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.因为PA ⊥l ,所以|PA |=|PF |.又因为直线AF 的倾斜角为120°,所以∠AFO =60°,所以∠PAF =60°,所以△PAF 为等边三角形,所以|PF |=|AF |=1--cos∠AFO=4.](1)△POF 的面积为( ) A. 2 B. 3 C .2D .3(2)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则抛物线C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x(1)B (2)C [(1)抛物线y 2=4x 的焦点为F (1,0),准线为直线x =-1.设点P (x ,y ),由抛物线的定义,得|PF |=x +1=4,所以x =3.把x =3代入y 2=4x ,得y =±23,故△POF 的面积S =12×|OF |×|y |=12×1×23= 3.故选B.(2)如图所示,抛物线y 2=2px 的焦点F 坐标为⎝ ⎛⎭⎪⎫p2,0,准线方程为l :x=-p 2.由|MF |=5,可得点M 到准线的距离为5,则点M 的横坐标为5-p2,可设M ⎝ ⎛⎭⎪⎫5-p 2,m ,则MF 中点B 的坐标为B ⎝ ⎛⎭⎪⎫52,m 2,∵以MF 为直径的圆过点A (0,2),∴|AB |=12|MF |=52,则有⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫m 2-22=⎝ ⎛⎭⎪⎫522,解得m =4,由点M 在抛物线上可得m 2=42=2p ⎝ ⎛⎭⎪⎫5-p 2,解得p =2或p =8,∴所求抛物线方程为y 2=4x 或y2=16x ,故选C.]直线与抛物线的位置关系【例3】 (2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .[解] (1)当l 与x 轴垂直时,l 的方程为x =2,可得点M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线, 所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -,y 2=2x得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+y 1+y 2x 1+x 2+.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .直线与抛物线的位置关系和直线与椭圆的位置关系类似,一般要用到根与系数的关系有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式涉及抛物线的弦长、弦中点等相关问题时,一般采用“设而不求,整体代入”的解法提醒:涉及弦的中点、弦所在直线的斜率时一般用“点差法”求解(1)________条.(2)(2019·临沂模拟)已知点A (m,4)(m >0)在抛物线x 2=4y 上,过点A 作倾斜角互补的两条直线l 1和l 2,且l 1,l 2与抛物线的另一个交点分别为B ,C . ①求证:直线BC 的斜率为定值;②若抛物线上存在两点关于BC 对称,求|BC |的取值范围.(1)3 [结合图形分析可知(图略),满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).] (2)[解] ①证明:∵点A (m,4)在抛物线上, ∴16=m 2,∴m =±4,又m >0,∴m =4. 设B (x 1,y 1),C (x 2,y 2), 则k AB +k AC =x 1+44+x 2+44=x 1+x 2+84=0,∴x 1+x 2=-8.∴k BC =y 2-y 1x 2-x 1=x 22-x 21x 2-x 1=x 1+x 24=-2,∴直线BC 的斜率为定值-2.②设直线BC 的方程为y =-2x +b ,P (x 3,y 3),Q (x 4,y 4) 关于直线BC 对称,设PQ 的中点为M (x 0,y 0),则k PQ =y 4-y 3x 4-x 3=x 3+x 44=x 02=12,∴x 0=1.∴M (1,-2+b ).又点M 在抛物线内部,∴-2+b >14,即b >94.由⎩⎪⎨⎪⎧y =-2x +b ,x 2=4y ,得x 2+8x -4b =0,∴x 3+x 4=-8,x 3x 4=-4b . ∴|BC |=1+4|x 3-x 4|=5·x 3+x 42-4x 3x 4=5×64+16b . 又b >94,∴|BC |>10 5.∴|BC |的取值范围为(105,+∞).1.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( ) A .5 B .6 C .7D .8D [过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎪⎨⎪⎧y =23x +,y 2=4x ,得x 2-5x+4=0,解得x =1或x =4,所以⎩⎪⎨⎪⎧x =1,y =2,或⎩⎪⎨⎪⎧x =4,y =4,不妨设M (1,2),N (4,4),易知F (1,0),所以FM →=(0,2),FN →=(3,4),所以FM →·FN →=8.故选D.]2.(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A .2 B .4 C .6D .8B [设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5, ∴p =4(负值舍去).∴C 的焦点到准线的距离为4.]3.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.2 [由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k x -,y 2=4x ,消去y ,得k 2(x -1)2=4x ,即k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1.