江苏省无锡市滨湖区2015届中考二模数学试题及答案
- 格式:doc
- 大小:646.00 KB
- 文档页数:10
2015年江苏省无锡市中考数学试卷一、选择题1.(2分)(2015•无锡)﹣3的倒数是()A.3B.±3 C.D.﹣2.(2分)(2015•无锡)函数y=中自变量x的取值范围是()A.x>4 B.x≥4 C.x≤4 D.x≠43.(2分)(2015•无锡)今年江苏省参加高考的人数约为393000人,这个数据用科学记数法可表示为()A.393×103B.3.93×103C.3.93×105D.3.93×106A.x=1 B.x=﹣1 C.x=3 D.x=﹣3()A.6B.﹣6 C.12 D.﹣126.(2分)(2015•无锡)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.圆7.(2分)(2015•无锡)tan45°的值为()A.B.1C.D.A.180°B.360°C.1080°D.1440°9.(2分)(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.10.(2分)(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A 落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB 分别交于点E、F,则线段B′F的长为()C二、填空题11.(2分)(2015•无锡)分解因式:8﹣2x2=.12.(2分)(2015•无锡)化简得.13.(2分)(2015•无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为.14.(2分)(2015•无锡)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于cm.15.(2分)(2015•无锡)命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)17.(2分)(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.18.(2分)(2015•无锡)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.三、解答题19.(8分)(2015•无锡)计算:(1)(﹣5)0﹣()2+|﹣3|;(2)(x+1)2﹣2(x﹣2).20.(8分)(2015•无锡)(1)解不等式:2(x﹣3)﹣2≤0(2)解方程组:.21.(8分)(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.(8分)(2015•无锡)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.23.(6分)(2015•无锡)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达A.从不B.很少C.有时D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为.24.(8分)(2015•无锡)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).25.(8分)(2015•无锡)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A 产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)26.(10分)(2015•无锡)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.27.(10分)(2015•无锡)一次函数y=x的图象如图所示,它与二次函数y=ax2﹣4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.28.(10分)(2015•无锡)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.2015年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题﹣解答:解:﹣3的倒数是,2.(2分)(2015•无锡)函数y=中自变量x的取值范围是()()()y=,﹣﹣9.(2分)(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()C10.(2分)(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A 落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB 分别交于点E、F,则线段B′F的长为()C:翻折变换(折叠问题).CE=EF=ED=AE,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.AC AB∴CE=,EF=,=,,∴B′F==.二、填空题11.(2分)(2015•无锡)分解因式:8﹣2x2=2(2+x)(2﹣x).12.(2分)(2015•无锡)化简得.故答案为:.13.(2分)(2015•无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为(3,0).14.(2分)(2015•无锡)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于16cm.∴HG=EF=AC=4cm,EH=FG=BD=4cm,15.(2分)(2015•无锡)命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)17.(2分)(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.=6=,即=,AC=故答案为:18.(2分)(2015•无锡)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款838或910元.650元,求出一次购买标价1130元或1250元的商品应付款即可.×=600付款520元,实际标价为520×=650元,三、解答题19.(8分)(2015•无锡)计算:(1)(﹣5)0﹣()2+|﹣3|;(2)(x+1)2﹣2(x﹣2).20.(8分)(2015•无锡)(1)解不等式:2(x﹣3)﹣2≤0(2)解方程组:.:解一元一次不等式;解二元一次方程组.分析:(1)先去括号,再移项、合并同类项,不等式两边同乘以,即可得出不等式的解集;两边同乘以,得:x=,∴原方程组的解为:21.(8分)(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.等.22.(8分)(2015•无锡)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.考点:圆周角定理;勾股定理;扇形面积的计算.分析:(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.解答:解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.点评:本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.23.(6分)(2015•无锡)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达EA.从不B.很少C.有时D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有3200名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为42%.%%=24.(8分)(2015•无锡)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).=.第三次传球后球回到甲手里的概率是=,故答案为:.25.(8分)(2015•无锡)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A 产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)26.(10分)(2015•无锡)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.,即=1.5,即AOQ=∠∠点评:本题考查了圆的综合题:熟练掌握垂径定理、圆周角定理和平行四边形的判定与性质;理解坐标与图形性质;会利用勾股定理计算线段的长.27.(10分)(2015•无锡)一次函数y=x的图象如图所示,它与二次函数y=ax2﹣4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.考点:二次函数综合题.