八年级数学下册18 平行四边形周周练(18_1)试题新人教版
- 格式:docx
- 大小:98.60 KB
- 文档页数:5
新人教版八年级数学下第18章《平行四边形》单元试卷(完卷时间:45分钟,满分100分)班级: 座号姓名: 成绩:题号 1 2 3 4 5 6 7 8选项4cm A.8cm B.16cm C.32cm D.22.矩形﹨菱形﹨正方形都具有的性质是【】A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角3.关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有【】A.1个B.2个C.3个D.4个4.在等腰梯形中,下列说法:①两腰相等;②两底平行;③对角线相等;④同一底上的两底角相等,其中正确的有【】A.1个B.2个C.3个D.4个5.若顺次连结四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必定是【】A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是【】A.B.C.D.7.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是【】A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF8.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为【】A.36°B.9°C.27°D.18°二﹨耐心填一填,一锤定音!(每小题4分,共24分)9.平行四边形ABCD中,∠A=500,AB=30cm,则∠B=____ ,DC=___ _ cm。
1 / 32 / 310.如图10,平行四边形ABCD 中,E ,F 分别为AD ,BC 边上的一点.若再增加一个条件_________,就可得BE=DF 。
11.将一矩形纸条,按如图11所示折叠,则∠1 = _______度。
人教版八年级下册数学第18章平行四边形单元测试卷一、选择题(本大题共8小题,共24分)1.如图,在平面直角坐标系中,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,则这四个点组成的四边形ABB′A′的面积是()A. 4B. 6C. 9D. 132.如图,河流的两岸PQ,MN互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得∠DAN=45°,然后沿河岸走了130米到达B处,测得∠CBN=60°.则河流的宽度CE为()米.A. 80B. 40(3−√3)C. 40(3+√3)D. 40√23. 将点A(2,3)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A. (−2,−3)B. (−2,3)C. (2,3)D. (2,−3)BC,4. 如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC.其中成立的有()连接OE,下列结论:④∠CAD=30°;S ABCD=AB⋅AC;③OB=AB:④OE=14A. ①②③B. ①②④C. ①③④D. ②③④5.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠ABC=75°,则∠EAF的度数为()A. 60°B. 65°C. 70°D. 75°6.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为()A. 1B. 2C. 3D. 47. 如图所示,在矩形ABCD中,AC=13,AD=5,O是AC的中点,E为AB上任意一点,连接EO,将△AOE沿OE翻折至△A′OE,A的对应点为A′,连接A′C,当A′E⊥AB时,求A′C的长为()A. 4B. 3√2C. 72√3 D. 72√28. 如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP//OB,交OA于点C,PD⊥OB,垂足为点D,若PC=6,则PD的长()A. 3B. 4C. 5D. 6二.填空题(本大题共5小题,共15分)9. 如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A 落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为____________.10. 如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG//BC,将矩形折叠,使点C与点O重合,折痕MN 恰好过点G,若AB=√6,EF=2,∠H=120°,则DN的长为______.11.如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为______.三、解答题(本大题共3小题,共64分)12. 如图,E、F是平行四边形ABCD对角线AC上的两点,AF=CE.求证:BE=DF且由B、E、D、F四点组成的四边形是平行四边形.13. 如图,A′B′//BA,B′C′//CB,C′A′//AC,∠ABC与∠B′有什么关系?线段AB′与线段AC′呢?为什么?14.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)当t=2时,求△PEF的面积;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.。
人教版八年级数学下册第18章《平行四边形》解答题典型必练(一)1.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为6,求四边形AEDF面积.2.如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.3.如图,在正方形ABCD中,AC,BD相交于点O,E,F分别在OA,OD上,∠ABE =∠DCF.(1)求证:△ABE≌△DCF.(2)若BC=4,AE=3,求BE的长.4.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)直接写出GF与GC的数量关系:;(2)用等式表示线段BH与AE的数量关系,并证明.5.四边形ABCD是矩形,点P在边CD上,∠PAD=30°,点G与点D关于直线AP对称,连接BG.(1)如图,若四边形ABCD是正方形,求∠GBC的度数;(2)连接CG,设AB=a,AD=b,探究当∠CGB=120°时,a与b的数量关系.6.如图,在正方形ABCD中,点E为AB上的点(不与A,B重合),△ADE与△FDE 关于DE对称,作射线CF,与DE的延长线相交于点G,连接AG,(1)当∠ADE=15°时,求∠DGC的度数;(2)若点E在AB上移动,请你判断∠DGC的度数是否发生变化,若不变化,请证明你的结论;若会发生变化,请说明理由;(3)如图2,当点F落在对角线BD上时,点M为DE的中点,连接AM,FM,请你判断四边形AGFM的形状,并证明你的结论.7.如图,在正方形ABCD中,点E为线段BC上一动点(点E不与点B、C重合),点B关于直线AE的对称点为F,作射线EF交CD于H,连接AF.(1)求证:AF⊥EH;(2)连接AH,小王通过观察、实验,提出猜想:点E在运动过程中,∠EAH的度数始终保持不变.你帮助小王求出∠EAH的度数.8.如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.(1)求证:∠FBC=∠CDF;(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.9.已知AP为正方形ABCD外的一条射线,B′为点B关于直线AP的对称点,连接B′D.如图1所示.(1)如果∠BAP=20°,求∠ADB′的度数的大小.(2)如图2所示,M为射线B′B上一点,且∠BMC=135°.①求证:BB′=CM.②求证:CM∥B′D.10.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;图2;(2)若∠PAB=25°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间数量关系,并证明.11.如图,已知正方形ABCD边长为1,点P是射线AD的上的一个动点,点A关于直线BP的对称点是点Q,设AP=x.(1)求当D,Q,B三点在同一直线上时对应的x的值.(2)当△CDQ为等腰三角形时,求x的值.12.在正方形ABCD中,点P是射线CB上一个动点.连接PA,PD,点M,N分别为BC,AP的中点,连接MN交PD于点Q.(1)如图1,当点P在线段CB的延长线上时,请判断△QPM的形状,并说明理由.(2)如图2,正方形的边长为4,点P'与点P关于直线AB对称,且点P'在线段BC上.连接AP',若点Q恰好在直线AP'上,求P'M的长.13.如图,在边长为6的正方形ABCD中,G是边BC的中点,点C关于直线DG的对称点为F,连接GF并延长交AB于点E,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:△ADE≌△FDE;(2)求AE的长;(3)求BH的长;14.如图,经过正方形ABCD的顶点A在其外侧作直线AP,点B关于直线AP的对称点为E,连接BE、DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=30°,求∠ADF的度数.(3)如图,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.15.在小学,我们已经初步了解到,正方形的每个角都是90°,每个边都是相等.如图,在正方形ABCD外侧作直线AQ,点D关于直线AQ的对称点为E,连接DE、BE,BE交AD于点F,若∠QAD=15°.(1)求∠ABE的度数;(2)若AB=6,求AF的长.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,,∴△BCE≌△ADF(ASA);(2)解:∵点E在▱ABCD内部,,∴S△BEC+S△AED=S▱ABCD由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S,▱ABCD ∵▱ABCD的面积为6,∴四边形AEDF的面积为3.2.(1)证明:∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS),∴EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(2)解:四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.理由如下:作G关于BC的对称点G′,连接EG′,可得EG′的长度就是EF+FG的最小值.连接AC,∵CG′=CG=AE,AB∥CG′,∴四边形AEG′C为平行四边形,∴EG′=AC.在△EFG′中,∵EF+FG′>EG′=AC,∴四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.3.