由⎩⎪⎨⎪⎧y =k x -,y 2=4x消去x 得y 2=4⎝ ⎛⎭⎪⎫1ky +1,即y 2-4k y -4=0,则y 1+y 2=4k,y 1y 2=-4.由∠AMB =90°,得MA →·MB →=(x 1+1,y 1-1)·(x 2+1,y 2-1)=x 1x 2+x 1+x 2+1+y 1y 2-(y 1+y 2)+1=0,将x 1+x 2=2k 2+4k 2,x 1x 2=1与y 1+y 2=4k,y 1y 2=-4代入,得k =2.]4.(2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.[解] (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -,y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去)或k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则 ⎩⎪⎨⎪⎧y 0=-x 0+5,x 0+2=y 0-x 0+22+16,解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.。
第7讲抛物线最新考纲 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.知识梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质y2=2px y2=-2px x2=2py x2=-2py1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形.答案 (1)× (2)× (3)× (4)√2.(2016·四川卷)抛物线y 2=4x 的焦点坐标是( ) A.(0,2) B.(0,1) C.(2,0)D.(1,0) 解析 抛物线y 2=ax 的焦点坐标为⎝⎛⎭⎪⎫a4,0,故y 2=4x ,则焦点坐标为(1,0). 答案 D3.(2014·全国Ⅰ卷)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( ) A.4B.2C.1D.8解析 由y 2=x ,得2p =1,即p =12,因此焦点F ⎝⎛⎭⎪⎫14,0,准线方程为l :x =-14.设A 点到准线的距离为d ,由抛物线的定义可知d =|AF |,从而x 0+14=54x 0,解得x 0=1,故选C.答案 C4.(选修2-1P73A4(1)改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为________.解析很明显点P在第三象限,所以抛物线的焦点可能在x轴负半轴上或y轴负半轴上.当焦点在x轴负半轴上时,设方程为y2=-2px(p>0),把点P(-2,-4)的坐标代入得(-4)2=-2p×(-2),解得p=4,此时抛物线的标准方程为y2=-8x;当焦点在y轴负半轴上时,设方程为x2=-2py(p>0),把点P(-2,-4)的坐标代入得(-2)2=-2p×(-4),解得p=1,此时抛物线的标准方程为x2=-y.2综上可知,抛物线的标准方程为y2=-8x或x2=-y.答案y2=-8x或x2=-y5.已知抛物线方程为y2=8x,若过点Q(-2,0)的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.解析设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,当k=0时,显然满足题意;当k≠0时,Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是『-1,1』.答案『-1,1』考点一抛物线的定义及应用『例1』(1)(2016·浙江卷)若抛物线y2=4x上的点M到焦点的距离为10,则M 到y轴的距离是________.(2)若抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),则|P A|+|PF|取最小值时点P的坐标为________.解析(1)抛物线y2=4x的焦点F(1,0).准线为x=-1,由M到焦点的距离为10,可知M到准线x=-1的距离也为10,故M的横坐标满足x M+1=10,解得x M=9,所以点M 到y 轴的距离为9. (2)将x =3代入抛物线方程 y 2=2x ,得y =± 6.∵6>2,∴A 在抛物线内部,如图.设抛物线上点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d . 当P A ⊥l 时,|P A |+d 最小,最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2,∴点P 的坐标为(2,2).答案 (1)9 (2)(2,2)规律方法 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径. 『训练1』 (1)过抛物线y 2=8x 的焦点F 的直线交抛物线于A ,B 两点,交抛物线的准线于点C ,若|AF |=6,BC →=λFB →(λ>0),则λ的值为( )A.34B.32C.3D.3(2)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.解析 (1)设A (x 1,y 1),B (x 2,y 2),C (-2,-x 3),则x 1+2=6,解得x 1=4,y 1=±42,点A (4,42), 则直线AB 的方程为y =22(x -2), 令x =-2,得C (-2,-82),联立方程组⎩⎪⎨⎪⎧y 2=8x ,y =22(x -2),解得B (1,-22),所以|BF |=1+2=3,|BC |=9,所以λ=3.(2)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .