光催化水氧化
- 格式:pptx
- 大小:2.93 MB
- 文档页数:20
光催化氧化技术在水处理领域的应用及存在的问题摘要:本文主要介绍光催化氧化反应机理、及其在处理染料废水、农药废水、含油废水、造纸废水、含表面活性剂废水等方面的应用, 并对其目前存在的问题进行了简单的阐述。
关键词:光催化氧化氧化技术1前言随着科技的高速发展和人类文明的进步,各种环境污染越来越严重,其中水污染尤为引起全球范围内的广泛重视。
目前许多国家的地表水和地下水均受到不同程度的污染,水污染物主要来自工业、农业以及生活污水。
当前水处理中常采用的方法是物化法和生化法,具有工艺成熟,易于大规模工业化应用的优点。
然而,这些方法只是将污染物从一相转移到另一相,或是将污染物分离、浓缩,并没有使污染物得到破坏而实现无害化。
这不可避免地带来废料和二次污染, 而且适用范围有限, 成本也比较高。
近年来, 有关污染物治理研究方面已逐步转向化学转化法, 即通过化学反应使污染物受到破坏而实现无害化。
因此, 开发能将各种化学污染物降解至无害化的实用技术( 尤其是污水处理和空气净化) 成为各国科研工作者的重要研究内容。
光催化氧化技术( Photocatalytic Oxidation )是一种高级氧化技术( advanced oxidation process,AOP) 。
光催化剂在光照的条件下能够产生强氧化性的自由基, 该自由基能彻底降解几乎所有的有机物,并最终生成H2O、CO2 等无机小分子,加上光催化反应还具有反应条件温和, 反应设备简单, 二次污染小,操作易于控制, 催化材料易得, 运行成本低, 可望用太阳光为反应光源等优点, 因而近年来受到广泛关注。
1972 年, Fujishima 等在《Nature 》上发表了“Electrochemical potolysis of water at asemiconductor electrode”一文, 揭开了光催化氧化技术的序幕。
1976 年, Cr aey [ 4] 等发现, 在TiO2 光催化剂存在的条件下, 多氯联苯、卤代烷烃等可发生有效的光催化降解. 这一研究成果使人们认识到半导体催化剂对有机污染物具有矿化功能, 同时也为治理环境污染提供了一种新方法, 立即成为半导体光催化研究中最为活跃的领域。
光催化氧化技术在水处理中的应用及研究进展摘要:介绍了光催化氧化的机理,就TiO2固定化制备、改性、光催化氧化在降解废水中有机污染物、无机污染物以及饮用水处理中的研究进展进行了阐述,提出了今后的发展方向。
关键词:纳米二氧化钛,光催化氧化,水处理,研究进展光催化氧化技术是一种新兴的水处理技术。
1972年,Fu- jishima和Honda[1]报道了在光电池中光辐射TiO2可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。
1976年, Carey等[2]在光催化降解水中污染物方面进行了开拓性的工作。
此后,光催化氧化技术得到迅速发展。
光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点,在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。
1TiO2光催化剂的特性及光催化氧化机理TiO2有锐钛矿型、金红石型和板钛矿型三种晶型。
同样条件下,锐钛矿型的催化活性较好。
在众多光催化剂中,TiO2是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐蚀,价廉无毒。
目前对光催化的机理研究尚不成熟,一般认为光催化氧化法是以N型半导体的能带理论为基础。
TiO2属于N型半导体,其能带是不连续的,在充满电子的低能价带(VB) 和空的高能导带(CB)之间存在一个禁带,带隙能为3.2 eV,光催化所需入射光最大波长为387.5 nm。
当λ≤387.5 nm 的光波辐射照射TiO2时,处于价带的电子被激发跃迁到导带,生成高活性电子(e-),同时在价带上产生相应的空穴(h+),从而形成具有高度活性的电子/空穴对,并在电场作用下分离,向粒子表面迁移,既可直接将吸附的有机物分子氧化,也可与吸附在TiO2表面的羟基或水分子反应生成氧化性很强的活性物质氢氧自由基·OH。
光催化氧化法简介光催化氧化法是近20年才出现的水处理技术,在足够的反应时间内通常可以将有机物完全矿化为CO2和H2O 等简单无机物,避免了二次污染,简单高效而有发展前途.所谓光催化反应,就是在光的作用下进行的化学反应.光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,然后会发生化学反应生成新的物质,或者变成引发热反应的中间化学产物。