分析:(1)先求出对称轴为x=2,然后求出与一次函数y=x的交点,即点C的坐标;(2)①先求出点D的坐标,设A坐标为(m,m),然后根据面积为3,求出m的值,得出点A的坐标,最后根据待定系数法求出a、c的值,即可求出解析式;②过点A作AE⊥CD于E,设A坐标为(m,m),由S△ACD=10,求出m的值,然后求出点A坐标以及CD的长度,然后分两种情况:当a>0,当a<0时,分别求出点D的坐标,代入求出二次函数的解析式.解答:解:(1)∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,∴二次函数图象的对称轴为直线x=2,当x=2时,y=x=,,﹣m由S△ACD=3得:×3×(2﹣m)=3,)得:解得:a=,c=0.x﹣m过点A作AE⊥CD于E,则AE=2﹣m,CE=﹣m,=(∴CD=(2﹣m),得×(∴A(﹣2,﹣),CD=5,∴D(2,﹣),,﹣))得:,∴y=x2﹣x﹣3;由A(﹣2,﹣)、D(2,)得:,解得,∴y=﹣x2+2x+.点评:本题考查了二次根式的综合题,涉及了二次函数与一次函数的交点问题,三角形的面积公式,以及待定系数法求函数解析式等知识点,综合性较强,难度较大.28.(10分)(2015•无锡)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.考点:相似形综合题.专题:综合题.分析:(1)过P作PE⊥OA于E,利用两组对边平行的四边形为平行四边形得到OMPQ为平行四边形,利用平行四边形的对边相等,对角相等得到PM=OQ=1,∠PME=∠AOB=60°,进而求出PE与ME的长,得到CE的长,求出tan∠PCE的值,利用特殊角的三角函数值求出∠PCE的度数,得到PM于NC垂直,而PM与ON平行,即可得到CN与OB垂直;(2)﹣的值不发生变化,理由如下:设OM=x,ON=y,根据OMPQ为菱形,得到PM=PQ=OQ=x,QN=y﹣x,根据平行得到三角形NQP与三角形NOC相似,由,得到由相似得比例求出所求式子ME=,ME=,=,①﹣=,即=,,得﹣=,即﹣=.==.==,=﹣,≤.21。
初三二模数学试题参考答案一.选择题:1-5:BDCAC ,6-10:BDCDA二.填空题:11. 1,-1 ;12. 12 ;13.A. 120°;B. 2.64;14. 3324-.17.解:原式=÷=•=﹣, ……2分解方程x 2﹣4x +3=0得,(x ﹣1)(x ﹣3)=0,x 1=1,x 2=3.……3分 当x =1时,原式无意义; ……4分当x =3时,原式=﹣=﹣51.……5分18.(1)证明:∵DF ∥BE , ∴∠FDO=∠EBO ,∠DFO=∠BEO , ∵O 为AC 的中点, ∴OA=OC , 又∵AE=CF ,∴OA ﹣AE=OC ﹣CF ,即OE=OF , 在△BOE 和△DOF 中,,∴△BOE ≌△DOF (AAS );……3分(2)若OD=AC ,则四边形ABCD 是矩形,理由如下: 证明:∵△BOE ≌△DOF ,∴OB=OD ,∵OD=AC∴OA=OB=OC=OD ,即BD=AC , ∴四边形ABCD 为矩形.……6分≈0.9,sin44°=,,的图象过 y=,的图象上,=,解得y=,+22.(1)2……3分(2)树状图(或列表法)略.共有16种等可能结果,其中两张卡片都是中心对称图形的有4种 P (两张都是中心对称图形)=164=41………8分23.(1)证明:连接OB∵OB =OA ,CE =CB ,∴∠A =∠OBA ,∠CEB =∠又∵CD ⊥OA ,∴∠A +∠AED =∠A +∠CEB =90° ∴∠OBA+∠ABC =90°,∴OB ⊥BC ∴BC 是⊙O 的切线 ………3分 (2)过点C 作CG ⊥BE 于点G , ∵CE =CB ,∴EG =12BE =5 又Rt △ADE ∽Rt △CGE ,∴sin ∠ECG =sin A = 5 13∴CE =EGsin ∠ECG=13,∴CG =CE 2-EG 2=12又CD =15,CE =13,∴DE =2 由Rt △ADE ∽Rt △CGE ,得 ADCG =DEGE∴AD =DE GE·CG =245∴⊙O 的半径为2AD =485……8分24.解:(1)∵y=2x+2, ∴当x=0时,y=2, ∴B(0,2).当y=0时,x=﹣1, ∴A(﹣1,0).∵抛物线y=﹣x 2+bx+c 过点B (0,2),D (3,﹣4), ∴解得:,∴y=﹣x 2+x+2; ……4分(2)E(49,21) ……6分(3)设直线BD 的解析式为y=kx+b ,由题意,得,解得:,∴直线BD 的解析式为:y=﹣2x+2; 设P (b ,﹣b 2+b+2),H (b ,﹣2b+2).如图3,∵四边形BOHP 是平行四边形, ∴BO=PH=2.∵PH=﹣b 2+b+2+2b ﹣2=﹣b 2+3b . ∴2=﹣b 2+3b ∴b 1=1,b 2=2.当b=1时,P (1,2), 当b=2时,P (2,0)∴P 点的坐标为(1,2)或(2,0).……10分 25.解:∵AB=10cm,AC=8cm ,BC=6cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角. (1)BP=2t ,则AP=10﹣2t . ∵PQ∥BC,∴,即,解得t=,∴当t=s 时,PQ∥BC. ……3分(2)如答图1所示,过P 点作PD⊥AC 于点D . ∴PD∥BC,∴,即,解得PD=6﹣t .S=×AQ×PD=×2t×(6﹣t )=﹣t 2+6t=﹣(t ﹣)2+,∴当t=s 时,S 取得最大值,最大值为cm 2.……6分(3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分, 则有S △AQP =S △ABC ,而S △ABC =AC•BC=24,∴此时S △AQP =12.由(2)可知,S △AQP =﹣t 2+6t ,∴﹣t 2+6t=12,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.……9分 (4)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t . 如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC, ∴,即,解得:PD=6﹣t ,AD=8﹣t ,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.由(2)可知,S△AQP=﹣t2+6t∴S菱形AQPQ′=2S△AQP=2×(﹣t2+6t)=2×[﹣×()2+6×]=cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.…12分。
江苏省无锡市中考数学第二次联合测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12B .9C .4D .32.如图,路灯距地面8 m ,身高1.6 m 的小明从距离灯的底部(点O )20 m 的点A 处,沿AO 所在的直线行走14 m 到点B 时,人影长度( ) A .变长3.5 m B .变长1.5 m C .变短3.5 m D .变短1.5 m 3. 在△ABC 中,∠ABC= 40°,∠CAB= 60°,点0是内心,则∠BOC 度数是( ) A .50° B .80°C .100°D .120°4.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( ) A .3B .5C .23D .255. 实数a ,b 在数轴上的位置如图所示,则下列代数式中,无意义的是( )A a b +B a b -C b a -D 2()b a - 6.直角梯形的一腰长为l0 cm ,这条腰与底所成的角为30°,则它的另一腰长为 ( ) A .2.5 cmB .5 cmC .10 cmD .15 cm7.某校要了解八年级女生的体重以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测.就这个问题,下面说法中.正确的是( ). A .500名女生是总体 B .500名女生是个体C .500名女生是总体的一个样本D .50是样本容量8. 若a 的值使得224(2)1x x a x ++=+-成立,则a 值为( ) A . 5B .4C . 3D . 29.关于三角形的高的位置,下列判断中正确的是( )A .必在三角形内B .必在三角形外C .不在三角形内,就在三角形外D .以上都不对10.五个有理数相乘,若积为负数,则其中负有理数的个数有( ) A .1 个B .3 个C .5 个D . 以上都有可能11.直角三角形中,如果锐角α的对边y 与邻边x 满足方程|3|40x y -+-=,那么cos sin a α的值是 ( ) A .35B .45C .43D .34二、填空题12.如图所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,若可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;若可以拼成一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认为这个游戏对双方是公平的吗?若不公平,有利于谁?____________________________.13.