答案 (1)D (2)y 2=4x考点二 抛物线的标准方程及其性质『例2』 (1)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ) A.x 2=833y B.x 2=1633y C.x 2=8yD.x 2=16y(2)(2016·全国Ⅰ卷)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2B.4C.6D.8解析 (1)∵x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±b a x ,即y =±3x .由题意得p21+(3)2=2,解得p =8.故C 2的方程为x 2=16y .(2)不妨设抛物线C :y 2=2px (p >0),圆的方程为x 2+y 2=r 2(r >0), ∵|AB |=42,|DE |=25,抛物线的准线方程为x =-p2, ∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5,∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p +8=p 24+5,解得p =4(负值舍去), ∴C 的焦点到准线的距离为4.答案 (1)D (2)B规律方法 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此. 『训练2』 (1)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ) A.y 2=9x B.y 2=6x C.y 2=3xD.y 2=3x(2)(2016·西安模拟)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为________.解析 (1)设A ,B 在准线上的射影分别为A 1,B 1,由于|BC |=2|BF |=2|BB 1|,则直线l 的斜率为3, 故|AC |=2|AA 1|=6,从而|BF |=1,|AB |=4,故p |AA 1|=|CF ||AC |=12,即p =32,从而抛物线的方程为y 2=3x ,故选C.(2)如图,由题意知,抛物线的焦点F 的坐标为(1,0),又|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,所以点A 的横坐标为2,将x =2代入y 2=4x 得y 2=8,由图知点A 的纵坐标为y =22,所以A (2,22),所以直线AF 的方程为y =22(x -1), 联立直线与抛物线的方程⎩⎪⎨⎪⎧y =22(x -1),y 2=4x ,解得⎩⎨⎧x =12,y =-2或⎩⎪⎨⎪⎧x =2,y =22,由图知B ⎝ ⎛⎭⎪⎫12,-2, 所以S △AOB =12×1×|y A -y B |=322.答案 (1)C (2)322考点三 直线与抛物线的位置关系(多维探究) 命题角度一 直线与抛物线的公共点(交点)问题『例3-1』 (2016·全国Ⅰ卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 解 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t ,又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,故ON 的方程为y =pt x ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其它公共点,理由如下: 直线MH 的方程为y -t =p2t x , 即x =2tp (y -t ).代入y 2=2px 得y 2-4ty +4t 2=0, 解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.规律方法 (1)①本题求解的关键是求点N ,H 的坐标.②第(2)问将直线MH 的方程与曲线C 联立,根据方程组的解的个数进行判断.(2)①判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.②解题时注意应用根与系数的关系及设而不求、整体代换的技巧.命题角度二 与抛物线弦长(中点)有关的问题『例3-2』 (2017·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8. (1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积. 解 (1)易知直线与抛物线的交点坐标为(8,-8), ∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎨⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍),∴直线l 2:x =y +8,M (8,0). 故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2| =3(y 1+y 2)2-4y 1y 2=24 5.规律方法 (1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.(3)涉及弦的中点、斜率时,一般用“点差法”求解.『训练3』 已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切. (1)解 由抛物线的定义得|AF |=2+p2. 因为|AF |=3,即2+p2=3,解得p =2, 所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0, 解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.『思想方法』1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率).2.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p . 『易错防范』1.认真区分四种形式的标准方程(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).2.直线与抛物线结合的问题,不要忘记验证判别式.。