光化学反应的活化能来源于光子的能量,在太阳能的利用中光电转化以及光化学转化一直是十分活跃的研究领域。
由于以二氧化钛粉末为催化剂的光催化氧化法存在催化剂分离回收的问题,影响了该技术在实际中的应用,因此将催化剂固定在某些载体上以避免或更容易使其分离回收的技术引起了国内外学者的广泛兴趣。
在我国工业废水中,印染废水因其有机物含量高、色度深、水质复杂、排放量大而成为难处理的工业废水之一。
印染废水中含有大量卤化物、硝基物、氨基物、苯胺、酚类及各种染料等有机物,主要来自纤维、纺织浆料和印染加工所使用的染料、化学药剂、表面活性剂和各类整理剂。
其COD浓度达数千至数万mg/L,色度也高达数千至数万倍,可生化性差,很多废水还含有高浓度无机盐:如氯化钠、硫化物等,严重污染水环境。
国内处理染料废水普遍以生物法为主,同时辅以化学法,但脱色及COD去除效果差,出水难以稳定达到国家规定的排放标准。
光催化氧化法是近年来水处理研究的热点之一,实验证明,此方法对印染废水有较好的处理效果.当进水COD Cr为1300 mg/L左右,色度为800倍时,经本法处理的废水,出水COD Cr达188 mg/L,色度为0~10倍,COD Cr 去除率达92%,脱色率几近100%.主要水质指标达到了GB8978—1996《污水综合排放标准》中染料工业的二级标准.本法可取代常规的生物法,适合中小型印染厂的废水处理。
光催化氧化法原理光降解通常是指有机物在光的作用下,逐步氧化成低分子中间产物最终生成CO2、H2O及其他的离子如NO3—、PO43—、Cl-等。
光催化氧化技术是一种环境友好型绿色水处理技术, 它能够彻底氧化降解废水中的有机污染物。
该技术是利用易于吸收光子能量的中间产物首先形成激发态,然后再诱导引发反应物分子的氧化过程.1972 年Fujishima A 和Hongda 在Nature 上发表了关于在TiO2 电极上光解水的论文,这是多相光催化氧化研究开始的标志之一。
此后人们对光催化氧化进行深入的研究,探讨其反应催化原理, 并致力于提高催化效率。
1976 年Carey等在光催化氧化降解水中污染物方面进行了开拓性的工作,显示出光催化氧化技术在环保领域的应用前景。
光催化氧化是光催化剂在特定波长光源的照射下产生催化作用,使周围的水分子及氧气激发形成极具活性的HO!自由基和!O—2 自由基。
目前采用的半导体材料主要是TiO2、ZnO、 CdS、WO3、SnO2等.不同半导体的光催化活性不同, 对具体有机物的降解效果也有明显差别。
TiO2因其具有化学稳定性高、耐腐蚀、对人体无害、价带能级较深等特点,特别是其光致空穴的氧化性极高,氧化电位可达+ 2. 53V, 还可在水中形成氧化电位比臭氧还高的HO!, 同时光生电子也有很强的还原性,可以把氧分子还原成超氧负离子,水歧化成H2O2。
所以TiO2 成为半导体光催化研究领域中最活跃的一种物质,非常适合于环境催化应用研究。
1 TiO2光催化机理纳米TiO2是N型半导体,能带和导带之间的带隙能为3.2eV,其能量相当于波长为387。
5nm的紫外光,当被该紫外光照射时,处于能带上的电子被激发到导带上,生成高活性的电子e-,在能带上产生带正电荷的空穴h+。
TiO2与水接触,水分子和被溶解的氧与产生的h+,e—作用,生成强氧化性的。
OH-,。
O2,并通过。
OH—,h+和。
O2等渐渐将有机物降解为CO2和H2O等无机物.同时,e-具有强还原性,还可将无机物高氧化态的氧化物或贵金属离子还原成低氧化态的氧化物或单质,或将低价离子氧化成高氧化态的氧化物沉淀出来,达到治理和回收的目的.3 TiO2光催化氧化在水处理中的应用3.1 废水中有机污染物的降解有机化合物废水处理常规方法有吸附法、混凝沉降法、生化法等,但这些常规的处理法目前很难达到去除难降解有机物的目的,即使降解了,也易造成二次污染。
光催化水氧化
光催化水氧化,又称光催化水处理技术,是利用光催化剂在光照下产生活性氧化剂,将有机污染物(如有机溶剂、有机物、细菌等)氧化分解成无害的物质和水的过程。
在光催化水氧化中,光催化剂通常是钛酸盐、二氧化钛,或其他金属氧化物。
当光照射到催化剂表面时,催化剂会吸收光能,产生电子-空穴对。
电子和空穴能够与溶解在水中的氧分子或
水分子发生反应,生成活性氧化剂,如羟基自由基(•OH)、
超氧根离子(O2•-)等。