在阳光的照射下,直立于地面的竹竿在一天中的影子长度的变化情况是 . 14.函数22y x x =+-的图象如图所示,当 y>0时,x 的取值范围是 当 y<0 时,x 的取值范围是 .15.在等腰三角形ABC 中,腰AB 的长为l2cm ,底边BC 的长为6cm ,D 为BC 边的中点,动点P 从点B 出发,以每钞 lcm 的速度沿B A C →→的方向运动,当动点P 重新回到点B 位置时,停止运动. 设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中的一部分是另一部分的 2倍. 解答题16.在如图方格纸中,△ABC 向右平移_______格后得到△A 1B 1C 1. 17.x= 时,分式)1)(3(3+--x x x 的值是0.18.已知312x y z ==,则222225x y z xy yz zx-+++= .19.福顺路交通拥堵现象十分严重.上周末,陈新同学在福顺人行天桥处对3 000名过往行人作了问卷调查,问题是:从这里横过福顺路时,你是否自觉走人行天桥?供选择的答案有:A.是;(B)否;(C)无所谓.他将得到的数据处理后,画出了扇形统计图(如图).根据这个扇形统计图,可知被调查者中自觉走人行天桥的有人.20.代数式12x-与326x+的和是 1,则x= .21.某电影院共有座位n排,已知第一排有座位m个,后一排的座位总是比前一排多 1个,则电影院中共有座位个.22.小于3 而大于-3 的整数是.三、解答题23.如图,已知 Rt△ABC 中,C= 90°,以 AC 为直径的⊙O交斜边 AB 于E,OD∥AB. 试说明:DE 是⊙O的切线.24.为测量河宽 AB,从B出发,沿河岸走 40 m到 C处打一木桩,再沿BC 继续往前走 10 m 到D处,然后转过 90°沿 DE 方向再走 5 m到 E处,看见河对岸的A处和C、E在一条直线上,且AB⊥DB(如图),求河宽.25.在四边形ABCD 中,∠A =∠B ,∠C =∠D ,且∠A ∶∠C =1∶2,求四边形ABCD 各内角的度数.26.今青少年视力水平的下降已引起全社会的关注,为了了解某中学毕业年级300名学生的视力情况,从中抽取了一部分学生的视力,进行数据整理后如下表: (1)在这个问题中总体是 ; (2)填写频数分布表中未完成的部分;(3)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少?27.计算11(318504)52+-÷32.28.如图,AB ∥CD ,∠ABE=135°,∠EDC=30°,求∠BED 的度数.分组 频数 频率 3.95~4.252 0.046 0.124.55~4.85 234.85~5.155.15~5.45 10.02 合计1.0029.如图,AD平分∠BAC,交BC于点D,∠ADB=105°,∠ACB=65°,CE是AB边上的高,求∠BAC,∠BCE的度数.AEB D C30.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米.(1)用含a的代数式表示s;(2)已知a=11,求s的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.D4.C5.C6.B7.D8.C9.D10.D11.D二、填空题 12.不公平,有利于乙13.先变短,后变长14.x<-2 或 x>1,-2<x<1.15.7或l716.417.-318.113619. 165920.7621. (1)2n n mn -+22. 2±,1±,0三、解答题 23.连结 OE,∵OD ∥AB,∴∠COD=∠OAE,∠COE=∠DOE, 又∵OA=OE,∴∠OAE=∠0EA,∴∠COD=∠EOD在△COD 和△EOD 中,CO=EO,∠COD=∠EOD,OD=OD,∴△CED ≌△EOD, ∴∠OED=∠OCD= 90°,∴DE 是⊙O 的切线.24.∵∠ACB=∠ECD,∠CDE=∠CBA=90°,∴△ABC∽△EDC.∴DE DCBA BC=,即51040BA=,∴BA=20 m答:河宽 20 m.25.60°,60°,120°,120°.26.⑴某中学毕业年级300名学生视力的全体情况;⑵频率分布表的第一列应填4.25~4.55;第二列从上到下依次为:18,50;第三列从上到下依次为:0.46,0.36;⑶108名.27.解:原式=÷=÷ 228.75°29.∠BAC=80°,∠BCE=55°.30.解:(1)s=700(a-1)+(881a+2309)=1581a+1609.(2)a=11时,s=1581a+1609=1 581×11 +1 609=19000.。
2015年无锡市中考数学试题1 .— 3的倒数是 B . ± 3 1 C . 1 1D . — 3 A . 31 2.函数 y = x — 4中自变量x 的取值范围是 A . x > 4 B . x > 4 C . x < 4 D . X M 4 、选择题 3 .今年江苏省参加高考的人数约为 393 000人,这个数据用科学记数法可表示为 3 3 56A . 393X 10B . 3.93X 10C . 3.93 X 10D . 3.93X 104 .方程2x — 1 = 3x + 2的解为 A . x = 1 B . x =— 1 C . x = 3 D . x =— 3 5.若点 A(3,- — 4)、B( — 2,m )在同一个反比例函数的图像上,则 m 的值为A . 6B . —6C . 12D . — 12A .等边三角形B .平行四边形C .矩形D .圆7 . tan 45o 的值为1A . 2B . 1C . -2D . 2&八边形的内角和为A . 180oB . 360oC . 1080oD . 1440o6.下列图形中,是轴对称图形但不是中心对称图形的是 ()()()()()()()()9.如图的正方体盒子的外表面上画有 展开图可能是3条粗黑线,将这个正方体盒子的表面展开(外表面朝上), ()g(第 9题)C .将边AC 沿CE 翻折, 使点B 落在 10.如图,Rt △ ABC 中,/ ACB = 90o , AC = 3, BC = 4, 使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折, E 、F ,则线段 CD 长线上的点 为B 处,两条折痕与斜边 AB 分别交于点 B F 的延的长 ▲) (第 10 题)D .于填空题2分解因式:8 —2x = _______2x+ 6/冃化简口得一次函数y= 2x—6的图像与x轴的交点坐标为 ________ .如图,已知矩形ABCD的对角线长为8cm, E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于________ cm.命题“全等三角形的面积相等”的逆命题是______ 命题.(填“真”或“假”)11.12.13.14.15.16.17.18.三、19.20. 等级单价(元/千克) 销售量(千克)等 5.020二等 4.540三等 4.040某种蔬菜按品质分成三个等级销售,销售情况如下表:则售出蔬菜的平均单价为_______ 元/千克.已知:如图,AD、BE分别是△ ABC的中线和角平分线,AD丄BE, AD = BE= 6,贝U AC的长等于________ .某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 __________ 元.解答题(本题满分8分)计算:(1)(—5)0—( . 3)2+ —3|;(2) (x+ 1)2—2(x—2).(本题满分8分)(1)解不等式:2(x—3) —2W 0; (2)解方程组: 2x —y= 5,.......... ①x—1 = *(2y—1)•…②21.(本题满分8分)已知:如图,AB // CD , E 是 AB 的中点,CE = DE .答题的学生在这五个选项中只能选择一项•下面是根据学生对该问题的答卷情况绘制的两幅不 完整的统计图.22. 求证:(1)Z AEC = Z BED ; (2) AC = BD .CB(本题满分8分)已知:如图, BC = 6cm , AC = 8cm ,/ ABD = 45o . (1)求 BD 的长; 部分的面积.AB 为O O 的直径,点C 、 23.(本题满分6分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有 这样一个问题: 老 师 在 课 堂 上 放 手 让 学 生 提 问 和 表 达 ( )A .从不B .很少C .有时D .常常E .总是各选项选择人数的条形统计图人数各选项选择人数分布的扇形统计图总是常常很少有时从不 3%根据以上信息,解答下列问题:(1)该区共有▲名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为▲.24. (本题满分8分)(1 )甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n (n>2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是_______ (请直接写出结果).25. (本题满分8分)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:禾呻润=产品总售价-购买原材料成本-水费)‘Xx26. (本题满分10分)已知:平面直角坐标系中,四边形OABC 的顶点分别为 0(0, 0)、A (5, 0)、B(m , 2)、C(m — 5, 2).