中考数学专题复习专题五25数学思想方法(含详细参考答案)
- 格式:doc
- 大小:398.50 KB
- 文档页数:15
数学方法篇一:配方法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.【范例讲析】1.配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。
例1、求二次根式322+-a a 中字母a 的取值范围分析:根据二次根式的定义,必须被开方数大于等于零,再观察被开方数可以发现可以利用配方法求得。
解:2)1(2)12(32222+-=++-=+-a a a a a因为无论a 取何值,都有0)1(2≥-a 。
所以a 的取值范围是全体实数。
点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。
2.配方法在化简二次根式中的应用在二次根式的化简中,也经常使用配方法。
例2、化简526-分析:题中含有两个根号,化简比较困难,但根据题目的结构特征,可以发现526-可以写成2)15(1525-=+-,从而使题目得到化简。
解:1 5 )1 5 ( 1 52 ) 5 ( 1 5 2 5 5 2 6 2 2 2 - = - = + - = + - = - 点评:题型b a 2+一般可以转化为y x y x +=+2)((其中⎩⎨⎧==+b xy ay x )来化简。
3.配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。
例3、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。
分析:本题主要考查利用配方法说明代数式的值恒小于0,说明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式。
解:2)1(31)12(3)2(322222---=-++--=---=-+-x x x x x x x ∵0)1(2≤--x , ∴02)1(2<---x 。
因此,无论x 取什么实数,322-+-x x 的值是个负数。
中考数学专题复习之五:数形结合思想【中考题特点】:数形结合思想是一种重要的数学思想方法。
近几年各地中考试题中都体现了这种数学思想方法。
在数学问题中,数量关系与图形位置关系这两者之间有着紧密却又较隐含的相互关系。
解题时,往往需要揭示它们之间的内在联系,通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。
【范例讲析】:例1:二次函数y=ax 2+bx+c 的图象如图所示,根据图象,化简||)23(||2b a c b c a b -+----例2:如图,△ABC 中,∠C=90°,BE 是角平分线,DE ⊥BE 交AB 于D ,半圆O 是△BDE 的外接半圆。
⑴求证:AC 是半⊙O 的切线; ⑵若AD=6,AE=62,求DE 的长。
例3:已知:抛物线y=x 2-mx+22m 与抛物线y=x 2+mx -243m在平面直角坐标系xOy 中的位置如图所示,其中一条与x 轴交于A 、B 两点。
⑴试判定哪条抛物线经过A 、B 两点,并说明理由; ⑵若A 、B 两点到原点的距离AO 、OB 满足3211=-AO OB ,求经过A 、B 两点的这条抛物线的解析式。
例4已知:如图6,在半径为6,圆心角为90°的扇形OAB 的弧上有一动点P ,PH ⊥OA ,垂足为H ,ΔOPH 的重心为G.(1) 当P 在弧上运动时,线段GO 、GP 、GH 中有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度; (2) 设PH=x ,GP=y ,求y 关于x 的函数解析式,并写出自变量的取值范围;(3) 如果ΔPGH 是等腰三角形,试求出线段PH 的长。
P GBO例5:把两个全等的等腰直角三角形ABC 和EFG (其直角边长均为4)叠放在一起(如图①),且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合.现将三角板EFG 绕O 点顺时针旋转(旋转角α满足条件:0°<α<90°=,四边形CHGK 是旋转过程中两三角板的重叠部分(如图②)。
第46课常用数学方法1.已知x,y同时满足:x2+y2=20和x-y=4,试求xy的值.2.用配方法解方程:⑴x2-3x+2=0 ⑵x2+4x-16=03.已知x2+y2-2x+6y+10=0,求x+y的值?4. 若多项式4a2+M能用平方差公式分解因式,则单项式M=_____________(写出一个即可).5.若反比例函数的图象经过点(-2,3),则这个反比例函数的表达式为____.6.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与△ABC相似.满足这样条件的直线最多有____条.7.已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( )A 、相等B 、互为倒数C 、互为相反数D 、A 大于B 8. y=()221--mx m 是反比例函数,则m= .9.如图是一次函数y 1=kx+b 和反比例函数y 2=mx的图象,写出y 1>y 2时,x 的取值范围 . 10. 解分式方程:21.1x x x-=-11. 用换元法解方程:2121222=-+-xx x x 时,若设y x x =-122,则原方程可化为 . 12.先化简(1+1x-1)÷xx 2-1,再选择一个恰当的x 值代人并求值.13. 抛物线y= x 2+ax+4与x 轴只有一个交点,求a 的值.14.已知关于x 的方程2210x kx -+=的一个解与方程2141x x+=-的解相同. ⑴求k 的值;⑵求方程2210x kx -+=的另一个解.15. 基公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价lO 万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元. (1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.16.