力的合成与分解 受力分析考点技巧整合
- 格式:pdf
- 大小:755.96 KB
- 文档页数:6
高一物理力的合成和分解知识点力的合成和分解是高中物理中一个非常重要的知识点,它是力学研究的基础。
在这篇文章中,我们将探讨力的合成和分解的概念、方法以及应用。
一、力的合成力的合成是指将多个力合成为一个力的过程。
当多个力作用于同一个物体时,可以将它们合成为一个等效的力。
1.1 向量图示法向量图示法是力的合成的一种常用方法。
我们将多个力用箭头表示,箭头的长度代表了力的大小,箭头的方向表示了力的方向。
将多个力的箭头连在一起,起点为物体的起始位置,终点为物体的终止位置,最后结果的箭头即为合成力。
1.2 分解求合分解求合是另一种常用的力的合成方法。
对于平行四边形法则中的图形,我们可以用三角形法则将合力分解为两个分力。
分解时,需要确定一个参考方向,将合力拆分为垂直于参考方向的两个分力。
二、力的分解力的分解是指将一个力分解为平行或垂直于某一方向的两个力的过程。
力的分解可以将一个复杂的问题简化为两个相对简单的问题,便于计算。
2.1 平行分解平行分解是将一个力分解为平行于某一参考方向的两个力的过程。
利用力的平行四边形法则,我们可以通过确定一个参考方向,将合力拆分为两个平行力。
2.2 垂直分解垂直分解是将一个力分解为垂直于某一参考方向的两个力的过程。
利用力的三角形法则,我们可以通过确定一个参考方向,将合力拆分为一个垂直于参考方向的力和一个平行于参考方向的力。
三、力的合成和分解的应用力的合成和分解在物理学中有广泛的应用。
下面我们将介绍几个常见的应用。
3.1 平面力问题在平面力问题中,物体受到多个平面力的作用。
利用力的合成和分解的方法,可以将这些力合成为一个等效力,从而简化问题的求解。
3.2 斜面上的力在斜面上,一个物体同时受到重力和斜面给予的支持力的作用。
利用力的分解,我们可以将这两个力分解为平行于斜面和垂直于斜面的两个力,以便求解问题。
3.3 物体受力平衡问题在物体受力平衡问题中,物体受到多个力的作用,且力的合力为零。
力的合成与分解【考点梳理】考点一:合力与分力当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力.要点诠释:①合力与分力是针对同一受力物体而言.②一个力之所以是其他几个力的合力,或者其他几个力是这个力的分力,是因为这一个力的作用效果与其他几个力共同作用的效果相当,合力与分力之间的关系是一种等效替代的关系.考点二:共点力1.定义:一个物体受到的力作用于物体上的同一点或者它们的作用线交于一点,这样的一组力叫做共点力.(我们这里讨论的共点力,仅限于同一平面的共点力)要点诠释:一个具体的物体,其各力的作用点并非完全在同一个点上,若这个物体的形状、大小对所研究的问题没有影响的话,我们就认为物体所受到的力就是共点力.如图甲所示,我们可以认为拉力F、摩擦力F1及支持力F2都与重力G作用于同一点O.如图乙所示,棒受到的力也是共点力.2.共点力的合成:遵循平行四边形定则.3.两个共点力的合力范围合力大小的取值范围为:F1+F2≥F≥|F1-F2|.在共点的两个力F1与F2大小一定的情况下,改变F1与F2方向之间的夹角θ,当θ角减小时,其合力F逐渐增大;当θ=0°时,合力最大F=F1+F2,方向与F1与F2方向相同;当θ角增大时,其合力逐渐减小;当θ=180°时,合力最小F=|F1-F2|,方向与较大的力方向相同.4.三个共点力的合力范围①最大值:当三个分力同向共线时,合力最大,即F max=F1+F2+F3.②最小值:a.当任意两个分力之和大于第三个分力时,其合力最小值为零.b.当最大的一个分力大于另外两个分力的算术和时,其最小合力等于最大的一个力减去另外两个力的算术和的绝对值.考点三:矢量相加的法则要点诠释:(1)平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向(如左图所示)。
力的合成与分解知识要点归纳一、力的合成1.合力与分力:如果几个力共同作用产生的效果与某一个力单独作用时的效果相同,则这一个力为那几个力的,那几个力为这一个力的.2.共点力:几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫做共点力.3.力的合成:求几个力的的过程.4.平行四边形定则:两个力合成时,以表示这两个力的线段为作平行四边形,这两个邻边之间的就表示合力的大小和方向.二、力的分解1.力的分解:求一个力的的过程,力的分解与力的合成互为.2.矢量运算法则:(1)平行四边形定则(2)三角形定则:把两个矢量的首尾顺次连结起来,第一个矢量的首到第二个矢量的尾的为合矢量.3.力的分解的两种方法1)力的效果分解法①根据力的实际作用效果确定两个实际分力的方向;②再根据两个实际分力方向画出平行四边形;③最后由平行四边形和数学知识(如正弦定理、余弦定理、三角形相似等)求出两分力的大小.2)正交分解法①正交分解方法:把一个力分解为互相垂直的两个分力,特别是物体受多个力作用时,把物体受到的各力都分解到互相垂直的两个方向上去,然后分别求出每个方向上力的代数和.