证明:(1)∵四边形ABCD是正方形,∴AB=CD,∠BAE=∠CDF=45°,∵∠ABE=∠DCF,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA);(2)∵四边形ABCD是正方形,∴AB=BC,OA=OB=OC=OD,∠ABC=∠AOB=90°,∵BC=4,∴AB=4,∴AC=,∴OA=OB=4,∵AE=3,∴OE=OA﹣AE=4﹣3=1,在Rt△BOE中,BE=.4.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠ADE=∠EDF,∠FDG=∠GDC,∵∠ADC=90°,∴∠ADE+∠EDF+∠FDG+∠GDC=90°,∴2∠EDF+2∠FDG=90°,∴∠EDF+∠FDG=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,∴△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠ADE=90°,DE=EH,∴∠ADE=∠BEH,在△DME和△EBH中,,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,,∴△DAE≌△ENH(AAS),∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.5.解:(1)连接DG,交AP于点E,连接AG,如图1,∵点G与点D关于直线AP对称,∴AP垂直平分DG,∴AD=AG.∵在△ADG中,AD=AG,AE⊥DG,∴∠PAG=∠PAD=30°,又∵在正方形ABCD中,AD=AB,∠DAB=∠ABC=90°,∴AG=AB,∠GAB=∠DAB﹣∠PAD﹣∠PAG=30°,∴在△GAB中,∠ABG=∠AGB==75°,∴∠GBC=∠ABC﹣∠ABG=15°;(2)连接DG,AG.由(1)可知,在△ADG中,AD=AG,∠DAG=∠PAD+∠PAG=60°,∴△ADG是等边三角形,∴DG=AG=AD,∠DAG=∠ADG=∠DGA=60°,又∵在矩形ABCD中,AB=DC,∠DAB=∠ADC=∠ABC=90°,∴∠DAB﹣∠DAG=∠ADC﹣∠ADG,即∠GAB=∠GDC=30°,∴△GAB≌△GDC(SAS),∴GB=GC.当∠CGB=120°时,点G可能在矩形ABCD的内部或外部.若点G在矩形ABCD的内部,∵在△BGC中,GB=GC,∠CGB=120°,∴∠GBC==30°,∴∠GBA=∠ABC﹣∠GBC=90°﹣30°=60°,在△ABG中,∠AGB=180°﹣∠GAB﹣∠GBA=90°,∴a=b,若点G在矩形ABCD的外部,在△BGC中,∠GBC=30°,∴∠ABG=120°,又∵∠GAB=30°,∴∠AGB=180°﹣30°﹣120°=30°.∴BA=BG,过点B作BH⊥AG,垂足为H,∴AH=AG=b.在Rt△ABH中,∠AHB=90°,∠HAB=30°,∴cos∠HAB==,∴a=b,在Rt△ADP中,∠ADP=90°,∠PAD=30°,∴tan∠PAD==,∴DP=b.所以无论点G在矩形ABCD内部还是点G在矩形ABCD外部,都有DP≤DC,均符合题意.综上,当∠CGB=120°时a与b的数量关系为a=b或a=b.6.解:(1)∵∠ADE=15°,∴∠FDE=15°,∠CDF=60°.∵DC=AD=DF,∴∠CFD=60°.又∠CFD=∠DGC+∠FDE=15°+∠DGC,∴∠DGC=45°;(2)不变,理由如下:∵△ADE与△FDE关于DE对称,∴∠AGD=∠DGF.设∠ADE=x,可得∠FDE=x,∠CDF=90°﹣2x,∵DC=AD=DF,∴∠CFD=45°+x.又∠CFD=∠DGC+∠FDE=x+∠DGC,∴∠DGC=45°;(3)四边形AGFM是正方形;理由:∵∠DAE=∠DFE=90°,点M为DE的中点,∴AM=FM=DM=DE,∴∠ADM=∠DAM,∠MDF=∠DFM,∴∠AME=∠EMF=2∠ADM=2∠MDF=45°,∴∠AMF=90°,∵∠MGF=45°,∴FM=FG,在△ADG与△FDG中,,∴△ADG≌△FDG(SAS),∴AG=FG,∴AM=MF=FG=AG,∵∠AMF=90°,∴四边形AGFM是正方形.7.解:(1)证明:∵点B关于直线AE的对称点为F,∴AB=AF,BE=EF,又∵AE=AE,∴△ABE≌△AFE(SSS),∴∠AFE=∠B=90°,∴AF⊥EH;(2)连接AH,如图:由(1)得AB=AF,AF⊥EH,∴AF=AD,∠D=∠AFH=90°,AH=AH,∴△AFH≌△ADH(HL),∴∠FAH=∠DAH,又∵∠BAE=∠FAE,在正方形ABCD中,∠BAD=90°,∴∠EAH=45°.8.解:(1)∵ABCD为正方形,∴∠DCE=90°.∴∠CDF+∠E=90°,又∵BF⊥DE,∴∠FBC+∠E=90°,∴∠FBC=∠CDF(2)如图所示:在线段FB上截取FM,使得FM=FD.∵∠BDC=∠MDF=45°,∴∠BDM=∠CDF,∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CG=CF,∴BM=CG,∴BF=BM+FM=CG+DF.补充方法:连接GM,证明四边形BMGC是平行四边形即可.9.(1)解:连接AB',如图1,∵B′为点B关于直线AP的对称点,∴AB=AB',∴∠BAP=∠B'AP=20°,∵四边形ABCD是正方形,∴AB=AD,∴AB'=AD,∴∠AB'D=∠ADB',∵∠B'AD=∠B'AB+∠BAD=90°+40°=130°,∴∠ADB'=25°.(2)证明:①设B'D与AP的交点为N,连接AB',BN.由(1)得:∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=90°,∴∠1+∠3=45°,∴∠B'NP=45°,∵∠B'NP=∠BNP,∴∠BNP=45°,则△BNB'为等腰直角三角形.∴BB'=BN,∠ANB=135°,∴∠BMC=∠ANB=135°,∵∠5+∠6=45°,∠4+∠5=45°,∴∠4=∠6.在△ANB和△BMC中,,∴△ANB≌△BNC(AAS),∴BN=CM,∴BB'=CM;②∵△BB'N为等腰直角三角形,∴∠NB'B=45°,∴∠NB'B=∠7=45°,∴B'D∥MC.10.解:(1)如图1、图2所示:(2)连接AE,如图3所示:则∠PAB=∠PAE=25°,AE=AB=AD,∴∠AED=∠ADF,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAD=90°+25°+25°=140°,∴∠ADF=(180°﹣∠EAD)=20°;(3)连接AE、BF、BD,如图4所示:则EF=BF,AE=AB=AD,∴∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=AB2+AD2=2AB2,即EF2+FD2=2AB2.11.解:(1)连接DB,若Q点落在BD上,由AP=x,则PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=x.∴x=﹣1.(2)①如图2,连接BQ1、CQ1,作PQ1⊥BQ1交AD于P,过点Q1,作EF⊥AD于E,交BC于F.∵△BCQ1为等边三角形,正方形ABCD边长为1,∴Q1F=Q1E=.在四边形ABPQ1中,∵∠ABQ1=30°,∴∠APQ1=150°,∴△PEQ1为含30°的直角三角形,∴PE=Q1E=,∵AE=,∴x=AP=AE﹣PE=2﹣.②如图3,连接BQ2,AQ2,过点Q2作PG⊥BQ2,交AD于P,连接BP,过点Q2作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AQ2=BQ2.∵AB=BQ2,∴△ABQ2为等边三角形.在四边形ABQP中,∵∠BAD=∠BQP=90°,∠ABQ2=60°,∴∠ABP=30°,∴x=AP=.③如图4,连接BQ1,CQ1,BQ3,CQ3,过点Q3作BQ3⊥PQ3,交AD的延长线于P,连接BP,过点Q1,作EF⊥AD于E,此时Q3在EF上,不妨记Q3与F重合.∵△BCQ1为等边三角形,△BCQ3为等边三角形,BC=1,∴Q1Q2=,Q1E=,∴EF=.在四边形ABQ3P中,∵∠ABF=∠ABC+∠CBQ3=150°,∴∠EPF=30°,∴EP=EF=.∵AE=,∴x=AP=AE+PE=+2.综上所述,△CDQ为等腰三角形时x的值为2﹣,,2+.12.解:(1)△QPM是等腰三角形,理由如下:延长BC至E,使CE=BP,连接AE,∵PB=CE,∴PB+BC=CE+BC,∴CP=BE,∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,在△DCP和△ABE中,∴△DCP≌△ABE(SAS)∴∠DPC=∠AEB,∵M是BC的中点,∴MB=MC,∴MB+BP=MC+CE,∴MP=ME,∴M是PE的中点,又∵N是AP的中点,∴MN∥AE,∴∠PMN=∠AEB,∴∠PMN=∠DPC,∴QP=QM,∴△QPM是等腰三角形;(2)延长BC至E,使CE=BP,连接AE,∵M是BC的中点,BC=4,∴BM=CM=2,又∵BP=CE,∴BM+BP=CM+CE,即PM=ME,∴M是PE的中点,且点N是AP中点,13.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点C关于直线DG的对称点为F,∴△DCG≌△DFG,∴DC=DF=DA,∠DFG=∠C=90°,∴∠DFE=90°,在Rt△ADE和Rt△FDE中,∵,∴Rt△ADE≌Rt△FDE(HL);(2)∵G是边BC的中点,BC=6,∴CG=BG=FG=3,∵△ADE≌△FDE,∴AE=EF,设AE=x,则BE=6﹣x,EG=EF+FG=x+3,∵在Rt△EBG中,BE2+BG2=EG2,∴(6﹣x)2+32=(x+3)2,解得x=2,∴AE=2;(3)如图2,过点H作HN⊥AB于点N,∴∠ENH=90°,由(1)知∠ADE=∠EDF,∠FDG=∠CDG,∵∠ADC=90°,∴2∠EDF+2∠FDG=90°,∴∠EDF+∠FDG=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴DE=EH,∠ADE=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH(AAS),∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=.14.解:(1)如图1、图2所示:(2)连接AE,如图3所示:则∠PAB=∠PAE=30°,AE=AB=AD,∴∠AED=∠ADF,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAD=90°+30°+30°=150°,∴∠ADF=(180°﹣∠EAD)=15°;(3)连接AE、BF、BD,如图4所示:则EF=BF,AE=AB=AD,∴∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=AB2+AD2=2AB2,即EF2+FD2=2AB2.15.解:(1)连接AE,如图1所示:∵点D关于直线AQ的对称点为E,∴AE=AD,AQ垂直平分DE,∴∠EAQ=∠QAD=15°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAE=15°+15°+90°=120°,AE=AB,∴∠ABE=(180°﹣120°)=30°;(2)作A⊥BE于M,如图2所示:则∠AMB=∠AMF=90°,∴AM=AB=3,∵∠1=90°﹣30°=60°,∴∠2=90°﹣60°=30°,∴∠FAM=15°+30°=45°,∴△AMF是等腰直角三角形,∴AF=AM=3.。