某文具店销售的水笔只有A、B、C三种型号,下面表格和统计图分别给出了上月这三种型号水笔每支的利润和销售量.A、B、C三种水笔每支利润统计表A、B、C三种水笔销售量统计图(1)分别计算该店上月这三种型号水笔的利润,并将利润分布情况用扇形统计图表示;(2)若该店计划下月共进这三种型号水笔600支,结合上月销售情况,你认为A、B、C三种型号的水笔各进多少支总利润最高?此时所获得的总利润是多少?17.已知ΔABC的面积为16,线段AB,BC,CA的中点分别为A1,B1,C1,设ΔA1B1C1的面积为S1;线段A1B1,B1C1,C1A1的中点分别为A2,B2,C2,设ΔA2B2C2的面积为S2;…求S2002的值.18.一条直线将一个平面分为两部分;两条直线可以将一个平面分为3部分,也可以分为4部分;3条直线可以将一个平面分为4部分,或6部分,或7部分.试讨论10条直线最多可以将一个平面分为几部分?n条直线呢?19. 已知二次函数的图象过原点O,顶点B的坐标为(1,-1),开口向上.在图象上有一点A,使∠AOB=90 ,求点A的坐标.20. 通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y 越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.⑴当0≤x≤10时,求注意力指标数y与时间x的函数关系式;⑵一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36.第47课 常用的数学思想(1)1.如图1,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,AB=8,BC=5.若以AB 为直径的⊙O 与DC 相切于E ,则DC= .2.二元二次方程组⎩⎨⎧=+=+326422y x y x 的解是 .3.已知:如图3,扇形AOB 中,∠AOB=45°,AD=4cm ,弧CD=3πcm ,则图中阴影部分的面积是 . (结果保留π)4.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数 . 5.已知:如图5,直角梯形ABCD 中,AD ∥BC ,BC=CD=4,∠BCD=60°,则梯形的中位线长为 .6.解方程组⎩⎨⎧==+121112711xy y x 时,若设a x =1,b y =1,则方程组变为 ;若把x 1、y1看作某关于z 的一元二次方程的两根,则方程组变为 . 7.已知a 是方程x 2-4x +1=0两根的比例中项,且a 为正值,负数b 是方程x 2+10x +4=0两根的比例中项,则a -b= .8.如图8,P 为⊙O 外一点,PA 与PB 切⊙O 于A 、B 点,PB=4cm ,EF 切⊙O 于C 点,交PA 、PB 于E 、F 点,则△EFP 的周长等于 .9.如图,矩形ABCD 中,BC= 2 , DC = 4.以AB 为直径的第1题第3题第5题第8题半圆O 与DC 相切于点E ,则阴影部分的面积为 . 10.近年来,由于受国际石油市场的影响,汽油价格不断上涨. 请你根据下面的信息,帮小明计算今年5月份汽油的价格.11.如图11(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合。
中考数学重难题型突破:数学思想方法数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
数学思想是对数学事实与理论经过概括后产生的本质认识;是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。
数学方法即用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。
同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法。
思想与方法并不是孤立独行的,二者之间互相联系,思想对应方法,方法返衬思想。
数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是题组一 模块一数学思想数学思想——数形结合思想“以形助数”。
“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
1、数形结合的内容(1)绝对值问题:画数轴,根据绝对值的性质(一点到另一点的距离)得到一个范围,从而解出绝对值。
(2)函数问题:借助于图象研究函数的性质是一种常用的方法。
函数图象的几何特征与数量特征紧密结合 体现了数形结合的特征与方法。
(3)方程与不等式:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
(4)几何探究:几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。
2015中考数学专题知识突破专题五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 若a-2b=3,则2a-4b-5= .1.已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.2.(2014•威海)已知x2-2=y,则x(x-3y)+y(3x-1)-2的值是()A.-2 B.0 C.2 D.4考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
2019年中考数学复习:常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系 ,既分析其代数含义 ,又揭示其几何意义 ,使数量关系和图形巧妙和谐地结合起来 ,并充分利用这种结合 ,寻求解体思路 ,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的 ,是可以相互转化的。
