中考数学复习《圆与相似》专项综合练习含详细答案
- 格式:doc
- 大小:2.48 MB
- 文档页数:30
中考数学综合题专练∶圆与相似含答案一、相似1.如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.(1)当AP=CP时,求QP;(2)若四边形PMQN为菱形,求CQ;(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?【答案】(1)解:∵AB=10,sinA= ,∴BC=8,则AC= =6,∵PA=PC.∴∠PAC=∠PCA,∵PQ平分∠CPB,∴∠BPC=2∠BPQ=2∠A,∴∠BPQ=∠A,∴PQ∥AC,∴PQ⊥BC,又PQ平分∠CPB,∴∠PCQ=∠PBQ,∴PB=PC,∴P是AB的中点,∴PQ= AC=3(2)解:∵四边形PMQN为菱形,∴MQ∥PC,∴∠APC=90°,∴ ×AB×CP= ×AC×BC,则PC=4.8,由勾股定理得,PB=6.4,∵MQ∥PC,∴ = = = ,即 = ,解得,CQ=(3)解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,∴QM=QN,PM=PN,∴S△PMQ=S△PNQ,∵四边形PMQN与△BPQ的面积相等,∴PB=2PM,∴QM是线段PB的垂直平分线,∴∠B=∠BPQ,∴∠B=∠CPQ,∴△CPQ∽△CBP,∴ = = ,∴ = ,∴CP=4× =4× =5,∴CQ= ,∴BQ=8﹣ = ,∴BM= × = ,∴AP=AB﹣PB=AB﹣2BM=【解析】【分析】(1)当AP=CP时,由锐角三角函数可知AC=6,BC=8,因为PQ平分∠CPB,所以PQ//AC,可知PB=PC,所以点P是AB的中点,所以PQ是△ABC的中位线,PQ =3;(2)当四边形PMQN为菱形时,因为∠APC=,所以四边形PMQN为正方形,可得PC=4.8,PB=3.6,因为MQ//PC,所以,可得;(3)当QM垂直平分PB 时,四边形PMQN的面积与△BPQ的面积相等,此时△CPQ∽△CBP,对应边成比例,可得,所以,因为AP=AB-2BM,所以AP=.2.正方形ABCD的边长为6cm,点E,M分别是线段BD,AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图①,若点M与点D重合,求证:AF=MN;(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以 cm/s的速度沿BD向点D运动,运动时间为ts.①设BF=ycm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.【答案】(1)证明:∵四边形ABCD为正方形,∴AD=AB,∠DAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NDA+∠ANH=90°,∴∠NAH=∠NDA,∴△ABF≌△MAN,∴AF=MN.(2)解:①∵四边形ABCD为正方形,∴AD∥BF,∴∠ADE=∠FBE.∵∠AED=∠BEF,∴△EBF∽△EDA,∴= .∵四边形ABCD为正方形,∴AD=DC=CB=6cm,∴BD=6 cm.∵点E从点B出发,以 cm/s的速度沿BD向点D运动,运动时间为ts,∴BE= tcm,DE=(6 - t)cm,∴=,∴y= .②∵四边形ABCD为正方形,∴∠MAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NMA+∠ANH=90°,∴∠NAH=∠NMA.∴△ABF∽△MAN,∴= .∵BN=2AN,AB=6cm,∴AN=2cm.∴=,∴t=2,∴BF==3(cm).又∵BN=4cm,∴FN==5(cm).【解析】【分析】(1)根据正方形的性质得出AD=AB,∠DAN=∠FBA=90°.再根据同角的余角相等得出∠NAH=∠NDA,进而证出△ABF≌△MAN即可解答,(2)根据正方形的性质得出两角相等证出△EBF∽△EDA,得出BD的长度,利用△EBF∽△EDA得出比例式,得出y和t之间的函数解析式,据正方形的性质得出两角相等证出△ABF∽△MAN,得出比例式,进而解答.3.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3.请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值。