②利用正交分解法解题的步骤首先:正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标系的选择应使尽量多的力在坐标轴上.其次:正交分解各力,即分别将各力投影在坐标轴上,然后求各力在x 轴和y 轴上的分力的合力F x 和F y :F x =F 1x +F 2x +F 3x +…,F y =F 1y +F 2y +F 3y +…再次:求合力的大小F =F x 2+F y 2 ,确定合力的方向与x 轴夹角为θ=arctan F y F x. 4.将一个力分解的几种情况:①已知合力和一个分力的大小与方向:有唯一解②已知合力和两个分力的方向:有唯一解③已知合力和两个分力的大小(两分力不平行):当F1+F2<F 时无解;当F1+F2>F 时有两组解④已知一个分力F 1的方向和另一个分力F 2的大小,对力F 进行分解,如图4所示则有三种可能:(F 1与F 的夹角为θ) 当F 2<F sin θ时无解;当F 2=F sin θ或F 2≥F 时有一组解;当F sin θ<F 2<F 时有两组解.5.注意:(1)合力可能大于分力,可能等于分力,也可能小于分力的大小。
力的合成与分解知识点总结力是物理学中的一个重要概念,力的合成与分解是解决力学问题的基础。
下面我们来详细总结一下力的合成与分解的相关知识点。
一、力的合成1、合力的概念如果一个力作用在物体上产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力。
2、共点力如果几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力就叫做共点力。
3、力的合成法则(1)平行四边形定则两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。
(2)三角形定则将两个分力首尾相接,连接始端与末端的有向线段就表示合力的大小和方向。
4、合力的计算(1)已知两个分力的大小和方向,求合力的大小和方向,直接运用平行四边形定则或三角形定则计算。
(2)已知两个分力的大小和夹角θ,合力的大小可以通过公式:$F =\sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$计算,合力的方向可以通过三角函数关系求得。
5、合力的范围(1)两个力的合力范围:$|F_1 F_2| \leq F \leq F_1 + F_2$。
(2)三个力的合力范围:先求出其中两个力的合力范围。
再看第三个力在这个范围内的情况,从而确定三个力的合力范围。
二、力的分解1、力的分解的概念求一个已知力的分力,叫做力的分解。
2、力的分解遵循的原则力的分解是力的合成的逆运算,同样遵循平行四边形定则或三角形定则。
3、力的分解的方法(1)按照力的实际作用效果进行分解。
例如,放在斜面上的物体受到的重力可以分解为沿斜面方向向下的分力和垂直斜面方向向下的分力。
(2)正交分解法将一个力沿着互相垂直的两个方向进行分解。
4、力的分解的唯一性(1)已知两个分力的方向,有唯一解。
(2)已知一个分力的大小和方向,有唯一解。
(3)已知两个分力的大小,其解的情况可能有:两力之和大于合力时,有两解。
力的合成和分解 受力分析1.合力与分力:如果一个力产生的 跟几个共点力共同作用产生的 相同,这一个力就叫做那几个力的合力,原来的几个力叫做分力.合力和分力是 的关系. 2.共点力:作用在物体的同一点,或作用线的 于一点的力,如图所示均是共点力.3.力的合成:求几个力的合力的过程叫做力的合成.① 平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的 和 .② 三角形定则:把两个矢量首尾相接,从而求出合矢量的方法. 4.力的分解:求一个已知力的分力的过程叫做力的分解,力的分解遵循平行四边形定则或三角形定则.力的分解方法:① 按力产生的 分解;② 正交分解.1.一物体受到三个共面共点力F 1、F 2、F 3的作用,三力的矢量关系如图所示(小方格边长相等)),则下列说法正确的是 ( ) A .三力的合力有最大值F 1 + F 2 + F 3,方向不确定 B .三力的合力有唯一值3F 3,方向与F 3同向 C .三力的合力有唯一值2F 3,方向与F 3同向 D .由题给条件无法求出合力大小2.一个竖直向下的180 N 的力分解为两个分力,一个分力在水平方向上且等于240 N,求另一个分力的大小. 〖考点1〗共点力的合成及合力范围的确定【例1】如图所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P 在F 1、F 2和F 3三力作用下保持静止,下列判断正确的是 ( ) A .F 1 > F 2 > F 3 B .F 3 > F 1 > F 2 C .F 2 > F 3 > F 1 D .F 3 > F 2 > F 1 【变式跟踪1】三个共点力大小分别是F 1、F 2、F 3,关于它们的合力F 的大小,下列说法中正确的是 ( ) A .F 大小的取值范围一定是0 ≤ F ≤ F 1 + F 2 + F 3 B .F 至少比F 1、F 2、F 3中的某一个大C .若F 1∶F 2∶F 3 = 3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零D .