这些活性氧化剂具有较强的氧化能力,可以迅速将有机污染物氧化分解成无害的物质。
光催化水氧化具有高效、无二次污染、可强化反应、适用范围广等特点。
它在水处理、空气净化、环境修复等领域有着广泛的应用前景。
然而,目前光催化水氧化技术还存在一些挑战,如光催化剂活性低、光吸收利用率低等问题,限制了其在工业实践中的应用推广。
因此,未来的研究需要集中在提高光催化剂的效率、降低成本、解决催化剂的稳定性等方面。
光催化氧化水处理技术在工业化应用中的问题探讨【摘要】光催化氧化水处理技术由于其氧化有机污染物无选择性,降解产物无害化及彻底性,正越来越受到人们的关注。
但是,目前光催化氧化水处理技术只处于实验室研究阶段。
本文综合介绍了光催化氧化技术的基本原理,从光源、光催化剂、光催化反应器等方面探讨工业化应用的问题。
【关键词】光催化氧化,工业化,光催化剂光催化氧化技术起源于20世纪70年代,Fujishima和Honda发现TiO2电极上光催化分解水的现象,引起了人们对光诱导氧化还原反应的兴趣。
光催化氧化是利用吸收光子能量的中间产物形成激发态,然后再诱导引发反应物分子的氧化过程,将有机污染物转化为H2O2、CO2、PO43-、SO42-、NO3-卤素离子等无机小分子,达到完全无机化的目的。
国内外学者对光催化氧化技术进行广泛而深入地研究。
但是,这些研究大多数处于实验室研究,工业化实际应用几乎没有。
光催化氧化技术发展到现在已有40多年历史。
为何光催化氧化技术达不到实用目的,是本文阐述和探究的中心问题,从光源、光催化剂、光催化反应器等角度,来探讨光催化氧化技术工业化应用问题。
1光催化氧化的基本原理半导体光催化氧化的基本原理是依据电子-空穴理论,半导体材料之所以能作为催化剂是由其自身的光电特性所决定的。
半导体粒子具有能带结构,一般由填满电子的低能价带(valence,VB)和空的高能导带(conduction band,CB)构成,价带和导带之间存在禁带,当半导体受到能量等于或大于禁带宽度的光照射时,其价带上得电子(e-)受激发,穿过禁带进入导带,同时在价带上产生相应的空穴(h+)。
半导体粒子由光激发产生的电子/空穴对(electron/hole pair)分离后各自向粒子表面迁移。
分离后的光生电子和空穴在迁移过程中由于存在被俘获和复合的竞争,有可能在颗粒内部或表面重新复合而失去反应活性,降低了光催化反应效率。
没有被复合的光生空穴迁移到颗粒表面后,被表面吸附的水或羟基所俘获,使它们给出电子形成具有强氧化性自由基HOˉ,而催化剂表面的吸附氧得迁移,与表面的光生电子形成O2ˉ其过程如图1所示。
光催化氧化处理废水技术研究一、引言废水是工业生产、农业灌溉、城市生活等过程中产生的污水,在未经处理情况下直接排放到环境中会对生态环境和人类健康造成严重威胁。
因此,废水处理成为了一项重要的环境保护任务。
光催化氧化技术作为一种高效的废水处理方法,近年来受到了广泛关注。
二、光催化氧化技术原理光催化氧化废水处理技术是利用特定的光催化剂,如二氧化钛(TiO2)等,借助光照下的光生电子-空穴对来催化废水有害物质的氧化降解。
在光照条件下,光催化剂能吸收光能产生电子-空穴对,其中电子具有还原性能,可以与氧气或废水中的有机物发生氧化反应,同时空穴具有氧化性能,可以与水或氢发生还原反应。
三、光催化剂选择光催化废水处理的关键在于光催化剂的选择。
常见的光催化剂有钛白粉、二氧化钛、二氧化锆、氧化铟等。
其中,二氧化钛是应用最为广泛的光催化剂,具有较高的催化活性和稳定性。
此外,光催化剂的形态也对催化效果有影响,常见的形态有纳米颗粒、纳米线、薄膜等。
四、光催化废水处理反应条件光催化废水处理是一个复杂的反应过程,其效果受到多个条件的影响。
光照强度、反应温度、溶液pH值以及光催化剂的浓度都会对反应速率和降解效果产生影响。
合理选择这些条件可以提高光催化废水处理的效果。
五、光催化氧化废水处理的应用案例1. 染料废水处理:染料废水是一种常见的工业废水,其中含有大量难以降解的有机染料。
研究表明,光催化氧化技术可以高效地降解染料废水中的有机染料,将其转化为无毒无害的物质。
2. 高浓度有机废水处理:光催化氧化技术对高浓度有机废水的处理效果也较为理想。
如石油化工行业废水中的苯酚类化合物,采用光催化氧化技术可以有效地将其降解为二氧化碳和水。
3. 重金属废水处理:光催化氧化技术不仅可以降解有机物,还可以将重金属离子转化为固态沉淀物,从而实现重金属废水的净化。
六、光催化废水处理技术的优缺点光催化废水处理技术具有以下优点:高效、无需添加外部氧化剂、对多种污染物具有降解能力、工艺简单等。