(1) 问:是否存在这样的 m ,使得在边BC 上总存在点P ,使/ OPA = 90o?若存在,求出 m 的 取值范围;若不存在,请说明理由.(2) 当/ AOC 与/ OAB 的平分线的交点 Q 在边BC 上时,求 m 的值.3227.(本题满分10分)一次函数y = 4X 的图像如图所示,它与二次函数y = ax — 4ax + c 的图像交于A 、B 两点(其中点A 在点B 的左侧),与这个二次函数图像的对称轴交于点C .(1) 求点C 的坐标; (2)设二次函数图像的顶点为D . * y①若点D与点C关于x轴对称,且△ ACD的面积等于3,求此二次函数的关系式;②若CD = AC,且厶ACD的面积等于10,求此二次函数的关系式.‘Xx28. (本题满分10分)如图,C 为/ AOB 的边OA 上一点,0C = 6, N 为边0B 上异于点 0的一动 点,P 是线段CN 上一点,过点 P 分别作PQ // 0A 交0B 于点Q , PM // 0B 交0A 于点M . (1)若/ A0B = 60o, 0M = 4, 0Q = 1,求证:CN 丄 0B .(2) 当点N 在边0B 上运动时,四边形 0MPQ 始终保持为菱形.① 问:0M — 0N 的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.② 设菱形0MPQ 的面积为&,△ N0C 的面积为,求I 1的取值范围.S2B参考答案一、选择题(每小题 3分、,共30分)1 . D2. B3. C4. D 5. A 6. A 7. B8. C 9. D 10. B二、填空题(每小题2分、共16分)11. 2(2 + x) (2 —x)212° x—3 13 (3,0)14. 16 15.假16. 4.417.9.5~2~18. 838 或910三、解答题(本大题共10小题,共84 分)219. 解:(1)1. (2)x + 5.20. 解:(1)x W 4.21 .证:(1 )T AB // CD ,•••/ AEC =Z ECD,/ BED = Z EDC .•/ CE= DE,•/ ECD =Z EDC . AEC = Z BED .(2)v E 是AB 的中点,• AE= BE .[AE = BE,在厶AEC 和厶BED 中,/ AEC = Z BED , /.△ AEC◎△ BED . • AC = BD .EC = ED ,22. 解:(1 )T AB 为O O 的直径,•/ ACB = 90o.■/ BC = 6cm, AC= 8cm, • AB= 10cm.「. OB = 5cm.连OD OD = OB,:/ ODB = Z ABD = 45o.「./ BOD = 90o. • - BD = \'OB2+ OD2= 5;2cm.(2) S阴影903602 152-2X 5X 5 =25 n— 50cm23. 解:(1)3200; (2)图略,“有时”的人数为704; (3) 42%.24.解:(1)画树状图:第1次第2次、\第2次第1次、甲乙丙丁乙乙甲/乙丙乙丁丙丙甲丙乙/丙丁丁丁甲丁乙丁丙/共有9种等可能的结果,其中符合要求的结果有• P(第2次传球后球回到甲手里)=9=1.3种,、y=4.甲丙丁甲乙丁甲乙或:列表:3 2 y= 8x — 3 -?x.3 3 3②设 A(m , ]m)(m<2),过点 A 作 AE 丄CD 于 E ,贝U AE = 2— m , CE = " — ;m , AC = .AE 2 + CE 2 =(2 — m)2+;m ?=:(2 — m),(2)25.解:设甲车间用 x 箱原材料生产 A 产品,则乙车间用(60 — x)箱原材料生产 A 产品.由题意得 4x + 2(60 — x)< 200, 解得 x w 40.w = 30[12x + 10(60 — x)] — 80 X 60 — 5[4 x + 2(60 — x)] = 50x + 12 600, ••• 50> 0,「. w 随x 的增大而增大.•••当 x = 40时,w 取得最大值,为14 600元.答:甲车间用40箱原材料生产 A 产品,乙车间用20箱原材料生产 A 产品,可使工厂所获利 润最大,最大利润为14 600元.26 .解:(1)由题意,知:BC // OA.以OA 为直径作O D ,与直线BC 分别交于点 E 、F ,则/ OEA= / OFA=90o.作 DG 丄 EF 于 G ,连 DE ,贝U DE = OD = 2.5, DG = 2, EG = GF ,• EG = DE 2— DG 2 = 1.5, •点 E(1 , 2),点 F(4, 2).m — 5w 4, •••当 即1 w m W 9时,边BC 上总存在这样的点 P ,m > 1, 使/ OPA = 90o.(2 )T BC=5=OA , BC // OA ,•四边形 OABC 是平行四边形.当 Q 在边 BC 上时,/ OQA =180o —/ QOA — Z QAO1=180o —戸Z COA + Z OAB)=90o, •点 Q 只能是点 E 或点 F . 当Q 在F 点时,T OF 、AF 分别是Z AOC 与Z OAB 的平分 线,BC / OA ,•••/ CFO = Z FOA= Z FOC , Z BFA =Z FAO = Z FAB , • 点.••• F 点为(4 , 2),•此时 m 的值为6.5. 当Q 在E 点时,同理可求得此时m 的值为3.5.27. (1) y = ax 2 — 4ax + c = a(x — 2)2— 4a + c.・••二次函数图像的对称轴为直线 x = 2.3 3 3当 x = 2 时,y = qx = 2, • C(2 , 2).3(2)①•••点D 与点C 关于x 轴对称,• D(2 , — 2 , ) , • CD = 3.3 1设 A(m , ^m) (m<2),由 S ^ACD = 3,得,X 3 X (2 — m)= 3,解得 m = 0,二 A(0 , 0). 由 A(0 , 0)、 D(23 解得 a = g , c =0.5-CD = AC ,• • CD = 4(2 一 m).1 5 2由 S ^ACD = 10 得 X 畢2 — m)= • A(- 2,- 2), CD = 5.1 2 1…y = 8X 一 2X — 3.若a v 0,则点D 在点C 上方,• D(2,由 A(— 2, — $ D(2, I 12a + c = — 3,P 得13131a= 一 2, 解得 9c = 2y =— "x 2 + 2x +1.28. (1)过 P 作 PE 丄 OA 于 E .v PQ // OA , PM //PM = OQ = 1, / PME = / AOB = 60o,• PE = PM - sin60o=£ ME =1,2 2OB ,「.四边形 • CE =OC 一OM 一ME =2」tan/ PCE=CE 专,•••/ PCE = 30o,.・./ CPM = 90o,OMPQ 为平行四边形.又••• PM // OB ,: / CNO =Z CPM = 90 o,即 CN 丄 OB . 1 1(2)①二+ —-1的值不发生变化.理由如下:OM ON设 OM = x , ON = y .v 四边形 OMPQ 为菱形,• OQ = QP = OM = x , NQ = y — x . •/ PQ / OA , •/ NQP= / O .又•••/ QNP = / ONC , •△ NQP NOC , • Qp = NQ 1,即X = OC ON 6 x y — xy ,•6y - 6x = xy .两边都除以 6xy ,得 x -y =6 即 OM 一ON =1 ②过P 作PE 丄OA 于E ,过N 作NF 丄OA 于F , 则 S 1= OM PE , S 2 = 1OC NF , .岂=x^PE 'S2= 3NF .•/ PM // OB , •/ MCP = / O .又•••/ PCM = / NCO ,10,解得 m = — 2 或 m = 6 (舍去),二 m =— 2.若a > 0,则点D 在点C 下方, ••• D(2, -7),12a + c —4a + c =— 7.解得a = 8,c =— 3.3由 A(— 2,—刁、D(2,• PE_ CM _ 6 —x…NF_CO—~6~'.S i x(6 —x) 1 2,1•-S2="^=—i8(x—3)+ 2 -S i i •/ 0<x<6,由这个二次函数的图像可知,O v至三㊁.。
精品文档实用文档2015年无锡市中考数学试题一、选择題1. -3的倒数是A. 3B. 土3C. |D. 一;2. 函Sty=y/^4中自变暈x 的取值范围是A. x>4B. Q4C. xW4D. xH43. 今年江苏省参加高号的人数约为393 000人.这个数据用科学记数法可表示为()A. 393X 1()3 B- 393X103C. 3 93X1O 5D. 3 93X 1()64. 方程 2x-l=3x+2的解为()A. x=lB. x=-lC. x=3D. x=-35. 若点A(3, — 4)、B(-2, m)在同一个反比例函数的图像上.则m 的偵为()A. 6B. -6C. 12D. -126. 下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B,平行四边形 C,矩形D ・圆7. 0145。