若F 1∶F 2∶F 3 = 3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零 〖考点2〗力的分解【例2】如图所示,斜劈静止在水平地面上,有一物体沿斜劈表面向下运动,重力做的功与克服力F 做的功相等.则下列判断中正确的是 ( )A .物体可能加速下滑B .物体可能受三个力作用,且合力为零C .斜劈受到地面的摩擦力方向一定水平向左D .撤去F 后斜劈一定受到地面的摩擦力【变式跟踪2】如图所示,力F 垂直作用在倾角为α的三角滑块上,滑块没被推动,则滑块受到地面的静摩擦力的大小为 ( ) A .0 B .F cos α C .F sin α D .F tan α 〖考点3〗受力分析【例3】如图所示,在恒力F 作用下,a 、b 两物体一起沿粗糙竖直墙面匀速向上运动,则关于它们受力情况的说法正确的是 ( ) A .a 一定受到4个力 B .b 可能受到4个力C .a 与墙壁之间一定有弹力和摩擦力D .a 与b 之间一定有摩擦力【变式跟踪3】如图所示,光滑斜面固定于水平面,滑块A 、B 叠放后一起冲上斜面,且始终保持相对静止,A 上表面水平,则在斜面上运动时,B 受力的示意图为( )1.【2013上海高考】两个共点力F l 、F 2大小不同,它们的合力大小为F ,则 ( ) A .F 1、F 2同时增大一倍,F 也增大一倍 B .F 1、F 2同时增加10N ,F 也增加10N C .F 1增加10N ,F 2减少10N ,F 一定不变 D .若F 1、F 2中的一个增大,F 不一定增大【预测1】一质量为m 的物体放在粗糙斜面上保持静止.现用水平力F 推m ,如图所示,F 由零逐渐增加,整个过程中物体m 和斜面始终保持静止状态,则( )A .物体m 所受的支持力逐渐增加B .物体m 所受的静摩擦力逐渐减小直到为零C .物体m 所受的合力逐渐增加D .水平面对斜面的摩擦力逐渐增加 2.【2013重庆高考】如图所示,某人静躺在椅子上,椅子的靠背与水平面之间有固定倾斜角θ.若此人所受重力为G ,则椅子各部分对他的作用力的合力大小为 ( ) A .G B .G sin θ C .G cos θ D .G tan θ【预测2】如图所示,A 是一质量为M 的盒子,B 的质量为M /2,A 、B 用细绳相连,跨过光滑的定滑轮,A 置于倾角θ=30°的斜面上,B 悬于斜面之外而处于静止状态.现在向A 中缓慢加入沙子,整个系统始终保持静止,则在加入沙子的过程中 ( ) A .绳子拉力逐渐减小 B .A 对斜面的压力逐渐增大 D .A 所受的合力不变 1.将物体所受重力按力的效果进行分解,下列图中错误的是 ( )2.如图所示,两个质量均为m 的物体分别挂在支架上的B 点(如图甲所示)和跨过滑轮的轻绳BC 上(如图乙所示),图甲中轻杆AB 可绕A 点转动,图乙中水平轻杆一端A 插在墙壁内,已知θ = 30°,则图甲中轻杆AB 受到绳子的作用力F 1和图乙中滑轮受到绳子的作用力F 2分别为 ( ) A .F 1 = mg 、F 2 = 3mg B .F 1 = 3mg 、F 2 = 3mg C .F 1 =33mg 、F 2 = mg D .F 1 = 3mg 、F 2 = mg 3.已知两个共点力的合力为50 N ,分力F 1的方向与合力F 的方向成30°角,分力F 2的大小为30 N .则 A .F 1的大小是唯一的 B .F 2的方向是唯一的 ( ) C .F 2有两个可能的方向 D .F 2可取任意方向4.如图所示,固定斜面上有一光滑小球,分别与一竖直轻弹簧P 和一平行斜面的轻弹簧Q 连接着,小球处于静止状态,则关于小球所受力的个数不可能的是 ( ) A .1 B .2 C .3 D .4 5.如图所示,两个等大、反向的水平力F 分别作用在物体A 和B 上,A 、B 两物体均处于静止状态.若各接触面与水平地面平行,则A 、B 两物体各受几个力( ) A .3个、4个 B .4个、4个 C .4个、5个 D .4个、6个6.如图所示,一根细线两端分别固定在A 、B 点,质量为m 的物体上面带一个小夹子,开始时用夹子将物体固定在图示位置,OA 段细线水平,OB 段细线与水平方向的夹角为θ = 45°,现将夹子向左移动一小段距离,移动后物体仍处于静止状态,关于OA 、OB 两段细线中的拉力大小,下列说法正确的是 ( ) A .移动前,OA 段细线中的拉力等于物体所受的重力大小 B .移动前,OA 段细线中的拉力小于物体所受的重力大小 C .移动后,OB 段细线中拉力的竖直分量不变 D .移动后,OB 段细线中拉力的竖直分量变小7.如图所示,杆BC 的B 端用铰链接在竖直墙上,另一端C 为一滑轮.重物G 上系一绳经过滑轮固定于墙上A 点处,杆恰好平衡.若将绳的A 端沿墙缓慢向下移(BC 杆、滑轮、绳的质量及摩擦均不计),则 ( )A .绳的拉力增大,BC 杆受绳的压力增大B .绳的拉力不变,BC 杆受绳的压力增大 C .绳的拉力不变,BC 杆受绳的压力减小D .绳的拉力不变,BC 杆受绳的压力不变 8.如图所示,一个“Y ”字形弹弓顶部跨度为L ,两根相同的橡皮条均匀且弹性良好,其自由长度均为L ,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片可将弹丸发射出去.