人教版八年级数学下册第十八章平行四边形单元测试题(含答案)一、选择题。
1 .下列选项中,矩形具有的性质是()A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角2 .在四边形ABCD 中,对角线AC 与BD 交于点O ,下列各组条件,其中不能判定四边形ABCD 是平行四边形的是()A .OA =OC ,OB =OD B .OA =OC ,AB ∥ CDC .AB =CD ,OA =OC D .∠ ADB =∠ CBD ,∠ BAD =∠ BCD3 .如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若∠ COD =50 °,那么∠ CAD 的度数是()A .20 °B .25 °C .30 °D .40 °4 .菱形的两条对角线长分别为6 ,8 ,则它的周长是()A .5B .10C .20D .245 .如图,菱形ABCD 的周长为28 ,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于()A .2B .3.5C .7D .146 .如图,在Rt △ ABC 中,∠ BAC =90 °,AB =3 ,AC =4 ,点P 为BC 上任意一点,连接PA ,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为()A .B .C .D .27 .如图,△ ABC 中,AB =AC ,AD ⊥ BC ,垂足为D ,DE ∥ AB ,交AC 于点E ,则下列结论不正确的是()A .∠ CAD =∠ BADB .BD =CDC .AE =ED D .DE =DB8. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件:① AE =CF ;② DE =BF ;③∠ ADE =∠ CBF ;④∠ ABE =∠ CDF . 其中不能判定四边形DEBF 是平行四边形的有( )A .0 个B . 1 个C . 2 个D . 3 个9. 正方形具有而菱形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角相等10. 菱形的周长为8 cm ,高为1 cm ,则菱形两邻角度数比为( )A .4∶1B .5∶1C .6∶1D .7∶11.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,DE 平分∠ ODA 交OA于点E ,若AB =2+ ,则线段OE 的长为.2 .如图,菱形ABCD 中,∠ B =60 °,AB =3 ,四边形ACEF 是正方形,则EF 的长为.3 .如图,矩形ACD 面积为40 ,点P 在边CD 上,PE 上AC ,PF ⊥ BD ,足分别为E ,F .若AC =10 ,则PE + PF =.4 .如图,在△ ABC 中,AB =AC ,BC =6 ,点F 是BC 的中点,点D 是AB 的中点,连接AF 和DF ,若△ DBF 的周长是11 ,则AB =.5 .如图,在Rt △ BAC 和Rt △ BDC 中,∠ B AC =∠ BDC =90 °,O 是BC 的中点,连接AO 、DO .若AO =3 ,则DO 的长为.6 .如图,正方形ABCD 的边长是4 ,点E 是BC 的中点,连接DE ,DF ⊥ DE 交BA 的延长线于点F .连接EF 、AC ,DE 、EF 分别与C 交于点P 、Q ,则PQ =.三.解答题1 .如图,已知△ ABC 中,AB =BC ,D 为AC 中点,过点D 作DE ∥ BC ,交AB 于点E .(1 )求证:AE =DE ;(2 )若∠ C =65 °,求∠ BDE 的度数.2 .如图所示,O 是矩形ABCD 的对角线的交点,DE ∥ AC ,CE ∥ BD .(1 )求证:OE ⊥ DC .(2 )若∠ AOD =120 °,DE =2 ,求矩形ABCD 的面积.3.如图,在矩形ABCD 中,BD 的垂直平分线分别交AB 、CD 、BD 于E 、F 、O ,连接DE 、BF .(1 )求证:四边形BEDF 是菱形;(2 )若AB =8 cm ,BC =4 cm ,求四边形DEBF 的面积.4 .如图,在△ ABC 中,AD 是△ ABC 的高线,CE 是△ ABC 的角平分线,它们相交于点P .(1 )若∠ B =40 °,∠ AEC =75 °,求证:A B =BC ;(2 )若∠ BAC =90 °,AP 为△ AEC 边EC 上中线,求∠ B 的度数.5 .如图,在平行四边形ABCD 中,点M 为边AD 的中点,过点C 作AB 的垂线交AB 于点E ,连接ME ,已知AM =2 AE =4 ,∠ BCE =30 °.(1 )求平行四边形ABCD 的面积S ;(2 )求证:∠ EMC =2 ∠ AEM .6 .如图,在Rt △ ABC 中,∠ ACB =90 °,过点C 的直线MN ∥ AB ,D 为AB 边上一点,过点D 作DE ⊥ BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1 )求证:CE =AD ;(2 )当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由.7.如图,已知正方形ABCD 的边长为,连接AC 、BD 交于点O ,CE 平分∠ ACD 交BD 于点E ,(1 )求DE 的长;(2 )过点E 作EF ⊥ CE ,交AB 于点F ,求BF 的长;(3 )过点E 作EG ⊥ CE ,交CD 于点G ,求DG 的长.参考答案一.选择题1 .C .2 .C .3 .B .4 .C5 .B6 .B .7 .D .8. B 9. B 10. B二.填空题(共6 小题)1 .1 .2 .33 .44 .8 .5 .3 .6 .三.解答题(共7 小题)1.证明:(1 )∵△ ABC 中,AB =BC ,D 为AC 中点,过点D 作DE ∥ BC ,交AB 于点E ,∴ DE 是△ ABC 的中位线,∵ DE ∥ BC ,∴∠ C =∠ ADE ,∵ AB =BC ,∴∠ C =∠ A ,∴∠ A =∠ ADE ,∴ AE =DE ;(2 )∵△ ABC 中,AB =BC ,∠ C =65 °,∴∠ ABC =180 °﹣65 °﹣65 °=50 °,∵ DE 是△ ABC 的中位线,∴ AE =BE ,∵ AE =DE ,∴ BE =DE ,∴∠ EBD =∠ EDB ,∵ DE ∥ BC ,∴∠ EDB =∠ DBC ,∴∠ EBD =∠ DBC =25 °,∴∠ EDB =25 °.2 .(1 )证明:∵ DE ∥ AC ,CE ∥ BD ,∴ DE ∥ OC ,CE ∥ OD ,∴四边形ODEC 是平行四边形,∵四边形ODEC 是矩形,∴ OD =OC =OA =OB ,∴四边形ODEC 是菱形,∴ OE ⊥ DC ,(2 )∵ DE =2 ,且四边形ODEC 是菱形∴ OD =OC =DE =2 =OA ,∴ AC =4∵∠ AOD =120 ,AO =DO∴∠ DAO =30 °,且∠ ADC =90 °∴ CD =2 ,AD =CD =2∴ S 矩形ABCD =2 × 2 =43 .证明:(1 )∵四边形ABCD 是矩形,O 是BD 的中点,∴∠ A =90 °,AD =BC =4 ,AB ∥ DC ,OB =OD ,∴∠ OBE =∠ ODF在△ BOE 和△ DOF 中,∴△ BOE ≌△ DOF (ASA ),∴ EO =FO ,且OB =OD∴四边形BEDF 是平行四边形,∵ EF 垂直平分BD∴ BE =DE∴四边形BEDF 是菱形(2 )∵四边形BEDF 是菱形∴ BE =DE ,在Rt △ ADE 中,DE 2 =AE 2 + DA 2 ,∴ BE 2 =(8 ﹣BE )2 +16 ,∴ BE =5∴四边形DEBF 的面积=BE × AD =20 cm 2 .4.(1 )证明:∵∠ B =40 °,∠ AEC =75 °,∴∠∠ ECB =∠ AEC ﹣∠ B =35 °,∵ CE 平分∠ ACB ,∴∠ ACB =2 ∠ BCE=70 °,∠ BAC =180 °﹣∠ B ﹣∠ ACB =180 °﹣40 °﹣70 °=70 °,∴∠ BAC =∠ BCA ,∴ AB =AC .(2 )∵∠ BAC =90 °,AP 是△ AEC 边EC 上的中线,∴ AP =PC ,∴∠ PAC =∠ PCA ,∵ CE 是∠ ACB 的平分线,∴∠ PAC =∠ PCA =∠ PCD ,∵∠ ADC =90 °,∴∠ PAC =∠ PCA =∠ PCD =90 °÷ 3 =30 °,∴∠ BAD =60 °,∵∠ ADB =90 °,∴∠ B =90 °﹣60 °=30 °.5 .(1 )解:∵ M 为AD 的中点,AM =2 AE =4 ,∴ AD =2 AM =8 .在▱ ABCD 的面积中,BC =CD =8 ,又∵ CE ⊥ AB ,∴∠ BEC =90 °,∵∠ BCE =30 °,∴ BE =BC =4 ,∴ AB =6 ,CE =4 ,∴ ▱ ABCD 的面积为:AB × CE =6 × 4 =24 ;(2 )证明:延长EM ,CD 交于点N ,连接CM .∵在▱ ABCD 中,AB ∥ CD ,∴∠ AEM =∠ N ,在△ AEM 和△ DNM 中∵ ,∴△ AEM ≌△ DNM (ASA ),∴ EM =MN ,又∵ AB ∥ CD ,CE ⊥ AB ,∴ CE ⊥ CD ,∴ CM 是Rt △ ECN 斜边的中线,∴ MN =MC ,∴∠ N =∠ MCN ,∴∠ EMC =2 ∠ N =2 ∠ AEM .6.(1 )证明:∵ DE ⊥ BC ,∴∠ DFB =90 °,∵∠ ACB =90 °,∴∠ ACB =∠ DFB ,∴ AC ∥ DE ,∵ MN ∥ A B ,即CE ∥ AD ,∴四边形ADEC 是平行四边形,∴ CE =AD ;(2 )解:四边形BECD 是菱形,理由如下:∵ D 为AB 中点,∴ AD =BD ,∵ CE =AD ,∴ BD =CE ,∵ BD ∥ CE ,∴四边形BECD 是平行四边形,∵∠ ACB =90 °,D 为AB 中点,∴ CD =BD ,∴四边形BECD 是菱形.7 .解:(1 )DE =2 ﹣;(2 )BF =2 ﹣;(3 )DG =3 ﹣4 .人教版八年级数学第十八章平行四边形章末检测(含答案)一、选择题1.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是( )A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°答案 D2.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10B.8C.6D.5答案 D3.下列命题中错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等答案 C4.