的債为()A.!B. 1C.牛D.8. 八边形的内角和为()A. 180°B. 360°C. 1080°D. 1440°9. 如图的正方体众了的外表面上画冇3条粗黑线,将这个正方体盒子的表面展开(外表而朝展开图可能是(10. 如图,RtAAB 。
中・匕ACB = 90°, AC = 3, BC=4.将边AC 沿CE 翻折, 使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延 长线上的点B 处,两条折痕与斜边AB 分别交于点E 、F.则线段B*F 的长 为 (▲)3 - 4,A. $B. $C. jD. 2 二、壊空题11.分解因式,3—导=fl(第9第)C.A. B.精品文档实用文档易題斥第一时间提供Word 版中考真11答案及解析 一次函数y=2x-6的图像与x 轴的交点坐标为,如图,已知矩形ABCD 的对角絞长为8cm, E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 的周长等于 cm.16. 某种蕴菜按品质分成三个等级销碍,销传情况如卜表:则侔出蔬菜的平均単价为元/千克.17. 己知:如图,AD 、BE 分別是八同。
2015年江苏省无锡市中考数学试卷一、选择题1.(2分)(2015•无锡)﹣3的倒数是()A.3 B.±3 C.13D.-132.(2分)(2015•无锡)函数y=中自变量x的取值范围是()A.x>4 B.x≥4 C.x≤4 D.x≠43.(2分)(2015•无锡)今年江苏省参加高考的人数约为393000人,这个数据用科学记数法可表示为()A.393×103 B.3.93×103 C.3.93×105 D.3.93×1064.(2分)(2015•无锡)方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣35.(2分)(2015•无锡)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A. 6 B.﹣6 C.12 D.﹣126.(2分)(2015•无锡)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.圆7.(2分)(2015•无锡)tan45°的值为()A.B. 1 C.D.8.(2分)(2015•无锡)八边形的内角和为()A.180° B.360° C.1080° D.1440°9.(2分)(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()10.(2分)(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B (第9题)A.B.C.D.落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题11.(2分)(2015•无锡)分解因式:8﹣2x2=.12.(2分)(2015•无锡)化简2x+6x2-9得.13.(2分)(2015•无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为.14.(2分)(2015•无锡)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于cm.15.(2分)(2015•无锡)命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)16.(2分)(2015•无锡)某种蔬菜按品质分成三个等级销售,销售情况如表:等级单价(元/千克)销售量(千克)一等 5.0 20二等 4.5 40三等 4.0 40则售出蔬菜的平均单价为元/千克.17.(2分)(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.18.(2分)(2015•无锡)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.三、解答题19.(8分)(2015•无锡)计算:(1)(﹣5)0﹣()2+|﹣3|;(2)(x+1)2﹣2(x﹣2).20.(8分)(2015•无锡)(1)解不等式:2(x﹣3)﹣2≤0(2)解方程组:.21.(8分)(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.(8分)(2015•无锡)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.23.(6分)(2015•无锡)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达A.从不B.很少C.有时D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为.24.(8分)(2015•无锡)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).25.(8分)(2015•无锡)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)26.(10分)(2015•无锡)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.27.(10分)(2015•无锡)一次函数y=x的图象如图所示,它与二次函数y=ax2﹣4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.28.(10分)(2015•无锡)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB 于点Q,PM∥OB交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.2015年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题1.(2分)(2015•无锡)﹣3的倒数是()A. 3 B.±3 C.D.﹣考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是,故选D点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2分)(2015•无锡)函数y=中自变量x的取值范围是()A.x>4 B.x≥4 C.x≤4 D.x≠4考点:函数自变量的取值范围.分析:因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣4≥0,可求x的范围.解答:解:x﹣4≥0解得x≥4,故选:B.点评:此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.3.(2分)(2015•无锡)今年江苏省参加高考的人数约为393000人,这个数据用科学记数法可表示为()A.393×103 B.3.93×103 C.3.93×105 D.3.93×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:393000=3.93×105,故选C.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.4.(2分)(2015•无锡)方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3考点:解一元一次方程.分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程2x﹣1=3x+2,移项得:2x﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选D.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.5.(2分)(2015•无锡)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A. 6 B.﹣6 C.12 D.﹣12考点:反比例函数图象上点的坐标特征.分析:反比例函数的解析式为y=,把A(3,﹣4)代入求出k=﹣12,得出解析式,把B的坐标代入解析式即可.解答:解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故选A.点评:本题考查了反比例函数图象上点的坐标特征的应用,解此题的关键是求出反比例函数的解析式,难度适中.6.(2分)(2015•无锡)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.圆考点:中心对称图形;轴对称图形.分析:根据轴对称图形和中心对称图形的概念以及等边三角形、平行四边形、矩形、圆的性质解答.解答:解:A、只是轴对称图形,不是中心对称图形,符合题意;B、只是中心对称图形,不合题意;C、D既是轴对称图形又是中心对称图形,不合题意.故选A.