若橡皮条的弹力满足胡克定律,且劲度系数为k ,发射弹丸时每根橡皮条的最大长度为2L (弹性限度内),则弹丸被发射过程中所受的最大弹力为 ( )A .15kL /2B .3kL /2C .kLD .2kL9.如图所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧.紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度.已知滑块与板的动摩擦因数及最大静摩擦因数均为3/3.现将板的右端缓慢抬起使板与水平面间的夹角为θ,最后直到板竖直,此过程中弹簧弹力的大小F 随夹角θ的变化关系可能是图中的 ( )10.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F 拉住,如图所示.现将细绳缓慢向左拉,使杆BO 与AO 的夹角逐渐减小,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大B .F N 始终不变C .F 先减小,后增大D .F 始终不变11.图中弹簧秤、绳和滑轮的质量均不计,绳与滑轮间的摩擦力不计,物体的重力都是G ,在图甲、乙、丙三种情况下,弹簧秤的读数分别是F 1、F 2、F 3,则 ( )A . F 3 > F 1 = F 2B .F 3 = F 1 >F 2C .F 1 = F 2 =F 3D .F 1 > F 2 =F 3 12.如图所示,加装“保护器”的飞机在空中发生事故失去动力时,上方的降落伞就会自动弹出.已知一根伞绳能承重2000N ,伞展开后伞绳与竖直方向的夹角为37°,飞机的质量约为8吨.忽略其他因素,仅考虑当飞机处于平衡时,降落伞的伞绳至少所需的根数最接近于(图中只画出了2根伞绳,sin37°=0.6,cos37°=0.8)( ) A .25 B .50 C .75 D .10013.如图所示,质量相同分布均匀的两个圆柱体a 、b 靠在一起,表面光滑,重力均为G ,其中b 的下一半刚好固定在水平面MN 的下方,上边露出另一半,a 静止在平面上,现过a 的轴心施以水平作用力F ,可缓慢的将a 拉离平面一直滑到b 的顶端,对该过程分析,应有 ( ) A .拉力F 先增大后减小,最大值是GB .开始时拉力F 最大为3G ,以后逐渐减小为0C .a 、b 间压力由0逐渐增大,最大为GD .a 、b 间的压力开始最大为2G ,而后逐渐减小到G14.如图所示,一半球状物体放在粗糙的水平地面上,一只甲虫(可视为质点)从半球面的最高点开始缓 慢往下爬行,在爬行过程中 ( ) A .球面对甲虫的支持力变大 B .球面对甲虫的摩擦力变大 C .球面对甲虫的作用力变大 D .地面对半球体的摩擦力变大15.风洞实验主要用于运动物体(例如飞机、汽车等)与空气之间作用力的分析和研究.在风洞实验室中,将A 、B 两个小球分别用细绳L 1、L 2悬于天花板顶部.两球质量相等,受到的水平风力相同,两小球处于静止状态时的位置如图所示,以下说法中正确的是( ) A .两细绳与竖直方向的夹角相同B .L 2与竖直方向的夹角大于L 1与竖直方向的夹角C .A 球受到的合力大于B 球受到的合力D .L 1的拉力大小等于L 2的拉力参考答案:1.效果 效果 等效替代 2.延长线交 3.大小 方向1.B ;对于给定的三个共点力,其大小、方向均确定,则合力的大小唯一、方向确定.排除A 、C ;根据图表,可先作出F 1、F 2的合力,不难发现F 1、F 2的合力方向与F 3同向,大小等于2F 3,根据几何关系可求出合力大小等于3F 3,B 对.2.根据平行四边形定则作图,如图所示.则F 22 = F 2 + F 12代入数据解得 F例1 B ;由连接点P 在三个力作用下静止知,三个力的合力为零,即F 1、F 2二力的合力F 3′与F 3等大反向,三力构成的平行四边形如图所示.由数学知识可知F 3 > F 1 > F 2,B 正确.变式1 C ;合力不一定大于分力,B 错,三个共点力的合力的最小值能否为零,取决于任何一个力是否都在其余两个力的合力范围内,由于三个力大小未知,所以三个力的合力的最小值不一定为零,A 错;当三个力的大小分别为3a ,6a ,8a ,其中任何一个力都在其余两个力的合力范围内,故C 正确,当三个力的大小分别为3a ,6a ,2a 时,不满足上述情况,故D 错.例2 B ;对物体受力分析如图,由重力做的功与克服力F 做的功相等可知,重力的分力G 1=F 1,若斜劈表面光滑,则物体匀速运动,若斜劈表面粗糙,则物体减速运动,故A 错误,B 正确.若F N 与F f 的合力方向竖直向上,则斜劈与地面间无摩擦力,C 错误.撤去F 后,若F N 与F f 的合力方向竖直向上,则斜劈与地面间无摩擦力,故D 错误.变式2 C ;滑块受力如图.将力F 正交分解,由水平方向合力为零可知F f =F sin α,所以C 正确.例3 AD ;将a 、b 看成整体,其受力图如图所示,说明a 与墙壁之间没有弹力和摩擦力作用;对物体b 进行受力分析,如图所示,b 受到3个力作用,所以a 受到4个力作用.