中考数学专题复习圆与相似的综合题附答案一、相似1.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M 的坐标;如果不存在,请说明理由.【答案】(1)解:∴代入,得解得∴抛物线对应二次函数的表达式为:(2)解:如图,设直线CD切⊙P于点E.连结PE、PA,作点.由得对称轴为直线x=1,∴∴∴为等腰直角三角形.∴∴∴∴为等腰三角形.设∴在中,∴∴整理,得解得,∴点P的坐标为或(3)解:存在点M,使得∽.如图,连结∵∴为等腰直角三角形,∴由(2)可知,∴∴分两种情况.当时,∴,解得.∴∴当时,∴,解得∴∴综上,点M的坐标为或【解析】【分析】(1)用待定系数法即可求解;(2)由(1)中的解析式易求得抛物线的对称轴为直线x=1,顶点D(1,4),点C(0,3),由题意可设点P(1,m),计算易得△DCF为等腰直角三角形,△DEP为等腰三角形,在直角三角形PED和APQ中,用勾股定理可将PE、PA用含m的代数式表示出来,根据PA=PE可列方程求解;(3)由△DCM∽△BQC所得比例式分两种情况:或,根据所得比例式即可求解。
2.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。
(1)求证:DC2=CE·AC;(2)若AE=2EC,求之值;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,∴,∴DC2=CE·AC;(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,DC= k,连接OC,OD,∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,∵AB是⊙O的直径,∴在Rt△ACB中,,∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,过C作CG⊥AB于G,设EC=k,∵∠CAB=30°,∴,又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。
中考数学总复习《相似与圆综合》专项提升练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________1.如图,在Rt ABC △中90C ∠=︒,BAC ∠的平分线交BC 于点D ,点O 在边AB 上,以O 为圆心的圆经过A ,D 两点,O 交AB 于点E ,连接DE .(1)求证:BC 是O 的切线;(2)若:8:3AC DE =,O 的半径为3,求线段BE 的长.2.如图,在ABC 中AB AC =,以AB 为直径的圆交BC 于点D ,交AC 于点E ,连接OD .(1)求证:OD AC ∥;(2)若8AE =,CE=2,求BD 的长.3.如图,已知ABC 是O 的圆内接三角形,AD 为O 的直径,DE 为O 的切线,AE 交⊙O 于点F C E =.(1)求证:AB AF =;(2)若255,4AB AD ==,求线段AE 的长. 4.如图,ABC 是O 的内接三角形,D 是圆外一点,连接,DA DAC ABC ∠∠=,连接DC 交O 于点E .是O的切线;是CD的中点,求ABC中,点∠=∠CAD是O的切线;2,AC=求O的半径.是半圆O的直径,过点O作弦为O的直径,(1)求证:AC CD=;(2)连接AC,若1EB=求AC的长.CE=,38.已知如图四边形ABCD内接于圆延长AD BC相交于点E 点F是BD的延长线上的点且DE平分⊙CDF.(1)求证:AB=AC;(2)若AC=3cm AD=2cm 求DE的长.9.