点评:掌握好中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,两边图象折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后重合.7.(2分)(2015•无锡)tan45°的值为()A.B. 1 C.D.考点:特殊角的三角函数值.分析:根据45°角这个特殊角的三角函数值,可得tan45°=1,据此解答即可.解答:解:tan45°=1,即tan45°的值为1.故选:B.点评:此题主要考查了特殊角的三角函数值,要熟练掌握,解答此类问题的关键是牢记30°、45°、60°角的各种三角函数值.8.(2分)(2015•无锡)八边形的内角和为()A.180° B.360° C.1080° D.1440°考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°进行计算即可得解.解答:解:(8﹣2)•180°=6×180°=1080°.故选:C.点评:本题考查了多边形的内角和,熟记内角和公式是解题的关键.9.(2分)(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.考点:几何体的展开图.分析:根据正方体的表面展开图进行分析解答即可.解答:解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D点评:本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.10.(2分)(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B 落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.考点:翻折变换(折叠问题).分析:首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F 的长.解答:解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选B.点评:此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题11.(2分)(2015•无锡)分解因式:8﹣2x2=2(2+x)(2﹣x).考点:提公因式法与公式法的综合运用.分析:先提取公因式,再根据平方差公式进行分解即可.解答:解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).点评:本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.12.(2分)(2015•无锡)化简得.考点:约分.分析:首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.解答:解:==故答案为:.点评:此题主要考查了约分问题,要熟练掌握,解答此题的关键是要明确:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.13.(2分)(2015•无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为(3,0).考点:一次函数图象上点的坐标特征.分析:一次函数y=2x﹣6的图象与x轴的交点的纵坐标等于零,所以把y=0代入已知函数解析式即可求得相应的x的值.解答:解:令y=0得:2x﹣6=0,解得:x=3.则函数与x轴的交点坐标是(3,0).故答案是:(3,0).点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.14.(2分)(2015•无锡)如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于16cm.考点:中点四边形.分析:连接AC、BD,根据三角形的中位线求出HG、GF、EF、EH的长,再求出四边形EFGH的周长即可.解答:解:如图,连接C、BD,∵四边形ABCD是矩形,∴AC=BD=8cm,∵E、F、G、H分别是AB、BC、CD、DA的中点,∴HG=EF=AC=4cm,EH=FG=BD=4cm,∴四边形EFGH的周长等于4cm+4cm+4cm+4cm=16cm,故答案为:16.点评:本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.15.(2分)(2015•无锡)命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)考点:命题与定理.分析:把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,如果能就是真命题.解答:解:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.(2分)(2015•无锡)某种蔬菜按品质分成三个等级销售,销售情况如表:等级单价(元/千克)销售量(千克)一等 5.0 20二等 4.5 40三等 4.0 40则售出蔬菜的平均单价为 4.4元/千克.考点:加权平均数.分析:利用售出蔬菜的总价÷售出蔬菜的总数量=售出蔬菜的平均单价,列式解答即可.解答:解:(5×20+4.5×40+4×40)÷(20+40+40)=(100+180+160)÷100=440÷100=4.4(元/千克)答:售出蔬菜的平均单价为4.4元/千克.故答案为:4.4.点评:此题考查加权平均数的求法,利用总数÷总份数=平均数列式解决问题.17.(2分)(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.考点:三角形中位线定理;勾股定理.专题:计算题.分析:延长AD至F,使DF=AD,过点F作平行BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在直角三角形AGF中,利用勾股定理求出AG的长,利用SAS证得△BDF≌△CDA,利用全等三角形对应角相等得到∠ACD=∠BFD,证得AG∥BF,从而证得四边形EBFG是平行四边形,得到FG=BE=6,利用AAS得到三角形BOD与三角形CHD全等,利用全等三角形对应边相等得到OD=DH=3,得出AH=9,然后根据△AHC∽△AFG,对应边成比例即可求得AC.解答:解:延长AD至F,使DF=AD,过点F作FG∥BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在Rt△AFG中,AF=2AD=12,FG=BE=6,根据勾股定理得:AG==6,在△BDF和△CDA中,∴△BDF≌△CDA(SAS),∴∠ACD=∠BFD,∴AG∥BF,∴四边形EBFG是平行四边形,∴FG=BE=6,在△BOD和△CHD中,,∴△BOD≌△CHD(AAS),∴OD=DH=3,∵CH∥FG,∴△AHC∽△AFG,∴=,即=,解得:AC=,故答案为:点评:本题考查了三角形全等的判定和性质,三角形相似的判定和性质,平行四边形的判定和性质以及勾股定理的应用,作出辅助线构建直角三角形和平行四边形是解题的关键.18.(2分)(2015•无锡)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款838或910元.考点:分段函数.分析:根据题意知付款480元时,其实际标价为为480或600元,付款520元,实际标价为650元,求出一次购买标价1130元或1250元的商品应付款即可.解答:解:由题意知付款480元,实际标价为480或480×=600元,付款520元,实际标价为520×=650元,如果一次购买标价480+650=1130元的商品应付款800×0.8+(1130﹣800)×0.6=838元.如果一次购买标价600+650=1250元的商品应付款800×0.8+(1250﹣800)×0.6=910元.故答案为:838或910.点评:本小题主要考查函数模型的选择与应用,考查函数的思想.属于基础题.三、解答题19.(8分)(2015•无锡)计算:(1)(﹣5)0﹣()2+|﹣3|;(2)(x+1)2﹣2(x﹣2).考点:整式的混合运算;实数的运算;零指数幂.分析:(1)先算0指数幂、平方和绝对值,再算加减;(2)利用完全平方公式计算,再合并得出答案即可.解答:解:(1)原式=1﹣3+3=1.(2)原式=x2+2x+1﹣2x+4=x2+5.点评:此题考查整式的混合运算,掌握运算的顺序与计算的方法是解决问题的关键.20.(8分)(2015•无锡)(1)解不等式:2(x﹣3)﹣2≤0(2)解方程组:.考点:解一元一次不等式;解二元一次方程组.分析:(1)先去括号,再移项、合并同类项,不等式两边同乘以,即可得出不等式的解集;(2)先把②整理,再由减法消去x求出y,然后代入①求出x即可,解答:解:(1)去括号,得:2x﹣6﹣2≤0,移项,得:2x≤6+2,合并同类项,得:2x≤8,两边同乘以,得:x≤4;∴原不等式的解集为:x≤4.(2)由②得:2x﹣2y=1③,①﹣②得:y=4,把y=4代入①得:x=,∴原方程组的解为:点评:本题考查了不等式的解法、二元一次方程组的解法;熟练掌握不等式的解法和用加减法解方程组是解决问题的关键,21.