数学学科的各局部之间也是相互联系 ,可以相互转化的。
在解题时 ,如果能恰当处理它们之间的相互转化 ,往往可以化难为易 ,化繁为简。
如:代换转化、与未知的转化、特殊与一般的转化、具体与抽象的转化、局部与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中 ,我们常常需要根据研究对象性质的差异 ,分各种不同情况予以考查 ,这种分类思考的方法 ,是一种重要的数学思想方法 ,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时 ,要确定它 ,只要求出式子中待确定的字母得值就可以了。
为此 ,把条件代入这个待定形式的式子中 ,往往会得到含待定字母的方程或方程组 ,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式 ,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧 ,配方法在分解因式、解方程、讨论二次函数等问题 ,都有重要的作用。
6、换元法:在解题过程中 ,把某个或某些字母的式子作为一个整体 ,用一个新的字母表示 ,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简 ,把问题归结为比原来更为根本的问题 ,从而到达化繁为简 ,化难为易的目的。
7、分析法:在研究或证明一个命题时 ,又结论向条件追溯 ,既从结论开始 ,推求它成立的充分条件 ,这个条件的成立还不显然 ,那么再把它当作结论 ,进一步研究它成立的充分条件 ,直至到达条件为止 ,从而使命题得到证明。
这种思维过程通常称为“执果寻因〞8、综合法:在研究或证明命题时 ,如果推理的方向是从条件开始 ,逐步推导得到结论 ,这种思维过程通常称为“由因导果〞9、演绎法:由一般到特殊的推理方法。
数学思想方法复习专题一、考点,热点分析:深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。
分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复 ;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。
常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化。
二、知识点归纳:常用的数学思想(数学中的四大思想)1.函数与方程的思想用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。
2.数形结合思想在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透。
3.分类讨论思想在数学中,我们常常需要根据研究对象性质的差异。
分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论。
4.等价转化思想等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。
常用的数学方法主要有换元法、配方法和待定系数法三种。
三、例题解析【例1】(20XX 年北京市东城区)解方程:(x+1)- -3x+1=2.解:设x +1=y ,则原方程化为y-3y=2去分母,得y 2-2y-3=0.解这个方程,得y 1=-1,y 2=3.当y =-1时,x +1=-1,所以x =-2; 当y =3时,x +1=3,所以x =2.经检验,x =2和x =-2均为原方程的解.〖点拨〗解分式方程通常是采用去分母或还元法化为整式方程,并特别要注意验根。
最新中考数学专项练习(历年真题汇编)专题一5大数学思想方法类型一分类讨论思想(2018·临沂中考)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时,求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】(1)先判定四边形BDFA是平行四边形,可得FD=AB,再根据AB=CD,即可得出FD=CD;(2)当GC=GB时,点G在BC的垂直平分线上,分情况讨论,即可得到旋转角α的度数.【自主解答】在数学中,如果一个命题的条件或结论有多种可能的情况,难以统一解答,那么就需要按可能出现的各种情况分类讨论,最后综合归纳问题的正确答案.1.(2018·宿迁中考)在平面直角坐标系中,过点(1,2)作直线l,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( ) A.5 B.4 C.3 D.22.(2018·随州中考)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x 之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元) 7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?类型二数形结合思想(2018·齐齐哈尔中考)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20 min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的107继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6 km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程s(km)和行驶时间t(min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________ km,大客车途中停留了________ min,a=________;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80 km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待________分钟,大客车才能到达景点入口.