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )A.BE=DFB.BF=DEC.AE=CFD.∠1=∠2答案 C5.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )A.16B.12C.24D.20答案 B6.顺次连接矩形四边的中点所得的四边形一定是( )A.正方形B.矩形C.菱形D.等腰梯形答案 C7.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是( )A.0B.1C.2D.3答案 D8.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为( )A.14B.15C.16D.17答案 C9.如图,所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°答案 D10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )A.4个B.3个C.2个D.1个答案 B二、填空题11.已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.答案412.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为m.答案4013.如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于cm.答案1614.如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为cm.答案415.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).答案CB=BF或BE⊥CF或∠EBF=60°或BD=BF(答案不唯一)16.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为.答案1217.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C 恰好落在AD边上的点F处,则CE的长为.答案18.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别为AB,BC,CD,DA的中点,则EG2+FH2= .答案36三、解答题19.如图,正方形ABCD中,点E、F分别在边AB、BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.答案(1)如图,与∠AED(∠1)相等的角是∠3、∠2、∠4.(2)①选择∠1=∠2.在正方形ABCD中,∠DAB=∠B=90°,AD=AB,又∵AF=DE,∴Rt△ADE≌Rt△BAF.∴∠1=∠2.②选择∠1=∠4.在正方形ABCD中,AB∥CD,∴∠1=∠4.③选择∠1=∠3.同①可证Rt△ADE≌Rt△BAF.∴∠1=∠2.在正方形ABCD中,AD∥BC,∴∠3=∠2.∴∠1=∠3.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.答案(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD==5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.21.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.答案(1)证明:∵△ABC绕A点旋转得到△ADE,∴AB=AD,AC=AE,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,∴∠EAC=∠DAB.又AB=AC,∴AE=AD,∴△AEC≌△ADB.(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,又由旋转知AB=AD,∴∠DBA=∠BDA=45°,∴△BAD是等腰直角三角形.∴BD2=AB2+AD2=22+22=8,∴BD=2.∵四边形ADFC是菱形,∴AD=DF=FC=AC=AB=2,∴BF=BD-DF=2-2.22.(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②求四边形AFF'D的两条对角线的长.图1 图2答案(1)C.(2)①证明:∵AD=BC=5,S▱ABCD=15,AE⊥BC,∴AE=3.如图,∵EF=4,∴在Rt△AEF中,AF===5.∴AF=AD=5.又△AEF经平移得到△DE'F',∴AF∥DF',AF=DF',∴四边形AFF'D是平行四边形.又AF=AD,∴四边形AFF'D是菱形.②如图,连接AF',DF.在Rt△DE'F中,∵E'F=E'E-EF=5-4=1,DE'=3,∴DF==.在Rt△AEF'中,∵EF'=E'E+E'F'=5+4=9,AE=3,∴AF'==3.∴四边形AFF'D的两条对角线长分别为,3.23.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=时,四边形MENF是正方形(只写结论,不需证明).答案(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°.∵M为AD的中点,∴AM=DM.在△ABM和△DCM中,∴△ABM≌△DCM(SAS).(2)四边形MENF是菱形.证明:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,MF=CM,∴NE FM,∴四边形MENF是平行四边形.∵△ABM≌△DCM,∴BM=CM.∵E、F分别是BM、CM的中点,∴ME=BM,MF=MC,∴ME=MF,∴平行四边形MENF是菱形.(3)2∶1.人教版八年级下册数学第十八章平行四边形单元同步练习卷教版八年级数学下册第十八章平行四边形单元复习测试题一、填空题1.如图,AB∥CD,AD不平行于BC,AC与BD相交于点O,写出三对面积相等的三角形是__________.2.如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC 的长度为_________.3.如图,已知ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为__________.4.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为____________.二、选择题5.在ABCD中,对角线AC,BD相交于点O,若△AOB的面积为3,则ABCD的面积为A.6 B.9 C.12 D.18 6.菱形的对角线长分别为3和4,则该菱形的面积是A.6 B.8 C.12 D.247.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是A.6 B.8 C.10 D.168.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.39.已知ABCD的对角线AC,BD的长分别为10,6,则AB长的范围是A.AB>2 B.AB<8 C.2<AB<8 D.2≤AB≤8 10.在一个直角三角形中,已知两直角边分别为6 cm,8 cm,则下列结论不正确的是A.斜边长为10 cm B.周长为25 cmC.面积为24 cm2 D.斜边上的中线长为5 cm11.如图,已知四边形ABCD中,AD∥BC,∠A=∠BCD=∠ABD,DE平分∠ADB,下列说法:①AB∥CD;②ED⊥CD;③∠DFC=∠ADC–∠DCE;④S△EDF=S△BCF,其中正确的结论是A.①②③B.①②④C.①③④D.①②③④12.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF的长为A .158B .154C .152D .15 13.如图在ABCD 中,已知AC =4 cm ,若△ACD 的周长为13 cm ,则ABCD 的周长为A .26 cmB .24 cmC .20 cmD .18 cm14.如图,在菱形ABCD 中,P 、Q 分别是AD 、AC 的中点,如果PQ =3,那么菱形ABCD 的周长是A .30B .24C .18D .615.下列选项中,不能判定四边形ABCD 是平行四边形的是A .AD BC ∥,AB CD ∥ B .AB CD ∥,AB CD =C .AD BC ∥,AB DC =D .AB DC =,AD BC =16.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE ∶EC =2∶1,则线段CH 的长是A.3 B.4 C.5 D.6二、解答题17.如图,在△ABC中,AD⊥BC于点D,E,F,G分别是BC,AC,AB的中点.若AB=23BC=3DE=12,DG=12AB,求四边形DEFG的周长.18.已知菱形ABCD中,对角线AC=16 cm,BD=12 cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.19.如图,在ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD上的两个动点(点E,F始终在ABCD的外面),且DE=12OD,BF=12OB,连接AE,CE,CF,AF.(1)求证:四边形AFCE为平行四边形.(2)若DE=13OD,BF=13OB,上述结论还成立吗?由此你能得出什么结论?(3)若CA平分∠BCD,∠AEC=60°,求四边形AECF的周长.20.如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM 的中点.(1)求证:△ABM≌△DCM;(2)当AB∶AD=__________时,四边形MENF是正方形,并说明理由.21.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是__________.参考答案1.【答案】△ADC和△BDC;△ADO和△BCO;△DAB和△CAB2.【答案】23.【答案】144.【答案】3.55-16:CACBC BDBDB CB17.【解析】∵AB=23BC=3DE=12,∴BC=18,DE=4,∴DG=12AB=6,∵E,F,G分别是BC,AC,AB的中点,∴FG=12BC=9,EF=12AB=6,∴四边形DEFG的周长为4+6+9+6=25.18.【解析】如图,∵菱形ABCD的对角线相交于点O,AC=16 cm,BD=12 cm,∴AC⊥BD于点O,CO=8 cm,DO=6 cm,S菱形=11612962⨯⨯=(cm2),∴CD10=(cm),∵BE⊥CD于点E,∴BE·CD=96,即10BE=96,∴BE=485(cm).19.【解析】略20.【解析】(1)∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°.∵M为AD的中点,∴AM=MD,∴△ABM≌△DCM.(2)1∶2,理由:∵AB∶AD=1∶2,∴AB=12 AD.∵AM=12AD,∴AB=AM,∴∠ABM=∠AMB.∵∠A=90°,∴∠AMB=45°.∵△ABM≌△DCM,∴BM=CM,∠DMC=∠AMB=45°,∴∠BMC=90°.∵E,F,N分别是BM,CM,BC的中点,∴EN∥CM,FN∥BM,EM=MF,∴四边形MENF是菱形.∵∠BMC=90°,∴菱形MENF是正方形.21.【解析】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形.(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC·BD=12×4×2=4,故答案为:4.。