变式3 A ;以A 、B 为整体,A 、B 整体沿斜面向下的加速度a 可沿水平方向和竖直方向分解为加速度a ∥和a ⊥,如图所示,以B 为研究对象,B 滑块必须受到水平向左的力来产生加速度a ∥,因此B 受到三个力的作用,即:重力、A 对B 的支持力、A 正确. 1.AD预测1 AD ;物体始终处于静止状态,所以所受的合力始终为零.故C 错误.对物体受力分析并分解如图,未画上f ,讨论f 的情况:① F cos θ = G sin θ;f = 0 ② F cos θ > G sin θ;f 沿斜面向下 ③ F cos θ < G sin θ;f 沿斜面向上.所以f 的变化情况是:① 有可能一直变大 ② 有可能先变小后反向变大 故B 错误.物体m 所受的支持力大小等于G cos θ + F sin θ,故A 正确.将物体和斜面看做一个整体分析可知,随F 增大,水平面对斜面的摩擦力逐渐增加. 2.A预测2 BD ;现在向A 中缓慢加入沙子,整个系统始终保持静止,则在加入沙子的过程中,绳子拉力等于B 物体重力,不变,选项A 错误;A 对斜面的压力逐渐增大,A 所受的合力不变,A 所受的摩擦力可能逐渐减小,选项C 错误BD 正确. 1.C ;A 项中物体重力分解为垂直于斜面使物体压紧斜面的分力G 1和沿斜面向下使物体向下滑的分力G 2;B 项中物体的重力分解为沿两条细绳使细绳张紧的分力G 1和G 2,A 、B 项图均画得正确.C 项中物体的重力应分解为垂直于两接触面使物体压紧两接触面的分力G 1和G 2,故C 项图画错.D 项中物体的重力分解为水平向左压紧墙的分力G 1和沿绳向下使绳张紧的分力G 2,故D 项正确. 2.D3.C ;由F 1、F 2和F 的矢量三角形图可以看出:当F 2=F 20=25 N 时,F 1的大小才是唯一的,F 2的方向才是唯一的.因F 2=30 N>F 20=25 N ,所以F 1的大小有两个,即F 1′ 和F 1″,F 2的方向有两个,即F 2′ 的方向和F 2″ 的方向,故选项A 、B 、D 错误,选项C 正确.4.A ;设斜面倾角为θ,小球质量为m ,假设轻弹簧P 对小球的拉力大小恰好等于mg ,则小球受二力平衡;假设轻弹簧Q 对小球的拉力等于mg sin θ,小球受到重力、弹簧Q 的拉力和斜面的支持力作用,三力平衡;如果两个弹簧对小球都施加了拉力,那么除了重力,小球只有再受到斜面的支持力才能保证小球受力平衡,即四力平衡;小球只受单个力的作用,合力不可能为零,小球不可能处于静止状态.5.C ;对物体A 受力分析,竖直方向上受两个力:重力和支持力;水平方向上受两个力:水平力F 和B对A 的摩擦力,即物体A 共受4个力作用.对物体B 受力分析,竖直方向上受3个力作用:重力、地面的支持力、A 对B 的压力;水平方向上受两个力作用:水平力F 和A 对B 向右的摩擦力,即物体B 共受5个力的作用,故答案C 正确.6.AD ;取O 点为研究对象,受力如图所示,由图知:T OA =T O Bcos θ,T OB sin θ=mg ,当θ=45°时,T OA =mg ,A 对;向左移动一小段距离后,O 点位置下移,OB 段细线中拉力的竖直分量与OA 段细线中拉力的竖直分量之和等于重力大小,即OB 段细线中拉力的竖直分量变小,D 对.7.B ;选取绳子与滑轮的接触点为研究对象,对其受力分析,如图所示,绳中的弹力大小相等,即T 1=T 2=G ,C 点处于三力平衡状态,将三个力的示意图平移可以组成闭合三角形,如图虚线所示,设AC 段绳子与竖直墙壁间的夹角为θ,则根据几何知识可知F =2G sin θ/2,当绳的A 端沿墙缓慢向下移时,θ增大,F 也增大,根据牛顿第三定律知,BC 杆受绳的压力增大,B 正确.8.A ;发射弹丸时每根橡皮条的最大长度为2L ,每根橡皮条的弹力为kL ,两根橡皮条的夹角为θ=2arcsi n0.25,弹丸被发射过程中所受的最大弹力为F=2kL cos(θ/2)=215kL/2,选项A 正确.9.C ;设板与水平面的夹角为α时,滑块相对于板刚要滑动,则由mg sin α=μmg cos α得 tan α=,α= 30°,则θ在0-30°范围内,弹簧处于原长,弹力F =0;当板与水平面的夹角大于α时,滑块相对板缓慢滑动,由平衡条件得F =mg sin θ-μmg cos θ =)θβ-,其中tan β=-μ,说明F 与θ是正弦形式的关系.当θ= 90°时,F=mg.故选C .10.A ;当细绳缓慢拉动时,整个装置处于动态平衡状态,设物体的重力为G .以B点为研究对象,分析受力情况,作出力图,如图.作出力F N 与F 的合力F 2,根据平衡条件得知,F 2=F 1=G .由△F 2F N B ∽△ABO 得2N F BOF AO=得到N BO F G AO =式中BO 、AO 、G 不变,则F N 保持不变.OA 、OB 的夹角减小,由力的合成和分解知识可知F 逐渐减小.只有A 正确.11.B ;甲图:物体静止,弹簧的拉力F 1=mg ; 乙图:以物体为研究对象,作出受力分析图如图,由平衡条件得F 2=G sin60°=0.866mg ;丙图:以动滑轮为研究对象,受力如图.由几何知识得F 3=mg .