(8分)(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.解答:证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.点评:本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.22.(8分)(2015•无锡)已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.考点:圆周角定理;勾股定理;扇形面积的计算.分析:(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.解答:解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.点评:本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.23.(6分)(2015•无锡)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达EA.从不B.很少C.有时D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有3200名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为42%.考点:条形统计图;扇形统计图.分析:(1)结合两个统计图中的“从不”的人数与所占百分比即可求出初二年级的学生参加数量;(2)用总人数分别减去“从不”、“很少”、“常常”、“总是”的人数,计算出“有时”的人数即可将条形统计图补充完整;(3)利用公式“总是”所占的百分比=%计算即可.解答:解:(1)96÷3%=3200,故答案为:3200;(2)“有时”的人数=3200﹣96﹣320﹣736﹣1344=704;如图所示:(3)“总是”所占的百分比=%=100%=42%,故答案为:42%.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)(2015•无锡)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).考点:列表法与树状图法.分析:(1)根据画树状图,可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得答案;(2)根据第一步传的结果是n,第二步传的结果是n2,第三步传的结果是总结过是n3,传给甲的结果是n(n﹣1),根据概率的意义,可得答案.解答:解:(1)画树状图:共有9种等可能的结果,其中符合要求的结果有3种,∴P(第2次传球后球回到甲手里)==.(2)第三步传的结果是总结过是n3,传给甲的结果是n(n﹣1),第三次传球后球回到甲手里的概率是=,故答案为:.点评:本题考查了树状图法计算概率,计算概率的方法有树状图法与列表法,画树状图是解题关键.25.(8分)(2015•无锡)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)考点:一次函数的应用;一元一次不等式的应用.分析:设甲车间用x箱原材料生产A产品,则乙车间用(60﹣x)箱原材料生产A产品,根据题意列出不等式,确定x的取值范围,列出w=30[12x+10(60﹣x)]﹣80×60﹣5[4x+2(60﹣x)]=50x+12 600,利用一次函数的性质,即可解答.解答:解:设甲车间用x箱原材料生产A产品,则乙车间用(60﹣x)箱原材料生产A产品.由题意得4x+2(60﹣x)≤200,解得x≤40.w=30[12x+10(60﹣x)]﹣80×60﹣5[4x+2(60﹣x)]=50x+12 600,∵50>0,∴w随x的增大而增大.∴当x=40时,w取得最大值,为14 600元.答:甲车间用40箱原材料生产A产品,乙车间用20箱原材料生产A产品,可使工厂所获利润最大,最大利润为14 600元.点评:本题考查了一次函数的应用,解决本题的关键是根据题意列出关系式,利用一次函数的性质解决问题.26.(10分)(2015•无锡)已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.考点:圆的综合题.专题:综合题.分析:(1)由四边形四个点的坐标易得OA=BC=5,BC∥OA,以OA为直径作⊙D,与直线BC分别交于点E、F,根据圆周角定理得∠OEA=∠OFA=90°,如图1,作DG⊥EF于G,连DE,则DE=OD=2.5,DG=2,根据垂径定理得EG=GF,接着利用勾股定理可计算出EG=1.5,于是得到E(1,2),F(4,2),即点P在E点和F点时,满足条件,此时,即,即1≤m≤9时,边BC上总存在这样的点P,使∠OPA=90°;(2)如图2,先判断四边形OABC是平行四边形,再利用平行线的性质和角平分线定义可得到∠AQO=90°,以OA为直径作⊙D,与直线BC分别交于点E、F,则∠OEA=∠OFA=90°,于是得到点Q只能是点E或点F,当Q在F点时,证明F 是BC的中点.而F点为(4,2),得到m的值为6.5;当Q在E点时,同理可求得m的值为3.5.解答:解:(1)存在.∵O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).∴OA=BC=5,BC∥OA,以OA为直径作⊙D,与直线BC分别交于点E、F,则∠OEA=∠OFA=90°,如图1,作DG⊥EF于G,连DE,则DE=OD=2.5,DG=2,EG=GF,∴EG==1.5,∴E(1,2),F(4,2),∴当,即1≤m≤9时,边BC上总存在这样的点P,使∠OPA=90°;(2)如图2,∵BC=OA=5,BC∥OA,∴四边形OABC是平行四边形,∴OC∥AB,∴∠AOC+∠OAB=180°,∵OQ平分∠AOC,AQ平分∠OAB,∴∠AOQ=∠AOC,∠OAQ=∠OAB,∴∠AOQ+∠OAQ=90°,∴∠AQO=90°,以OA为直径作⊙D,与直线BC分别交于点E、F,则∠OEA=∠OFA=90°,∴点Q只能是点E或点F,当Q在F点时,∵OF、AF分别是∠AOC与∠OAB的平分线,BC∥OA,∴∠CFO=∠FOA=∠FOC,∠BFA=∠FAO=∠FAB,∴CF=OC,BF=AB,而OC=AB,∴CF=BF,即F是BC的中点.而F点为(4,2),∴此时m的值为6.5,当Q在E点时,同理可求得此时m的值为3.5,综上所述,m的值为3.5或6.5.点评:本题考查了圆的综合题:熟练掌握垂径定理、圆周角定理和平行四边形的判定与性质;理解坐标与图形性质;会利用勾股定理计算线段的长.27.(10分)(2015•无锡)一次函数y=x的图象如图所示,它与二次函数y=ax2﹣4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.考点:二次函数综合题.分析:(1)先求出对称轴为x=2,然后求出与一次函数y=x的交点,即点C 的坐标;(2)①先求出点D的坐标,设A坐标为(m,m),然后根据面积为3,求出m的值,得出点A的坐标,最后根据待定系数法求出a、c的值,即可求出解析式;②过点A作AE⊥CD于E,设A坐标为(m,m),由S△ACD=10,求出m的值,然后求出点A坐标以及CD的长度,然后分两种情况:当a>0,当a<0时,分别求出点D的坐标,代入求出二次函数的解析式.解答:解:(1)∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,。
数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前江苏省无锡市2015年中考数学试卷数 学(满分:130分 考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的) 1.3-的倒数是( ) A .3B .3±C .13D .13- 2.函数y =x 的取值范围是( ) A .4x >B .4x ≥C .4x ≤D .4x ≠3.今年江苏省参加高考的人数约为393000人,这个数据用科学记数法可表示为 ( ) A .339310⨯ B .33.9310⨯ C .53.9310⨯D .63.9310⨯ 4.方程2132x x -=+的解为( ) A .1x =B .1x =-C .3x =D .3x =-5.若点(3,4)A -、(2,)B m -在同一个反比例函数的图像上,则m 的值为( ) A .6B .6-C .12D .12- 6.下列图形中,是轴对称图形但不是中心对称图形的是( ) A .等边三角形 B .平行四边形 C .矩形D .圆7.tan 45的值为( ) A .12B .1 C.2D8.八边形的内角和为( ) A .180B .360C .1080 D .14409.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )(第9题)ABCD10.如图,Rt ABC △中,90ACB ∠=,3AC =,4BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E ,F 则线段B F '的长为( )A .35B .4C .23D 二、填空题(本大题共8题,每小题2,共16不需写出解答过程) 11.