2020-2021学年人教版八年级数学下册第18章平行四边形单元测试卷题号一二三总分得分一、选择题(本大题共8小题,共24分)1.如图,河流的两岸PQ,MN互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得∠DAN=45°,然后沿河岸走了130米到达B处,测得∠CBN=60°.则河流的宽度CE为()米.A. 80B. 40(3−√3)C. 40(3+√3)D. 40√22.如图,在平面直角坐标系中,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,则这四个点组成的四边形ABB′A′的面积是()A. 4B. 6C. 9D. 133.如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,BC,连接OE,下列结论:④∠CAD=30°;S ABCD=AB⋅AC;且∠ADC=60°,AB=12BC.其中成立的有()③OB=AB:④OE=14A. ①②③B. ①②④C. ①③④D. ②③④4.将点A(2,3)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A. (−2,−3)B. (−2,3)C. (2,3)D. (2,−3)5.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠ABC=75°,则∠EAF的度数为()A. 60°B. 65°C. 70°D. 75°6.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为()A. 1B. 2C. 3D. 47.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP//OB,交OA于点C,PD⊥OB,垂足为点D,若PC=6,则PD的长()A. 3B. 4C. 5D. 68.如图所示,在矩形ABCD中,AC=13,AD=5,O是AC的中点,E为AB上任意一点,连接EO,将△AOE沿OE翻折至△A′OE,A的对应点为A′,连接A′C,当A′E⊥AB时,求A′C的长为()A. 4B. 3√2√3C. 72√2D. 72二、填空题(本大题共5小题,共15分)9.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG//BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G,若AB=√6,EF=2,∠H=120°,则DN的长为______.10.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为____________.11.如图,用6个全等的三角形拼成一个内外都是正六边形的图=______.形,若AG=5,BG=3,则正六边形GHIJKL的面积正六边形ABCDEF的面积12.如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为______.三、解答题(本大题共3小题,共64分)13.如图,A′B′//BA,B′C′//CB,C′A′//AC,∠ABC与∠B′有什么关系?线段AB′与线段AC′呢?为什么?14.如图,E、F是平行四边形ABCD对角线AC上的两点,AF=CE.求证:BE=DF且由B、E、D、F四点组成的四边形是平行四边形.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)当t=2时,求△PEF的面积;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.。
第十八章 平行四边形 综合测试一、选择题(每小题3分,共30分)1.顺次连接对角线相等的四边形各边中点所形成的四边形是( )A .平行四边形B .菱形C .矩形D .正方形2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB BC =;②90ABC =︒∠;③AC BD =;④AC BD ⊥中选两个作为补充件,使ABCD 成为正方形(如图).现有下列四种选法,你认为其中错误是( )A .①②B .②③C .①③D .②④3.如图,已知D 为ABC △边AB 的中点,E 在AC 上,将ABC △沿着DE 折叠,使A 点落在BC 上的F 处,若65B ∠=︒,则BDF ∠等于( )A .65︒B .50︒C .60︒D .57.5︒4.如图,在菱形ABCD 中,AC 、BD 是对角线,若50BAC ∠=︒,则ABC ∠等于( )A .40︒B .50︒C .80︒D .100︒5.已知:如图,在ABCD Y 中,CE AB ⊥,E 为垂足,如果125A ∠=︒,则BCE ∠的度数是( )A .25︒B .30︒C .35︒D .55︒6.已知ABCD Y 中,4B A ∠=∠,则A ∠=( )A .18︒B .36︒C .72︒D .144︒7.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE DC ∥交BC 于点E , 6 cm AD =,则OE 的长为( )A .6 cmB .4 cmC .3 cmD .2 cm8.如图,在矩形ABCD 中,E 点在BC 上,且AE 平分BAC ∠.若4BE =,15AC =,则AEC △面积为( ) A .15 B .30 C .45 D .609.如图,点E 在正方形ABCD 内,满足90AEB ∠=︒,6AE =,8BE =,则阴影部分的面积是( )A .48B .60C .76D .8010.如图,在ABCD Y 中,对角线AC 与BD 交于点O ,90OBC ∠=︒,8AC =,4BD =,则BCO △的面积是( )A .B .CD .3二、填空题(每小题3分,共24分)11.如图,在ABCD Y 中,AC 、BD 相交于点O ,10 cm AB =,8 cm AD =,AC BC ⊥,则OB =___________cm .12.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则BED ∠为___________度.13.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点,若8AB =,12AD =,则四边形ENFM 的周长为___________.14.如图,ABCD 是对角线互相垂直的四边形,且OB OD =,请你添加一个适当的条件___________,使ABCD 成为形(只需添加一个即可).15.如图,在ABCD Y 中,10 cm AD =, 6 cm CD =.E 为AD 上一点,有BE BC =,CE CD =,则DE =___________cm .16.如图,在平行四边形ABCD 中,AE 平分BAD ∠,若110D ∠=︒,则DAE ∠的度数为___________.17.如图,在MBN △中,6BM =,点A ,C ,D 分别在MB ,BN ,NM 上,四边形ABCD 为平行四边形,NDC MDA ∠=∠,那么平行四边形ABCD 的周长是___________.18.如图,在正方形ABCD 中,1AB =,延长AB 到E ,使AE AC =,则ACE △的面积是___________.三、解答题(共46分)19.(5分)已知:如图,在ABCD Y 中,5AB =,8AD =,ABC ∠的平分线BE 交AD 于点E ,求线段ED 的长.20.(5分)将矩形纸片ABCD 折叠,使点C 与点A 重合,然后展开,折痕为EF ,连接AE ,CF .求证:四边形AECF 是菱形。
人教版八年级下册数学18.1 平行四边形课时训练一、选择题1. 如图,在平行四边形ABCD中,5AD=,3AB=,AE平分BAD∠交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和4如图2. (2020·温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为EDCBAA.40°B.50°C.60°D.70°3. 如图,平行四边形ABCD的周长是26 cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3 cm,则AE的长度为() A. 3 cm B. 4 cm C. 5 cm D. 8 cm4. 如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A. 10B. 145. (2019▪广西池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在D E延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF6. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( ) A .2 B .35 C .53D .157. 如图,在△ABC 中,AB =4,BC =6,DE 、DF 是△ABC 的中位线,则四边形BEDF 的周长是( ) A . 5 B . 7 C . 8 D . 108.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122S S S +<C.212S S S += D.21S S +的大小与P 点位置有关二、填空题9. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB的延长线于点F,则∠BEF的度数为__________.10.(2020·牡丹江)如图,在四边形ABCD中,AD//BC,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD是平行四边形(填一个即可).11. (2020·凉山州)如图,平行四边形ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E.若OA=1,△AOE的周长等于5,则平行四边形ABCD 的周长等于.OE DCBA12. 如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为________.13. 如图,ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO 的周长是8,则△BCD的周长为__________.14. 如图,在平行四边形□ABCD中,2,AB ABC=∠的平分线与BCD∠的平分线交于点E,若点E恰好在边AD上,则22BE CE+的值为.ACEDCB A三、解答题15. 