【分析】(1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a的值;(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后大客车行驶的路程,从而可得结论;(3)先计算直线CD的解析式,计算小轿车驶过景点入口6 km 时的时间,再计算大客车到达终点的时间,根据路程与时间的关系可得小轿车行驶6 km的速度与80 km/h作比较可得结论.(4)利用路程÷速度=时间计算出大客车所用时间,计算与小轿车的时间差即可.【自主解答】把问题中的数量关系与形象直观的几何图形有机地结合起来,并充分利用这种结合寻找解题的思路,使问题得以解决.3.(2018·大庆中考)如图,二次函数y =ax 2+bx +c 的图象经过点A(-1,0),点B(3,0),点C(4,y 1),若点D(x 2,y 2)是抛物线上任意一点,有下列结论:①二次函数y =ax 2+bx +c 的最小值为-4a ; ②若-1≤x 2≤4,则0≤y 2≤5a ; ③若y 2>y 1,则x 2>4;④一元二次方程cx 2+bx +a =0的两个根为-1和13.其中正确结论的个数是( )A.1 B.2 C.3 D.44.(2018·苏州中考)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图象经过点D交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为( )A.3 B.2 3 C.6 D.125.(2018·上海中考)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写自变量的取值范围)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?类型三 转化与化归思想(2017·江西中考)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽BC =20 cm ,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG =100 cm ,上臂DE =30 cm ,下臂EF 水平放置在键盘上,其到地面的距离FH =72 cm.请判断此时β是否符合科学要求的100°?(参考数据:sin 69°≈1415,cos 21°≈1415,tan 20°≈411,tan 43°≈1415,所有结果精确到个位)【分析】 (1)在Rt △ABC 中利用三角函数即可直接求解;(2)延长FE 交DG 于点I ,利用三角函数求得∠DEI 即可求得β的值,从而作出判断. 【自主解答】把一种数学问题合理地转化成另一种数学问题可以有效地解决问题.在解三角形中,将非直角三角形问题转化为解直角三角形问题,把实际问题转化为数学问题等.6.(2018·山西中考)如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A .4π-4B .4π-8C .8π-4D .8π-87.(2018·黄冈中考)则a -1a =6,则a 2+1a 2值为______.8.(2018·白银中考)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁,可以缩短从A 地到B 地的路程.已知∠CAB =30°,∠CBA =45°,AC =640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将缩短约多少公里?(参考数据:3≈1.7,2≈1.4)类型四 方程思想(2018·娄底中考)如图,C ,D 是以AB 为直径的⊙O 上的点,AC ︵=BC ︵,弦CD 交AB 于点E.(1)当PB 是⊙O 的切线时, 求证:∠PBD =∠DAB ; (2)求证:BC 2-CE 2=CE·DE ;(3)已知OA =4,E 是半径OA 的中点,求线段DE 的长.【分析】 (1)由AB 是⊙O 的直径知∠BAD +∠ABD =90°,由PB 是⊙O 的切线知∠PBD +∠ABD =90°,据此可得证;(2)连接OC ,设圆的半径为r ,证△ADE ∽△CBE ,由AC ︵=BC ︵知∠AOC =∠BOC =90°,再根据勾股定理即可得证;(3)先求出BC ,CE ,再根据BC 2-CE 2=CE·DE 计算可得. 【自主解答】在解决数学问题时,有一种从未知转化为已知的手段就是设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化.9.(2018·白银中考)若正多边形的内角和是1 080°,则该正多边形的边数是________.10.(2018·上海中考)如图,已知正方形DEFG的顶点D,E在△ABC的边BC上,顶点G,F分别在边AB,AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是________.类型五函数思想(2017·杭州中考)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数解析式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【自主解答】在解答此类问题时,建立函数模型→求出函数解析式→结合函数解析式与函数的性质作出解答.要注意从几何和代数两个角度思考问题.11.(2018·桂林中考)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数解析式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.