故F 3=F 1>F 2,故选B .12.B ;设至少需要n 根伞绳,每根伞绳的拉力F 等于2000N ,飞机受力平衡 ,则cos37,cos37GnF G n F ︒==︒,代入数据解得n =50(根).13.BD ;开始时,对a 球受力分析,应用平衡条件,可得拉力F 最大为3G ,以后逐渐减小为0,选项A 错误B 正确;a 、b 间的压力开始最大为2G ,而后逐渐减小到G ,选项C 错误D正确14.B ;甲虫(可视为质点)从半球面的最高点开始缓慢往下爬行,在爬行过程中,球面对甲虫的支持力变小,摩擦力变大,选项A 错误B 正确;由于甲虫处于动态平衡状态,球面对甲虫的作用力不变,选项C 错误;把甲虫和半球状物体看作整体分析受力,由平衡条件可知,地面对半球体的摩擦力不变.15.AD ;小球的受力情况如图所示,由平衡条件可知两小球处于静止状态,所以合力为0,可见C 错误.因为tan θ=F 风mg ,两球质量相等,受到的水平风力相同,所以θ相同,可见A 正确、B 错误;绳子拉力F = F 2风+(mg )2,所以L 1的拉力大小等于L 2的拉力,可见D 正确.。
高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。
以下是对该知识点的讲解。
1. 力的分解力的分解是指将一个力分解为多个力的效果。
这样做有助于我们更好地理解和分析力的作用。
在力的分解中,我们常使用正交分解法和图解法。
1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。
这种方法常用于解决斜面问题和倾斜物体问题。
在正交分解时,我们可以根据三角函数关系来计算力的分解分量。
1.2 图解法图解法是通过绘制矢量图来展示力的分解。
我们可以使用比例尺来确定力的大小和方向。
通过观察图示,我们可以清楚地看到力的分解效果。
图解法常用于解决平面力系统和多个力合成问题。
2. 力的合成力的合成是指将多个力合成为一个力的效果。
这有助于我们将多个力简化为一个力进行分析。
力的合成有两种常见方法:向量法和平行四边形法。
2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。
在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。
最终的合成力的大小和方向由向量相加或相减的结果得出。
2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。
我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。
通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。
力的分解与合成是物理学中非常实用的技巧。
通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。
以上是对高一物理《力的分解与合成》知识点的简要讲解。
希望对您的学习有所帮助!。
力的合成与分解知识点总结在物理学中,力的合成与分解是一个重要的概念,它帮助我们理解物体在多个力作用下的运动状态以及如何更有效地分析和解决力学问题。
接下来,让我们一起深入了解力的合成与分解的相关知识点。
一、力的合成1、概念力的合成是指求几个力的合力的过程。
合力是指如果一个力产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力。
2、平行四边形定则这是力的合成所遵循的基本法则。
以两个共点力 F₁和 F₂为例,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力 F 的大小和方向。
3、合力的计算(1)若两个力 F₁和 F₂在同一直线上,方向相同时,合力 F =F₁+ F₂,方向与两力相同;方向相反时,合力 F =|F₁ F₂| ,方向与较大的力相同。
(2)当两个力不在同一直线上时,需要通过平行四边形定则来计算合力的大小和方向。
可以利用三角函数知识,比如合力 F 的大小可以表示为 F =√(F₁²+ F₂²+ 2F₁F₂cosθ) ,其中θ 为两力之间的夹角。
4、多个力的合成依次两两合成,最终得到多个力的合力。
二、力的分解1、概念力的分解是力的合成的逆运算,将一个力按照需要分解为两个或多个分力。
2、分解原则(1)按照力的实际作用效果分解。
比如,一个斜面上的物体受到的重力,可以分解为沿斜面方向向下的力和垂直斜面方向向下的力。
(2)正交分解法:将一个力分解为相互垂直的两个分力。
选择合适的坐标轴,将力沿着坐标轴进行分解。
3、力分解的唯一性一个已知力可以有无数组分力,但在具体问题中,要根据实际情况确定分力的方向,从而得到唯一的分解结果。
三、力的合成与分解的应用1、共点力的平衡当物体受到多个共点力作用而处于平衡状态时,合力为零。
可以通过力的合成与分解,求出各个力之间的关系,从而解决平衡问题。
2、动态平衡问题在一些情况下,物体所受的力在变化,但仍保持平衡状态。
力的合成与分解知识点总结1500字力的合成与分解是力学中的重要内容,它将一个力分解为若干个力的合力,或将一个力分解为两个分力。
这个过程可以通过向量的几何方法或三角函数的方法进行求解。