如图,四边形ABCD 为平行四边形,即AB CD ∥,AD BC ∥.通过证明三角形全等来说明:⑴AB CD =,AD BC =.(对边相等) ⑵AO CO =,BO DO =.ODCBA16. 四边形ABCD 的对角线AC、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE PF =,且AP AE CP CF +=+.求证:四边形ABCD 是平行四PFE DCBANMAEDPC FB17. 鄂州)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2人教版 八年级下册数学18.1 平行四边形 课时训练-答案一、选择题 1. 【答案】B2. 【答案】D【解析】本题考查了等腰三角形的性质以及平行四边形的性质,由∠A =40°,AB =AC ,求得∠C =70°,又因为四边形BCDE 是平行四边形,所以∠E =∠C =70°,因此本题选D .3. 【答案】B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B 【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .由AC +BD =16可得OA +OB =8,又∵AB =CD =6,∴△ABO 的周长为OA +OB +AB =8+6=14.5. 【答案】B【解析】∵在△ABC 中,D ,E 分别是AB ,BC 的中点, ∴DE 是△ABC 的中位线,∴.A .根据∠B=∠F 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B .根据∠B=∠BCF 可以判定CF ∥AB ,即CF ∥AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确. C .根据AC=CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D .根据AD=CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误. 故选B .6. 【答案】C7. 【答案】D【解析】∵DE 、DF 是△ABC 的中位线,∴DE ∥AB ,DF ∥BC ,DE =12AB ,DF =12BC ,∴四边形BEDF 是平行四边形,∵AB =4,BC =6,∴DE =BF =2,DF =BE =3,∴四边形BEDF 的周长为:2(DE +DF )=10.8. 【答案】C 然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题 9. 【答案】50° 【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA =∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE,OE.∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +8ABCD 的周长=16.故答案为16.12. 【答案】36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.13. 【答案】16的对角线AC 、BD 相交于点O ,∴,BD=2OB ,∴O 为BD 中点, ∵点E 是AB 的中点,∴AB=2BE ,BC=2OE ,∵四边形ABCD 是平行四边形,∴AB=CD ,∴CD=2BE . ∵△BEO 的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16, ∴△BCD 的周长是16,故答案为16.14. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴AB=CD=2,AD=BC,AD ∥BC ,AB ∥CD,∴∠ABC+∠BCD=180°, ∠AEB=∠EBC ,∠DEC=∠ECB.又∵BE 、CE 分别是∠ABC 与∠DCB 的平分线,∴∠ABE=∠EBC ,∠DCE=∠ECB ,∴∠EBC+∠BCE=90°,∠三、解答题15.⑴16.17. 【答案】解:(1)ABCD 是平行四边形, ∴AB =CD ,,OA =OC , BAC2AB ,∴BO =AB ,∴△ABO 为等腰三角形; 又M 为AO 的中点,∴由等腰三角形的“三线合一”性质可知:BM ⊥AO ,∴∠BMO =∠EMO =90°,同理可证△DOC 也为等腰三角形, 又N 是OC 的中点,∴由等腰三角形的“三线合一”性质可知:DN ⊥CO , ∠DNO =90°,∵∠EMO +∠DNO =90°+90°=180°,∴,=BM,由(1)中知BM=DN,∴EM=DN,∴四边形又∠EMO=在Rt△ABM∴AM=CN=3,3=6,。
人教版 八年级下册 第18章 平行四边形 课时训练一、选择题1. 以三角形的三个顶点作平行四边形,最多可以作( )A .2个B .3个C .4个D .5个2. 如图,矩形ABCD 的两条对角线相交于点O ,60AOB ∠=︒,2AB =,则矩形的对角线AC 的长是( ) A .2 B .4 C .23 D .433. 如图,在▱ABCD中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BDC . AC =BD D . ∠BAC =∠DAC4. (2020·滨州)下列命题是假命题的是()A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直且平分的四边形是正方形5. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF6. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍7. 如图,在平行四边ABCD 中,AC 、BD 为对角线,6BC =,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .24(1)DBA8. (2020·黑龙江龙东)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,OH =4,则菱形ABCD 的面积为( )A .72B .24C .48D .96 二、填空题9. 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是______.10. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是E F DBC A________.11. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.12. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB 的长度为 cm .OD CBA13. 如图,把矩形ABCD 的对角线AC 分成四段,以每一段为对角线作矩形,对应边与原矩形的边平行,设这四个小矩形的周长和为P ,矩形ABCD 的周长为L ,则P 与L 的关系式DCB14. 如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交AB CD ,于E F ,,若43AE CF ==,,则EF = OFE DC BA15. 将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为A5A4A3A2A1三、解答题16. 如图,将▱ABCD的边AB延长至点E,使BE=AB,连接BD,DE,EC,DE 交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.17. 已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.18. 如图,E是菱形ABCD的边AD的中点,EF AC于H,交CB的延长线于F,交AB于P,证明:AB与EF互相平分人教版八年级下册第18章平行四边形课时训练-答案一、选择题1. 【答案】B2. 【答案】 B【解析】∵60AOB∠=︒,AO BO=,∴AOB∆为等边三角形,∴4AC=3. 【答案】C【解析】邻边相等的平行四边形是菱形,所以A正确;对角线互相垂直的平行四边形是菱形,所以B正确;对角线相等的平行四边形是矩形,所以C错误;由∠BAC=∠DAC可得对角线是角平分线,所以D正确.4. 【答案】D【解析】本题考查了正方形的判定,对角线互相垂直且相等的平行四边形是正方形、对角线互相垂直的矩形是正方形、对角线相等的菱形是正方形是真命题,对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,因此本题选D.选项逐项分析正误A ∵四边形ABCD是矩形,AF⊥DE,∴∠C=90°=∠AFD,AD∥BC,∴∠ADF=∠CED,∵AD=DE,∴△AFD≌△DCE(AAS)√B只有当∠ADF=30°时,才有AF=12AD成立×C 由△AFD≌△DCE可知,AF=DC,∵矩形ABCD中,AB=DC,∴AB=AF√D∵△AFD≌△DCE,∴DF=CE,∴BE=BC-CE=AD-DF √6. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC 和BD 是否垂直,故选项C 错误; ∵点E 、F 分别为OA 和OB 的中点,∴EF=12AB ,EF ∥AB ,∴△OEF ∽△OAB ,∴214AEF OABS EF SAB ⎛⎫== ⎪⎝⎭, 即△ABO 的面积是△EFO 的面积的4倍,故选项D 错误, 故选B .7. 【答案】C8. 【答案】C【解析】本题考查了菱形的性质,对角线互相垂直平分以及直角三角形的斜边上中线的性质,解:∵四边形ABCD 是菱形,∴OA =OC ,OB =OD ,AC ⊥BD , ∵DH ⊥AB ,∴∠BHD =90°,∴BD =2OH ,∵OH =4,∴BD =8, ∵OA =6,∴AC =12,∴菱形ABCD 的面积.故选:C .二、填空题 9. 【答案】410. 【答案】3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3.11. 【答案】50° 【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA =∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.12. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.13. 【答案】P L =.【解析】如图,将四个小矩形的边分别向外平移,正好拼接成矩形ABCD 的四边,所以P L =14. 【答案】515. 【答案】22cm 4n三、解答题16. 【答案】[解析](1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)欲证明四边形BECD是矩形,只需推出BC=ED 即可.证明:(1)在▱ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵BE=AB,∴BE=DC,∴四边形BECD是平行四边形,∴BD=EC.在△ABD与△BEC中,∴△ABD≌△BEC(SSS).(2)由(1)知四边形BECD是平行四边形,则OD=OE,OC=OB.∵四边形ABCD是平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴BC=ED,∴平行四边形BECD是矩形.17. 【答案】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD ∥BC ,∴∠EAF=∠AEB=90°, ∴∠EAF=∠AEC=∠AFC=90°, ∴四边形AECF 是矩形.18. 【答案】连结BD AF EB ,,,因为菱形ABCD 中BD AC ⊥,又因为EF AC ⊥,所以BD EF ∥,因为AD FC ∥,所以四边形BDEF 是平行四边形,可得ED FB =,因为AE ED =,所以AE FB =,从而AE FB ∥,AE FB =,因此四边形AFBE 是平行四边形,所以AB 与EF 互相平分。