参考答案类型一【例1】(1)如图1,连接AF.由四边形ABCD是矩形,结合旋转可得BD=AF,∠EAF=∠ABD.∵AB=AE,∴∠ABD=∠AEB,∴∠EAF=∠AEB,∴BD∥AF,∴四边形BDFA是平行四边形,∴FD=AB.∵AB=CD,∴FD=CD.(2)如图2,当点G位于BC的垂直平分线上,且在BC的右边时,连接DG,CG,BG,易知点G也是AD的垂直平分线上的点,∴DG=AG.又∵AG=AD,∴△ADG是等边三角形,∴∠DAG =60°,∴α=60°.如图3,当点G 位于BC 的垂直平分线上,且在BC 的左边时,连接CG ,BG ,DG ,同理,△ADG 是等边三角形, ∴∠DAG =60°,此时α=300°.综上所述,当α为60°或300°时,GC =GB. 变式训练 1.C2.解:(1)设p 与x 之间的函数关系式为p =kx +b , 代入(1,7.5),(3,8.5)得⎩⎪⎨⎪⎧k +b =7.5,3k +b =8.5,解得⎩⎪⎨⎪⎧k =0.5,b =7, 即p 与x 的函数关系式为p =0.5x +7(1≤x≤15,x 为整数). 当1≤x <10时,W =[20-(0.5x +7)](2x +20)=-x 2+16x +260. 当10≤x≤15时,W =[20-(0.5x +7)]×40=-20x +520,即W =⎩⎪⎨⎪⎧-x 2+16x +260(1≤x<10,x 为整数),-20x +520(10≤x≤15,x 为整数).(2)当1≤x <10时,W =-x 2+16x +260=-(x -8)2+324, ∴当x =8时,W 取得最大值,此时W =324. 当10≤x≤15时,W =-20x +520,∴当x =10时,W 取得最大值,此时W =320.∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元. (3)当1≤x <10时,令-x 2+16x +260=299,得x 1=3,x 2=13, 当W >299时,3<x <13.∵1≤x <10,∴3<x <10.当10≤x≤15时,令W =-20x +520>299,得x <11.05,∴10≤x≤11.由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为20×(11-3)=160(元).答:李师傅共可获得160元奖金. 类型二【例2】(1)由图形可得学校到景点的路程为40 km ,大客车途中停留了5min , 小轿车的速度为4060-20=1(km/min), a =(35-20)×1=15. 故答案为40,5,15.(2)由(1)得a =15,∴大客车的速度为1530=12(km/min).小轿车赶上来之后,大客车又行驶了(60-35)×107×12=1257(km),40-1257-15=507(km).答:在小轿车司机驶过景点入口时,大客车离景点入口还有507 km. (3)设直线CD 的解析式为s =kt +b ,将(20,0)和(60,40)代入得⎩⎪⎨⎪⎧20k +b =0,60k +b =40,解得⎩⎪⎨⎪⎧k =1,b =-20, ∴直线CD 的解析式为s =t -20. 当s =46时,46=t -20,解得t =66.小轿车赶上来之后,大客车又行驶的时间为40-1512×107=35(min),小轿车司机折返时的速度为6÷(35+35-66)=32(km/min)=90 km/h >80km/h.答:小轿车折返时已经超速.(4)大客车的时间:4012=80(min),80-70=10(min).故答案为10. 变式训练 3.B 4.A5.解:(1)设该一次函数解析式为y =kx +b , 将(150,45),(0,60)代入y =kx +b 中得⎩⎪⎨⎪⎧150k +b =45,b =60,解得⎩⎨⎧k =-110,b =60,∴该一次函数解析式为y =-110x +60. (2)当y =-110x +60=8时,解得x =520, 即行驶520千米时,油箱中的剩余油量为8升. 530-520=10(千米),油箱中的剩余油量为8升时,距离加油站10千米.答:在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.类型三【例3】(1)∵Rt△ABC中,tan A =BCAB,∴AB=BCtan A=BCtan 20°≈20411=55(cm).(2)如图,延长FE交DG于点I,则四边形GHFI为矩形,∴IG=FH,∴DI=DG-FH=100-72=28(cm).在Rt△DEI中,sin∠DEI=DIDE=2830=1415,∴∠DEI≈69°,∴β=180°-69°=111°≠100°,∴此时β不符合科学要求的100°.变式训练6.A7.88.解:如图,过点C作CD⊥AB于点D.在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=3203,∴BD=CD=320,BC=3202,∴AC+BC=640+3202≈1 088,∴AB=AD+BD=3203+320≈864,∴1 088-864=224(公里).答:隧道打通后与打通前相比,从A地到B地的路程将缩短约224公里.类型四【例4】(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°.∵PB是⊙O的切线,∴∠ABP=90°,∴∠PBD+∠ABD=90°,∴∠BAD=∠PBD.(2)∵∠A=∠DCB,∠AED=∠CEB,∴△ADE∽△CBE,∴DEBE=AECE,即DE·CE=AE·BE.如图,连接OC.设圆的半径为r,则OA=OB=OC=r,则DE·CE=AE·BE=(OA-OE)(OB+OE)=r2-OE2.∵AC ︵=BC ︵,∴∠AOC =∠BOC =90°, ∴CE 2=OE 2+OC 2=OE 2+r 2, BC 2=BO 2+CO 2=2r 2,则BC 2-CE 2=2r 2-(OE 2+r 2)=r 2-OE 2, ∴BC 2-CE 2=DE·CE.(3)∵OA =4,∴OB =OC =OA =4, ∴BC =OB 2+OC 2=4 2. 