下面是力的合成与分解的知识点总结:一、力的合成知识点总结:1. 合力的概念:若果有多个力作用于同一个物体,它们的合力是指这些力的几何和矢量和。
2. 合力的求解方法:- 向量法:将每个力用力向量表示,然后将这些力向量按照几何上的合成法则相加,得到合力的大小和方向。
- 平行四边形法则:如果合力的大小和方向已知,可以用平行四边形法求解。
- 三角法:如果合力的大小和方向已知,可以用三角法求解。
3. 合力的特点:- 若多个力在同一条直线上,其合力大小等于这些力的代数和。
- 若多个力不在同一条直线上,其合力大小小于这些力的代数和。
- 合力的方向与这些力都不一定相同。
4. 合力的两个特殊情况:- 平衡条件:如果多个力的合力为零,则物体处于力的平衡状态,不发生运动或转动。
- 平衡力:多个力的合力为零时,其中任意一个力都可以称为平衡力。
二、力的分解知识点总结:1. 分力的概念:如果一个力可以等效地分解为两个力,这两个力共同作用产生的效果与原力作用效果相同,这两个力可以称为分力。
2. 分力的求解方法:- 向量法:可以利用三角形或平行四边形法则进行分解。
- 三角函数法:利用三角函数的基本关系进行分解,可以计算分力的大小和方向。
3. 分力的特点:- 分力与原力的方向一致或相反。
- 分力的大小可以等于或小于原力的大小。
三、力的合成与分解的应用:力的合成与分解在物理学、工程学和实际问题中有着广泛的应用,如:1. 物体在多个力作用下的运动分析:可以通过将作用力进行合成,计算合力的大小和方向,从而分析物体的运动情况。
2. 斜面问题的求解:可以将斜面的支撑力分解为垂直方向的分力和平行方向的分力,用分力的知识进行求解。
3. 桥梁和承重结构的设计:在桥梁和承重结构的设计中,需要分析各个支撑点的受力情况,可以利用力的分解方法进行求解。
力的合成与分解
【基本概念、规律】
一、力的合成
1.合力与分力
(1)定义:如果一个力产生的效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.
(2)关系:合力和分力是一种等效替代关系.
2.力的合成:求几个力的合力的过程.
3.力的运算法则
(1)三角形定则:把两个矢量首尾相连从而求出合矢量的方法.(如图所示)
(2)平行四边形定则:求互成角度的两个力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.
二、力的分解
1.概念:求一个力的分力的过程.
2.遵循的法则:平行四边形定则或三角形定则.
3.分解的方法
(1)按力产生的实际效果进行分解.
(2)正交分解.
三、矢量和标量
1.矢量
既有大小又有方向的物理量,相加时遵循平行四边形定则.
2.标量
只有大小没有方向的物理量,求和时按算术法则相加.
【重要考点归纳】
考点一共点力的合成
1.共点力合成的方法
(1)作图法
(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.
2.重要结论
(1)二个分力一定时,夹角θ越大,合力越小.
(2)合力一定,二等大分力的夹角越大,二分力越大.
(3)合力可以大于分力,等于分力,也可以小于分力.
3.几种特殊情况下力的合成
.
(1)两分力F1、F2互相垂直时(如图甲所示):F合=F21+F22,tanθ=F2
F1
甲乙
(2)两分力大小相等时,即F1=F2=F时(如图乙所示):
F合=2Fcosθ
.
2
(3)两分力大小相等,夹角为120°时,可得F合=F.
解答共点力的合成时应注意的问题
(1)合成力时,要正确理解合力与分力的大小关系:合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势.
(2)三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差.
考点二力的两种分解方法
1.力的效果分解法
(1)根据力的实际作用效果确定两个实际分力的方向;
(2)再根据两个实际分力的方向画出平行四边形;
(3)最后由平行四边形和数学知识求出两分力的大小.
2.正交分解法
(1)定义:将已知力按互相垂直的两个方向进行分解的方法.
(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即尽量多的力在坐标轴上);在动力学中,以加速度方向和垂直加速度方向为坐标轴建立坐标系.
(3)方法:物体受到多个力作用F1、F2、F3…,求合力F时,可把各力沿相互垂直的x轴、y轴分解.
x轴上的合力:
F x=F x1+F x2+F x3+…
y轴上的合力:
F y=F y1+F y2+F y3+…
合力大小:F=F2x+F2y
合力方向:与x轴夹角为θ,则
tanθ=F y
.
F x
一般情况下,应用正交分解法建立坐标系时,应尽量使所求量(或未知量)“落”在坐标轴上,这样解方程较简单,但在本题中,由于两个未知量F AC和F BC与竖直方向夹角已知,所以坐标轴选取了沿水平和竖直两个方向.
【技巧】
方法技巧——辅助图法巧解力的合成和分解问题
对力分解的唯一性判断、分力最小值的计算以及合力与分力夹角最大值的计算,当力的大小不变方向改变时,通常采取作图法,优点是直观、简捷.