分解因式:282x -= . 12.化简2269x x +-得. 13.一次函数26y x =-的图像与x 轴的交点坐标为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)14.如图,已知矩形ABCD 的对角线长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 的周长等于 cm .15.命题“全等三角形的面积相等”的逆命题是 命题.(填“真”或“假”)则售出蔬菜的平均单价为 元/千克.17.已知:如图,AD 、BE 分别是ABC △的中线和角平分线,AD BE ⊥,6AD BE ==,则AC 的长等于.18.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元.三、解答题(本大题共10,共84分,解答时文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)02(5)|3|--+-;(2)2(1)2(2)x x +--.20.(本题满分8分)(1)解不等式:2(3)20x --≤;(2)解方程组:25,11(21).2x yx y-=⎧⎪⎨-=-⎪⎩21.(本题满分8分)已知:如图,AB CD ∥,E 是AB 的中点,CE DE =. 求证:(1)AEC BED ∠=∠;(2)AC BD =.22.(本题满分8分)已知:如图,AB 为O 的直径,点C 、D 在O 上,6cm BC =,数学试卷 第5页(共32页) 数学试卷 第6页(共32页)8cm AC =,45ABD ∠=.(1)求BD 的长;(2)求图中阴影部分的面积.23.(本题满分6分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达( )A .从不B .很少C .有时D .常常E .总是各选项选择人数的条形统计图 各选项选择人数分布的扇形统计图根据以上信息,解答下列问题:(1)该区共有 名初二年级的学生参加了本次问卷调查; (2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为 .24.(本题满分8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外(2)n n ≥个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 (请直接写出结果).25.(本题满分8分)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A 产品.甲车间用每箱原材料可生产出A 产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A 产品比甲车间少2千克,但耗水量是甲车间的一半.已知A 产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w 最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)26.(本题满分10分)已知:平面直角坐标系中,四边形OABC 的顶点分别为(0,0)O 、(5,0)A 、(,2)B m 、(5,2)C m -.(1)是否存在这样的m ,使得在边BC 上总存在点P ,使90OPA ∠=?若存在,求出m 的取值范围;若不存在,请说明理由.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共32页) 数学试卷 第8页(共32页)(2)当AOC ∠与OAB ∠的平分线的交点Q 在边BC 上时,求m 的值.27.(本题满分10分)一次函数34y x =的图像如图所示,它与二次函数24y ax ax c =-+的图像交于A 、B 两点(其中点A 在点B 的左侧),与这个二次函数图像的对称轴交于点C .(1)求点C 的坐标;(2)设二次函数图像的顶点为D ;①若点D 与点C 关于x 轴对称,且ACD △的面积等于3,求此二次函数的关系式; ②若CD AC =,且ACD △的面积等于10,求此二次函数的关系式.28(本题满分10分)如图,C 为AOB ∠的边OA 上一点,6OC =,N 为边OB 上异于点O 的一动点,P 是线段CN 上一点,过点P 分别作PQ OA ∥OB 于点Q ,PM OB ∥交OA 于点M .(1)若60AOB ∠=,4OM =,1OQ =,求证:CN OB ⊥. (2)当点N 在边OB 上运动时,四边形OMPQ 始终保持为菱形.①问:11OM ON-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ 的面积为1S ,NOC △的面积为2S ,求12S S 的取值范围.5 / 16江苏省无锡市2015年中考数学试卷数学答案解析一、选择题 1.【答案】D【解析】3-的倒数是13-,故选D. 【考点】倒数的概念 2.【答案】B【解析】40x -≥,解得4x ≥. 【考点】二次根式成立的条件 3.【答案】C【解析】5393000 3.9310=⨯. 【考点】科学记数法 4.【答案】D【解析】方程2132x x =+-,移项得:2321x x =+-,合并得:=3x -,解得:3x =-. 【考点】一元一次方程 5.【答案】A【解析】设反比例函数的解析式为(0)ky k x=≠, 把(3,4)A -代入得:12k =-, 即12y x=-, 把(2,)B m 代入得:1262m =-=-. 【考点】反比例函数 6.【答案】A【解析】A 只是轴对称图形,不是中心对称图形,符合题意;B 只是中心对称图形,不合题意;C ,D 既是轴对称图形又是中心对称图形,不合题意.故选A. 【考点】轴对称图形 7.【答案】B【解析】tan451︒=,即tan45︒的值为1.故选B. 【考点】特殊角的三角函数值 8.【答案】C数学试卷 第11页(共32页)数学试卷 第12页(共32页)【解析】(82)180********-︒=⨯︒=︒. 【考点】多边形内角和 9.【答案】D【解析】根据正方体的表面展开图,两条黑线在一列,故A 错误,且两条相邻成直角,故B 错误,中间相隔一个正方形,故C 错误,只有D 选项符合条件.【考点】正方形展开图 10.【答案】B【解析】根据折叠的性质可知3CD AC ==,4B C BC '==,ACE DCE ∠=∠,BCF B CF ∠=∠',CE AB ⊥, ∴431B D '==-,DCE B CF ACE BCF ∠+∠'=∠+∠, ∵90ACB ∠=︒,∴45ECF ∠=︒,∴△ECF 是等腰直角三角形,∴EF CE =,45EFC ∠=︒,∴135BFC B FC ∠=∠'=︒,∴90B FD ∠'=︒,∵1122ABC AC A S BC B CE ==△,∴AC BC AB CE =, ∵根据勾股定理求得5AB =,=125CE =,∴125EF = 95ED AE ==,∴35DF EF ED =-=,∴4'5B F .二、填空题11.【答案】2(2)(2)x x +-【解析】原式=22(4)x -=2(2)(2)x x +-. 【考点】分解因式12.【答案】23x - 【解析】2262(3)2=9(3)(3)3x x x x x x ++=-+--.【考点】分式的化简 13.【答案】(3,0)【解析】令0y =得:260x =-,解得:3x =. 则函数与x 轴的交点坐标是(3,0). 【考点】函数图像与坐标轴的交点 14.【答案】16cm7 / 16【解析】如图,连接AC 、BD ,∵四边形ABCD 是矩形, ∴8cm AC BD ==,∵E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点, ∴14cm 2HG EF AC ===,14cm 2EH FG BD ===, ∴四边形EFGH 的周长等于4cm 4cm 4cm 4cm 16cm +++=. 【考点】三角形中位线的性质和矩形对角线的性质 15.【答案】假【解析】“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题. 【考点】命题 16.【答案】4.4【解析】(520 4.540440)(204040)(100180160)100440100 4.4⨯+⨯+⨯++=++÷=÷=÷(元/千克). 【考点】加权平均数 17.【解析】延长AD 至F ,使DF AD =,过点F 作FG BE ∥与AC 延长线交于点G ,过点C 作CH BE ∥,交AF 于点H ,连接BF ,如图所示,在Rt △AFG 中,212AF AD ==,6FG BE ==,根据勾股定理得:AG = 在△CDA 和△BDF 中, AD DF ADC FDB CD BD =⎧⎪∠=∠⎨⎪=⎩∴CDA BDF SAS △≌△(),数学试卷 第15页(共32页)数学试卷 第16页(共32页)∴ACD DBF ∠=∠, ∴AG BF ∥,∴四边形EBFG 是平行四边形, ∴6FG BE ==, 在△BOD 和△CHD 中, 90BOD DHC ODB HDCBD CD ∠=∠=⎧⎪∠=∠⎨⎪=⎩︒, ∴BOD CHD AAS △≌△(),∴3OD DH ==, ∵CH FG ∥,∴AHC AFG △∽△, ∴AC AHAG AF =912=,解得:AC =。