又∵E 是半径OA 的中点, ∴AE =OE =2,则CE =OC 2+OE 2=42+22=2 5. ∵BC 2-CE 2=DE·CE , ∴(42)2-(25)2=DE·25, 解得DE =655. 变式训练 9.8 10.127 类型五【例5】 (1)①由题意可得xy =3,则y =3x . ②当y≥3时,3x ≥3,解得x≤1, ∴x 的取值范围是0<x≤1.(2)∵一个矩形的周长为6,∴x +y =3,∴x +3x =3,整理得x 2-3x +3=0.∵b 2-4ac =9-12=-3<0,∴矩形的周长不可能是6,∴圆圆的说法不对.∵一个矩形的周长为10,∴x +y =5,∴x +3x =5,整理得x 2-5x +3=0.∵b 2-4ac =25-12=13>0,∴矩形的周长可能是10,∴方方的说法对.变式训练11.解:(1)将点A ,B 的坐标代入函数解析式得⎩⎪⎨⎪⎧9a -3b +6=0,a +b +6=0,解得⎩⎪⎨⎪⎧a =-2,b =-4, ∴抛物线的函数解析式为y =-2x 2-4x +6,当x =0时,y =6,∴点C 的坐标为(0,6).(2)由MA =MB =MC 得M 点在AB 的垂直平分线上,M 点在AC 的垂直平分线上.设M(-1,y),由MA =MC 得(-1+3)2+y 2=(y -6)2+(-1-0)2,解得y =114,∴点M 的坐标为(-1,114).(3)①如图,过点A 作DA ⊥AC 交y 轴于点F ,交CB 的延长线于点D. ∵∠ACO +∠CAO =90°,∠DAO +∠CAO =90°,∠ACO +∠AFO =90°, ∴∠DAO =∠ACO ,∠CAO=∠AFO ,∴△AOF ∽△COA ,∴AO OF =CO AO ,∴AO 2=OC·OF.∵OA =3,OC =6,∴OF =326=32,∴F(0,-32).∵A(-3,0),F(0,-32),∴直线AF 的解析式为y =-12x -32.∵B(1,0),C(0,6),∴直线BC 的解析式为y =-6x +6,联立⎩⎨⎧y =-12x -32,y =-6x +6,解得⎩⎪⎨⎪⎧x =1511,y =-2411,∴D(1511,-2411),∴AD =24115,AC =35,∴tan ∠ACB =2451135=811.∵4tan ∠ABE =11tan ∠ACB ,∴tan ∠ABE =2.如图,过点A 作AM ⊥x 轴,连接BM 交抛物线于点E. ∵AB =4,tan ∠ABE =2,∴AM =8,∴M(-3,8).∵B(1,0),M(-3,8),∴直线BM 的解析式为y =-2x +2.联立⎩⎪⎨⎪⎧y =-2x +2,y =-2x 2-4x +6,解得⎩⎪⎨⎪⎧x =-2,y =6或⎩⎪⎨⎪⎧x =1,y =0,(舍去)∴E(-2,6).②当点E 在x 轴下方时,如图,过点E 作EG ⊥AB ,连接BE.设点E(m ,-2m 2-4m +6),∴tan ∠ABE =GE BG =2m 2+4m -6-m +1=2,∴m =-4或m =1(舍去),可得E(-4,-10).综上所述,E点坐标为(-2,6)或(-4,-10).。
考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2013•吉林)若a-2b=3,则2a-4b-5= .思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可.解:2a-4b-5=2(a-2b)-5=2×3-5=1.故答案是:1.点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值.对应训练1.(2013•福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.1.1000考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
例2 (2013•东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).思路分析:将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.解:如图:∵高为1.2m ,底面周长为1m ,在容器内壁离容器底部0.3m 的点B 处有一蚊子, 此时一只壁虎正好在容器外壁,离容器上沿0.3m 与蚊子相对的点A 处,∴A′D=0.5m ,BD=1.2m ,∴将容器侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离,A′B=22220.5 1.2AD BD '+=+=1.3(m ). 故答案为:1.3.点评:本题利用转化思想把立体问题转化为平面问题,从而使问题简单化、直观化。
将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.对应训练2.(2013•宁德质检)如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,点P 是AB 上的任意一点,作PD ⊥AC 于点D ,PE ⊥CB 于点E ,连结DE ,则DE 的最小值为 .2.4.8解:∵Rt △ABC 中,∠C=90°,AC=8,BC=6,∴AB=10,如图,连接CP ,∵PD ⊥AC 于点D ,PE ⊥CB 于点E ,∴四边形DPEC 是矩形,∴DE=CP ,当DE 最小时,则CP 最小,根据垂线段最短可知当CP ⊥AB 时,则CP 最小, ∴DE=CP=6810⨯ =4.8, 故答案为4.8.考点三:分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏. 例3 (2013•山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是 .乙种收费的函数关系式是 .(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?