F E D C B A O ED C B A D C B A O D C B A 第十八章 平行四边形 练习题一、选择题(每小题5分,共30分)1.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A.AB=DC ,AD=BCB.AB ∥DC ,AD ∥BCC.AB ∥DC ,AD=BCD.AB ∥DC ,AB=DC(第1题) (第2题)2.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中不一定成立的是( )A.AB ∥DCB.AC=BDC.AC ⊥BDD.OA=OC3.顺次连接矩形四边中点得到的四边形一定是( )A.正方形B.矩形C.菱形D.等腰梯形4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC.若AC=4,则四边形OCED 的周长为( )A.4B.6C.8D.105.如图,将一个边长分别为4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则折痕EF 的长为( )6.如图,正方形ABCD 的边长为8,点M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值为( )(第4题) (第5题) (第6题)二、填空题(每小题6分,共24分)7.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O ,若AC=6,则AO 的长度等于________________.8.如图,若将四根木条钉成的矩形木框变形为□ABCD 的形状,并使其面积变为O F E D C BA D CB A 矩形面积的一半,则□ABCD 的最小内角的大小为______________.(第7题) (第8题)9.如图,将两条宽度都为3的纸片重叠在一起,使∠ABC=600,则四边形ABCD 的面积为__________10.如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.则第n 个正方形的边长为________.(第9题) (第10题)三、解答题(第11题14分,第12,13题各16分,共46分)11.如图,在四边形ABCD 中,AB=CD ,BE=DF ;AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F.(1)求证:△ABE ≌△CDF ;(第11题)(2)若AC 与BD 交于点O ,求证:AO=CO.O D C B AF E D C B A12.如图,在△ABC 中,∠CAB=900,DE ,DF 是△ABC 的中位线,连结EF ,AD.求证:EF=AD.(第12题)∵AE⊥BD,CF ⊥BD,∴∠AEB=∠CFD=90°∵AB =CD,BE=DF ∴ABE≌CDF参考答案:1.C.2.B.3.C.4.C.5.D.6.D7.3. 8.300. 11.(1)证明:(2)提示:证明四边形ABCD 是平行四边形由(1)△ABE ≌△CDF ,可得∠ABE=∠CDF ,AB ∥CD ,可得四边形ABCD 是平行四边形,于是AO=CO.12.提示:由DE ,DF 是△ABC 的中位线,可得四边形EAFD 是平行四边形,又∠CAB=900.可知□EAFD 是矩形,根据矩形对角线相等即可得证.13.提示:(1)证明△AOF ≌△BOE ;(2)结论仍然成立,证明△AOF ≌△BOE.。
人教版八年级数学下册第18章平行四边形经典常考题专题训练(一)1.如图,在▱ABCD中,AB=12cm,BC=6cm,∠A=60°,点P沿AB边从点A开始以2cm/秒的速度向点B移动,同时点Q沿DA边从点D开始以1cm/秒的速度向点A移动,用t表示移动的时间(0≤t≤6).(1)当t为何值时,△PAQ是等边三角形?(2)当t为何值时,△PAQ为直角三角形?2.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且直线AB与DC之间的距离为4,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,求AP的长度.3.如图,已知▱ABCD的对角线AC、BD交于点O,且∠1=∠2.(1)求证:▱ABCD是菱形.(2)F为AD上一点,连接BF交AC于E,且AE=AF,若AF=3,AB=5,求AO 的长.4.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:∠DAC=∠DCA;(2)求证:四边形ABCD是菱形;(3)若AB=,BD=2,求OE的长.5.如图,在正方形ABCD中,点E.F分别在BC和CD上,BE=DF,连接EF.(1)求证:△AEF为等腰三角形.(2)过点E作EM∥AF,过点F作FM∥AE,判断四边形AEMF是什么特殊四边形,并证明你的结论.6.如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA =OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD =12,AB=5,求PE+PF的值.7.如图,在平行四边形BPCD中,点O为BD中点,连接CO并延长交PB延长线于点A,连接AD、BC,若AC=CP,(1)求证:四边形ABCD为矩形;(2)在BA的延长线上取一点E,连接OE交AD于点F,若AB=9,BC=12,AE =3,则AF的长为.8.如图,四边形DEBF是平行四边形,A、C在直线EF上且AE=CF.(1)求证:四边形ABCD是平行四边形;(2)在不添加任何辅助线的条件下,请直接写出图中所有与△DFC面积相等的三角形.9.如图,菱形ABCD中,AC与BD交于点O,DE∥AC,DE=AC.(1)求证:四边形OCED是矩形;(2)连接AE,交OD于点F,连接CF,若CF=CE=1,求AC长.10.如图,AC为矩形ABCD的对角线,点E,F分别是线段BC,AD上的点,连接AE,CF,若∠BAE=∠DCF:(1)求证:四边形AECF是平行四边形;(2)若AC平分∠DAE,AB=4,BC=8,求△AEC的周长.11.已知:如图,在▱ABCD中,∠BCD的角平分线交AB于E,交DA的延长线于F.(1)求证:DF=DC;(2)若E是FC的中点,已知BC=2,DE=3,求FC的长.12.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.13.已知在▱ABCD中,动点P在AD边上,以每秒0.5cm的速度从点A向点D运动.(1)如图1,在运动过程中,若CP平分∠BCD,且满足CD=CP,求∠B的度数.(2)在(1)的条件下,若AB=4cm,求△PCD的面积.(3)如图2,另一动点Q在BC边上,以每秒2cm的速度从点C出发,在BC间往返运动,P,Q两点同时出发,当点P到达点D时停止运动(同时Q点也停止),若AD =6cm,求当运动时间为多少秒时,以P,D,Q,B四点组成的四边形是平行四边形.14.如图,在平行四边形ABCD中,F,G分别是CD,AB上的点,且AG=CF,连接FG,BD交于点O.(1)求证:OB=OD;(2)若∠A=45°,DB⊥BC,当CD=2时,求OC的长.15.如图,平行四边形ABCD中,AB∥CD,AD∥BC,点G是线段BC的中点,点E 是线段AD上的一点,点F是线段AB延长线上一点,连接DF,且∠ABE=∠CDG=∠FDG.(1)∠A=45°,∠ADF=75°,CD=3+,求线段BC的长;(2)求证:AB=BF+DF.参考答案1.解:(1)AP=2t(cm),AQ=6﹣t(cm),∵当△PAQ是等边三角形时,AQ=AP,即2t=6﹣t,解得t=2.∴当t=2时,△PAQ是等边三角形;(2)∵△PAQ是直角三角形,∴∠AQP=90°,当∠AQP=90°时,有∠APQ=30°,,即AP=2AQ,∴2t=2(6﹣t),解得t=3(秒),当∠APQ=90°时,有∠AQP=30°,,即AQ=2AP∴6﹣t=2•2t,解得(秒).∴当t=3或时,△PAQ是直角三角形.2.解:在平行四边形ABCD中,AB=CD,∵BD=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=8.3.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=CB,∴▱ABCD是菱形.(2)解:由(1)得:▱ABCD是菱形,∴BC=AB=5,AO=CO,∵AD∥BC,∴∠AFE=∠CBE,∵AE=AF=3,∴∠AFE=∠AEF,又∵∠AEF=∠CEB,∴∠CBE=∠CEB,∴CE=BC=5,∴AC=AE+CE=3+5=8,∴AO=AC=4.4.(1)证明:∵AB∥DC,∴∠OAB=∠DCA,∵AC平分∠BAD,∴∠OAB=∠DAC,∴∠DAC=∠DCA;(2)证明:∵∠DAC=∠DCA,AB=AD,∵AB∥DC,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(3)解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,由勾股定理得:OA===2,∴OE=OA=2.5.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌△RtADF(SAS),∴AE=AF,∴三角形AEF是等腰三角形;(2)四边形AEMF是菱形.理由如下:∵EM∥AF,FM∥AE,∴四边形AEMF是平行四边形,由(1)知AE=AF,∴平行四边形AEMF是菱形.6.证明:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形;(2)如图,连接OP,∵AD=12,AB=5,∴BD===13,∴BO=OD=AO=CO=,∵S△AOD=S矩形ABCD=×12×5=15,∴S△AOP+S△POD=15,∴××FP+××EP=15,∴PE+PF=.7.(1)证明:∵四边形BPCD是平行四边形,∴CP=BD,BP∥CD,BP=CD,∴∠OAB=∠OCD,AB∥CD,∵点O为BD中点,∴OB=OD,在△AOB和△COD中,,∴△AOB≌△COD(AAS),∴AB=CD,∵AB∥CD,∴四边形ABCD是平行四边形,又∵AC=CP,∴AC=BD,∴四边形ABCD为矩形;(2)解:由(1)得:四边形ABCD为矩形,∴AD=BC=12,OA=OC=AC,OB=OD=BD,AC=BD,∠ABC=90°,∴OA=OB,AC===15,∴OA=,作OG⊥AB于G,如图所示:则AG=BG=,∴OG是△ABD的中位线,∴GO∥AD,GO=AD=6,∴GE=AE+AG=3+=,∴=,解得:AF=,故答案为:.8.