受力分析共点力的平衡
【基本概念、规律】
一、受力分析
1.概念
把研究对象(指定物体)在指定的物理环境中受到的所有力都分析出来,并画出物体所受力的示意图,这个过程就是受力分析.
2.受力分析的一般顺序
先分析场力(重力、电场力、磁场力等),然后按接触面分析接触力(弹力、摩擦力),最后分析已知力.
二、共点力作用下物体的平衡
1.平衡状态
物体处于静止或匀速直线运动的状态.
=0
合
三、平衡条件的几条重要推论
1.二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,方向相反.2.三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等,方向相反.
3.多力平衡:如果物体受多个共点力作用处于平衡状态,其中任何一个力与其余力的合力大小相等,方向相反.
【重要考点归纳】
考点一
物体的受力分析
1.受力分析的基本步骤
(1)明确研究对象——即确定分析受力的物体,研究对象可以是单个物体,也可以是多个物体组成的系统.
(2)隔离物体分析——将研究对象从周围的物体中隔离出来,进而分析周围物体有哪些对它施加了力的作用.
(3)画受力示意图——边分析边将力一一画在受力示意图上,准确标出力的方向,标明各力的符号.2.受力分析的常用方法(1)整体法和隔离法
①研究系统外的物体对系统整体的作用力;②研究系统内部各物体之间的相互作用力.(2)假设法
在受力分析时,若不能确定某力是否存在,可先对其作出存在或不存在的假设,然后再就该力存在与否对物体运动状态影响的不同来判断该力是否存在.
3.
受力分析的基本思路
考点二解决平衡问题的常用方法
方法内容
合成法物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反
效果分解法物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件
正交分解法物体受到三个或三个以上力的作用时,将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件
力的三角形法
对受三力作用而平衡的物体,将力的矢量图平移使三力组成一个首尾依次相接的矢量三角形,根据正弦定理、余弦定理或相似三角形等数学知识求解未知力
考点三图解法分析动态平衡问题
1.动态平衡:是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.
2.基本思路:化“动”为“静”,“静”中求“动”.
3.基本方法:图解法和解析法.
4.图解法分析动态平衡问题的步骤
(1)选某一状态对物体进行受力分析;
(2)根据平衡条件画出平行四边形;
(3)根据已知量的变化情况再画出一系列状态的平行四边形;
(4)判定未知量大小、方向的变化.
考点四隔离法和整体法在多体平衡中的应用
当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统的作用时,宜用整体法;而在分析系统内各物体(或一个物体各部分)间的相互作用时常用隔离法.整体法和隔离法不是独立的,对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法.
平衡中的临界和极值问题
解决动态平衡、临界与极值问题的常用方法:
方法步骤
解析法①列平衡方程求出未知量与已知量的关系表达式
②根据已知量的变化情况来确定未知量的变化情况
图解法①根据已知量的变化情况,画出平行四边形的边角变化
②确定未知量大小、方向的变化
【方法与技巧】
求解平衡问题的四种特殊方法
求解平衡问题的常用方法有合成与分解法、正交分解法、图解法、整体与隔离法,前面对这几种方法的应用涉及较多,这里不再赘述,下面介绍四种其他方法.
一、对称法
某些物理问题本身没有表现出对称性,但经过采取适当的措施加以转化,把不具对称性的问题转化为具有对称性的问题,这样可以避开繁琐的推导,迅速地解决问题.
二、相似三角形法
物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到对应边成比例的关系式,根
据此式便可确定未知量.
三、正弦定理法
三力平衡时,三力合力为零.三个力可构成一个封闭三角形,若由题设条件寻找到角度关系,则可由正弦定理列式求解.
四、三力汇交原理
物体受三个共面非平行外力作用而平衡时,这三个力必为共点力.
实验二
探究弹力和弹簧伸长的关系
一、实验目的
1.探究弹力和弹簧伸长的定量关系.
2.学会利用列表法、图象法研究物理量之间的关系.二、实验原理
弹簧受到拉力会伸长,平衡时弹簧产生的弹力和外力大小相等;弹簧的伸长量越大,弹力也就越大.
三、实验器材
铁架台、弹簧、钩码、刻度尺、坐标纸.四、实验步骤
1.安装实验仪器(见实验原理图).将铁架台放在桌面上(固定好),将弹簧的一端固定于铁架台的横梁上,让其自然下垂,在靠近弹簧处将刻度尺(最小分度为1mm)固定于铁架台上,并用重垂线检查刻度尺是否竖直.
2.用刻度尺测出弹簧自然伸长状态时的长度l 0,即原长.
3.在弹簧下端挂质量为m 1的钩码,量出此时弹簧的长度l 1,记录m 1和l 1,填入自己设计的表格中.
4.改变所挂钩码的质量,量出对应的弹簧长度,记录m 2、m 3、m 4、m 5和相应的弹簧长度l 2、l 3、l 4、l 5,并得出每次弹簧的伸长量x 1、x 2、x 3、x 4、x 5.
钩码个数长度伸长量x
钩码质量m
弹力F
0l 0=1l 1=x 1=l 1-l 0m 1=F 1=2
l 2=
x 2=l 2-l 0
m 2=
F 2=。