思路分析:(1)设甲种收费的函数关系式y 1=kx+b ,乙种收费的函数关系式是y 2=k 1x ,直接运用待定系数法就可以求出结论;(2)由(1)的解析式分三种情况进行讨论,当y 1>y 2时,当y 1=y 2时,当y 1<y 2时分别求出x 的取值范围就可以得出选择方式.解:(1)设甲种收费的函数关系式y 1=kx+b ,乙种收费的函数关系式是y 2=k 1x ,由题意,得 616100b k b=⎧⎨=+⎩,12=100k 1, 解得:0.16k b =⎧⎨=⎩,k 1=0.12, ∴y 1=0.1x+6,y 2=0.12x ;(2)由题意,得当y 1>y 2时,0.1x+6>0.12x ,得x <300;当y 1=y 2时,0.1x+6=0.12x ,得x=300;当y 1<y 2时,0.1x+6<0.12x ,得x >300;∴当100≤x <300时,选择乙种方式合算;当x=100时,甲乙两种方式一样合算;当300<x≤4500时,选择甲种方式合算.故答案为:y 1=0.1x+6,y 2=0.12x .点评:本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点.∴有2种购买方案:方案1:购A型电脑2台,B型电脑3台,帐篷10顶,方案2:购A型电脑3台,B型电脑3台,帐篷5顶.四、中考真题演练一、选择题1.(2013•杭州)若a+b=3,a-b=7,则ab=()A.-10 B.-40 C.10 D.401.A2.(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π2.C3.(2013•达州)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC 为对角线的所有▱ADCE中,DE最小的值是()A.2 B.3 C.4 D.53.B4.(2013•齐齐哈尔)CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,则BE的长是()A.8 B.2 C.2或8 D.3或74.C5.(2013•泸州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.5cm B.5C.5cm或5cm D.2cm或35.C6.(2013•钦州)等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°6.B7.(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.187.B 8.(2013•荆州)如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3πC .4πD .π8.A二、填空题9.(2013•枣庄)若a 2−b 2=16,a −b = 13,则a+b 的值为 . 9.1210.(2013•雅安)若(a-1)2+|b-2|=0,则以a 、b 为边长的等腰三角形的周长为 . 10.511.(2013•宿迁)已知⊙O 1与⊙O 2相切,两圆半径分别为3和5,则圆心距O 1O 2的值是 .11.8或212.(2013•咸宁)如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .12.2213.(2013•宿迁)若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 . 13.0或114.(2013•黄石)若关于x 的函数y=kx 2+2x-1与x 轴仅有一个公共点,则实数k 的值为 . 14.0或-115.(2013•雅安)在平面直角坐标系中,已知点A (-5,0),B (5,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 .15.(0,2),(0,-2),(-3,0),(3,0)16.(2013•绥化)直角三角形两直角边长是3cm和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是cm2.(结果保留π)16.24π,36π,84 5π17.(2013•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=3x上的点B重合,若点B的纵坐标是1,则点A的横坐标是.17.2或-218.(2013•广东)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).18.3 819.(2013•盘锦)如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为.19.(2,0)或(2,0)20.(2013•凉山州)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.20.(2,4)或(3,4)或(8,4)21.(2013•呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为.21.(0,12)或(0,-12)22.(2013•泰州)如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=43cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是.22.d>5cm或2cm≤d<3cm23.(2013•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF-FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是.23.18cm、31cm24.(2013•乐亭县一模)如图,已知直线y=x+4与两坐���轴分别交于A、B两点,⊙C 的圆心坐标为(2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是.24.8-22和8+2225.