(1)证明:连接BD交AC于O,如图1所示:∵四边形DEBF是平行四边形,∴OE=OF,OB=OD,∵AE=CF,∴OA=OC,∴四边形ABCD是平行四边形;(2)解:图中所有与△DFC面积相等的三角形为△ADE、△BEA,△CBF,理由如下:∵AE=CF,∴△ADE的面积=△DFC的面积,△ABE的面积=△CBF的面积,由(1)得:四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴△ADE的面积=△CBF的面积,∴△ADE的面积=△DFC的面积=△ABE的面积=△CBF的面积.9.(1)证明:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC,∴∠DOC=90°,∵DE∥AC,DE=AC,∴OC=DE,∴四边形OCED为平行四边形,又∵∠DOC=90°,∴四边形OCED是矩形;(2)解:由(1)得:四边形OCED是矩形,∴OD∥CE,∠OCE=90°,∵O是AC中点,∴F为AE中点,∴CF=AF=EF,∵CF=CE=1,∴CF=1,∴AE=2,∴AC===.10.解:(1)在矩形ABCD中,AF∥CE,AB∥CD,∴∠BAC=∠DCA,∵∠BAE=∠DCF,∴∠CAE=∠ACF,∴AE∥CF,∴四边形AECF是平行四边形.(2)∵AC平分∠DAE,∴∠DAC=∠EAC,∵AF∥CE,∴∠FAC=∠ACE,∴∠CAE=∠ECA,∴AE=CE,设AE=CE=x,∴BE=8﹣x,在Rt△ABE中,∴由勾股定理可知:x2=(8﹣x)2+42,解得:x=5,在Rt△ABC,由勾股定理可知:AC2=42+82,∴△ABC的周长为:5+5+4=10+4.11.解:(1)∵CF平分∠BCD,∴∠BCE=∠DCE,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠F,∴∠F=∠DCE,∴DF=DC;(2)∵AD∥BC,∴∠F=∠BCE,∠B=∠FAE,∵E是FC的中点,∴CE=FE,在△AEF和△BEC中,,∴△AEF≌△BEC(AAS),∴AF=BC=2,又∵AD=BC=2,∴DF=4,∵DF=DC,E是CF的中点,∴DE⊥CF,∴Rt△DEF中,EF===,∴FC=2EF=2.12.(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∵DE∥CF,∴四边形DCFE是平行四边形,(2)解:由(1)得:四边形DCFE是平行四边形,∴CD∥FE,∴∠F=∠BCD,∵△ABC是等边三角形,D是AB的中点,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=30°,∴∠F=30°.13.解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DPC=∠PCB,∵CP平分∠BCD,∴∠PCD=∠PCB,∴∠DPC=∠DCP,∴DP=CD,∵CD=CP,∴CP=CD=DP,∴△PDC是等边三角形,∴∠B=60°;(2)∵四边形ABCD是平行四边形,∴AB=CD=4,∵△PDC是等边三角形,∴△PCD三边上的高相等,且等于sin60°×4=×4=2,∴S△PCD=×2×4=4(cm2);(3)∵四边形ABCD是平行四边形,∴AD∥BC,∴PD∥BC,若以P,D,Q,B四点组成的四边形是平行四边形,则PD=BQ,设运动时间为t秒,①当0<t≤3时,PD=6﹣0.5t,BQ=6﹣2t,∴6﹣0.5t=6﹣2t,解得:t=0(不合题意舍去);②当3<t≤6时,PD=6﹣0.5t,BQ=2t﹣6,∴6﹣0.5t=2t﹣6,解得:t=4.8;③当6<t≤9时,PD=6﹣0.5t,BQ=18﹣2t,∴6﹣0.5t=18﹣2t,解得:t=8;④当9<t≤12时,PD=6﹣0.5t,BQ=2t﹣18,∴6﹣0.5t=2t﹣18,解得:t=9.6;综上所述,当运动时间为4.8秒或8秒或9.6秒时,以P,D,Q,B四点组成的四边形是平行四边形.14.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ODF=∠OBG,∵AG=CF,∴BG=DF,在△DOF和△BOG中,,∴△DOF≌△BOG(AAS),∴OB=OD;(2)∵四边形ABCD是平行四边形,∴∠BCD=∠A=45°,∵BD⊥BC,∴∠DBC=90°,∴∠BDC=∠BCD=45°,∴DB=CB,又∵CD=2,∴CB=DB=2,∴OB=1,∴Rt△BCO中,OC===.15.(1)解:∵四边形ABCD是平行四边形,∴∠C=∠A=45°,AB∥CD,∴∠ADC=180°﹣∠A=135°,∵∠ADF=75°,∴∠CDF=135°﹣75°=60°,∵∠CDG=∠FDG,∴∠CDG=∠FDG=30°,作GH⊥CD于H,如图1所示:则DH=GH,CH=GH,CG=GH,∵CD=DH+CH,∴GH+GH=3+,解得:GH=,∴CG=GH=,∵点G是线段BC的中点,∴BC=2CG=2;(2)证明:延长DG交AF的延长线于M,如图2所示:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠CDG=∠M,∵CDG=∠FDG,∴∠M=∠FDG,∴DF=MF,∵点G是线段BC的中点,∴BG=CG,在△CDG和△BMG中,,∴△CDG≌△BMG(AAS),∴CD=BM,∵AB=CD,BM=BF+MF,∴AB=BF+DF.。
周周练(18.1)
(时间:45分钟满分:100分)
一、选择题(每小题4分,共32分)
1.下面的性质中,平行四边形不一定具有的是( )
A.对角互补 B.邻角互补
C.对角相等 D.对边相等
2.平行四边形的周长为24 cm,相邻两边的差为2 cm,则平行四边形的各边长为( )
A.4 cm,8 cm,4 cm,8 cm
B.5 cm,7 cm,5 cm,7 cm
C.5.5 cm,6.5 cm,5.5 cm,6.5 cm
D.3 cm,9 cm,3 cm,9 cm
3.(丽水中考)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为( ) A.13 B.17
C.20 D.26
4.(河池中考)如图,在▱ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为( )
A.150° B.130°
C.120° D.100°
5.如图所示,在▱ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是( )
A.AC⊥BD B.AB=CD
C.BO=OD D.∠BAD=∠BCD
6.(绵阳中考)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )
A.6 B.12
C.20 D.24
7.如图,▱ABCD中,对角线AC,BD相交于点O,E,F是AC上的两点,当E,F满足下列哪个条件时,四边形DEBF 不一定是平行四边形( )
A.∠ADE=∠CBF B.∠ABE=∠CDF
C.DE=BF D.OE=OF
8.(河北中考)如图,点A ,B 为定点,定直线l∥AB,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是( )
A .②③
B .②⑤
C .①③④
D .④⑤
二、填空题(每小题4分,共24分)
9.如图所示,在▱ABCD 中,E ,F 分别为AB ,DC 的中点,连接DE ,EF ,FB ,则图中共有____________个平行四边形.
10.(江西中考)如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为____________.
11.在▱ABCD 中,AB ,BC ,CD 的长度分别为2x +1,3x ,x +4,则▱ABCD 的周长是____________.
12.(邵阳中考)如图所示,四边形ABCD 的对角线相交于点O ,若AB∥CD,请添加一个条件____________(写一个即可),使四边形ABCD 是平行四边形.
13.如图,在▱ABCD 中,以A 为圆心,AB 为半径画弧,交AD 于点F ,再分别以B ,F 为圆心,大于1
2BF 的长为半径
画弧,两弧相交于点G ,若BF =6,AB =5,则AE 的长为____________.
14.已知等腰三角形的两条中位线长分别为3和5,则此等腰三角形的周长为____________. 三、解答题(共44分)
15.(10分)如图,四边形ABCD 是平行四边形,点E ,A ,C ,F 在同一直线上,且AE =CF.求证:BE =DF.
16.(10分)(通辽中考)如图,在▱ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.
17.(12分)已知:如图,在四边形ABCD中,AB=CD,E,F,G分别是AD,BC,BD的中点,GH平分∠EGF交EF于点H.
(1)猜想:GH与EF间的关系是__________________________;
(2)证明你的猜想.
18.(12分)如图1,在▱ABCD中,∠ABC,∠ADC的平分线分别交AD,BC于点E,F.
(1)求证:四边形EBFD是平行四边形;
图1
(2)小明在完成(1)的证明后继续进行了探索.连接AF ,CE ,分别交BE ,FD 于点G ,H ,得到四边形EGFH.此时,他猜想四边形EGFH 是平行四边形,请在框图(图2)中补全他的证明思路.
小明的证明思路
参考答案
1.A 2.B 3.B 4.C 5.A 6.D 7.C 8.B 9.4 10.50° 11.32 12.答案不唯一,如:AB =CD 13.8 14.26或22
15.证明:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD.∴∠BCA =∠DAC.又∵AE=CF ,∴EC =FA.在△BCE 和△DAF 中,⎩⎪⎨⎪
⎧BC =DA ,∠BCE =∠DAF,EC =FA ,
∴△BCE ≌△DAF(SAS).∴BE=DF.
16.∵四边形ABCD 为平行四边形,∴AB =DC =6,AD =BC =10,AB ∥DC.∵AB ∥DC ,∴∠ABE =∠CFB.又∵BF 平分
17.(1)GH 垂直平分EF
(2)证明:∵E,G 分别是AD ,BD 的中点,∴EG =12AB.∵F,G 分别是BC ,BD 的中点,∴GF =1
2CD.∵AB=CD ,∴EG =
GF.∵GH 平分∠EGF,∴GH 垂直平分EF.
18.GF∥EH AE∥CF
证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠ABC =∠ADC.AD=BC.∵BE 平分∠ABC,∴∠ABE =∠EBC=
12
∠ABC.∵DF 平分∠ADC ,∴∠ADF =∠CDF =1
2∠ADC.∴∠EBC =∠ADF.∵AD∥BC ,∴∠AEB =∠EBC.∴∠AEB =
∠ADF.∴EB∥DF.∵ED∥BF,∴四边形EBFD 是平行四边形.。