(2013•内江)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD 的中点,P是对角线BD上一点,则PM+PN的最小值= .25.526.(2013•天门)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是.26.15°或165°三、解答题27.(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.27.:(1)由图可知,如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是12(160+120)=140元,小张应得的工资总额是:140×20=2800元,此时,小李种植水果:30-20=10亩,小李应得的报酬是1500元;故答案为:140;2800;10;1500;(2)当10<n≤30时,设z=kn+b(k≠0),∵函数图象经过点(10,1500),(30,3900),∴101500 303900k bk b+=⎧⎨+=⎩,解得120300 kb=⎧⎨=⎩,所以,z=120n+300(10<n≤30);(3)当10<m≤30时,设y=km+b,∵函数图象经过点(10,160),(30,120),∴10160 30120k bk b+=⎧⎨+=⎩,解得-2180 kb=⎧⎨=⎩,∴y=-2m+180,∵m+n=30,∴n=30-m,∴①当10<m≤20时,10<n≤20,w=m(-2m+180)+120n+300,=m(-2m+180)+120(30-m)+300,=-2m2+60m+3900,②当20<m≤30时,0<n≤10,w=m(-2m+180)+150n,=m(-2m+180)+150(30-m),=-2m2+30m+4500,所以,w与m之间的函数关系式为w=-22603900(1020) -22304500(2030)m m mm m m++<≤⎧⎨++<≤⎩.28.(2013•杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=34x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.28.解:根据OC长为8可得一次函数中的n的值为8或-8.分类讨论:①n=8时,易得A(-6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(-6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x=6102-+=2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=-8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(-10,0),而A、B关于对称轴对称,∴对称轴直线x=6102-+=-2,要使y1随着x的增大而减小,且a>0,∴x<-2.29.(2013•随州)为了维护海洋权益,新组建的国家海洋局加强了海洋巡逻力度.如图,一艘海监船位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处.(1)在这段时间内,海监船与灯塔P的最近距离是多少?(结果用根号表示)(2)在这段时间内,海监船航行了多少海里?(参数数据:2≈1.414,3≈1.732,62.449.结果精确到0.1海里)29.解:(1)如图,过点P作PC⊥AB于C点,则线段PC的长度即为海监船与灯塔P的最近距离.由题意,得∠APC=90°-45°=45°,∠B=30°,AP=100海里.在Rt△APC中,∵∠ACP=90°,∠APC=45°,∴PC=AC=22AP=502海里;(2)在Rt△PCB中,∵∠BCP=90°,∠B=30°,PC=502海里,BC=3PC=506海里,∴AB=AC+BC=502+506=50(2+6)≈50(1.414+2.449)≈193.2(海里),答:轮船航行的距离AB约为193.2海里.30.(2013•湘潭)如图,C岛位于我南海A港口北偏东60方向,距A港口602海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C 岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?30.解:∵在Rt△ACD中,∠CAD=30°,∴CD=12×602=302海里,∵在Rt△BCD中,∠CBD=45°,∴BC=302×2=60海里,60÷60=1(小时).答:从B处到达C岛需要1小时.31.(2013•三明)如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.(1)判断线段AP与PD的大小关系,并说明理由;(2)连接OD,当OD与半圆C相切时,求»AP的长;(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.31.解:(1)AP=PD.理由如下:如图①,连接OP.∵OA是半圆C的直径,∴∠APO=90°,即OP⊥AD.又∵OA=OD,∴AP=PD;(2)如图①,连接PC、OD.∵OD是半圆C的切线,∴∠AOD=90°.由(1)知,AP=PD.又∵AC=OC,∴PC∥OD,∴∠ACP=∠AOD=90°,∴»AP的长=902180π⨯=π;(3)分两种情况:①当点E落在OA上(即0<x≤22时),如图②,连接OP,则∠APO=∠AED.又∵∠A=∠A,∴△APO∽△AED,∴AP AO AE AD=.∵AP=x,AO=4,AD=2x,AE=4-y,∴4 42xy x=-,∴y=-12x2+4(0<x≤22);②当点E落在线段OB上(即22<x<4)时,如图③,连接OP.同①可得,△APO∽△AED,∴AP AO AE AD=.∵AP=x,AO=4,AD=2x,AE=4+y,∴4 42xy x=+,。