如图已知⊙ABC内接于⊙O AD AE分别平分⊙BAC和⊙BAC的外角⊙BAF且分别交圆于点D F连接DE CD DE与BC相交于点G.(1)求证:DE是⊙ABC的外接圆的直径;(2)设OG=3 CD=25求⊙O的半径.10.如图⊙O是Rt⊙ABC的外接圆⊙ABC=90° 点P是圆外一点P A切⊙O于点A且P A=PB.(1)试说明:PB是⊙O的切线;(2)已知⊙O的半径为3AB=22求P A的长.11.如图⊙O是Rt⊙ABC的外接圆⊙ABC=90° 点P是圆外一点P A切⊙O于点A且P A=PB.15.如图 已知ABC 以BC 为直径 O 为圆心的半圆交AC 于点F 点E 为弧CF 的中点 连接BE 交AC 于点M AD 为ABC 的角平分线 且AD BE ⊥ 垂足为点H .()1判断直线AB 与O 的位置关系 并说明理由;()2若3AB = 4BC = 求BE 的长.16.如图 在ABC 中 O 为AC 上一点 以O 为圆心 OC 长为半径作圆与BC 相切于点C 过点A 作D BO ⊥交BO 的延长线于点D ,且AOD BAD ∠∠=.(1)求证:AB 为O 的切线;(2)若6BC = 43tan ABC ∠= ,求AD 的长.17.如图 已知圆O 是ABC 的外接圆 AB 是圆O 的直径 C 是圆上的一点D 是AB 延长线上的一点 AE CD ⊥交DC 的延长线于点E 且AC 平分EAB ∠.(1)求证:DE 是圆O 的切线.(2)若6AB = 4.8AE = 求BD 和BC 的长.18.如图在四边形ABCD 中AB=CD ⊙C=90° 以AB 为直径的圆O交AD 于点E CD=ED 连接BD 交圆O于点 F.(1)求证:BC 与圆O相切.(2)若BD=10 AB=13 求AE 的长.参考答案: 1.(1)证明见解析;(2)67.【分析】(1)连接OD 利用角平分线的定义 同圆的半径相等 等腰三角形的性质 平行线的判定与性质和圆的切线的判定定理解答即可;(2)利用相似三角形的判定与性质得到26AD AE AC AC =⋅= 利用勾股定理求得AC 的长再利用相似三角形的判定与性质 列出比例式即可得出结论.【详解】(1)证明:连接OD 如图⊙AD 平分BAC ∠⊙CAD BAD ∠=∠⊙OA OD =⊙BAD ODA ∠=∠⊙ODA CAD ∠=∠⊙AC OD ∥⊙180ODC C ∠+∠=︒⊙90C ∠=︒⊙90ODC ∠=︒⊙OD BC ⊥⊙OD 为O 的半径⊙BC 是O 的切线;(2)⊙AE 为O 的直径⊙90ADE ∠=︒⊙90C ∠=︒⊙ADE C ∠=∠⊙O 的半径为6AE =2AD AE =:AC DE =38DE AC =⊙BOD BAC ∽AOD AC BO B = 331663BE BE +=+67BE =. 由CED CBA ∽ 得到由等腰三角形的性质得到,CAD BAD BAD ∠=∠∠B 即可证明CED CBA ∽ 得到CE CD BC CA= 代入有关数据即可求出BD 的长. 【详解】(1)⊙AB 为直径 ⊙AD BC ⊥.⊙AB AC =⊙BAD CAD ∠=∠.⊙OA OD =⊙BAD ADO ∠=∠⊙CAD ADO ∠=∠.⊙OD AC ∥.(2)解:连接DE,,AD BC AB AC ⊥=⊙CD BD =⊙四边形ABDE 是圆内接四边形 ⊙180B AED ∠+∠=︒⊙180CED AED ∠+∠=︒⊙CED B ∠=∠⊙ECD ACB ∠=∠⊙CED CBA ∽⊙CECDBC CA =⊙8210,AC AE CE CD BD =+=+== ⊙2210BDBD =⊙10BD =.3.(1)见解析为O的切线为O的直径DEBF垂直平分BFAF.)解:如图2⊙AD 为O 的直径⊙90ABD .⊙ABD ADE ∠=∠⊙ABD ADE ∽△△⊙AB AD AD AE=. ⊙255,4AB AD ==⊙12516AE =. 【点睛】本题考查圆周角定理 直径所对的圆周角是直角 垂径定理 切线的性质 相似三角形的判定和性质;添加辅助线 构造相似三角形是解题的关键.4.(1)见解析(2)22CE =【分析】(1)作圆的直径AF 连接CF 由圆周角定理得到ABC AFC ∠=∠ 90ACF ∠=︒ 由条件推出90DAC CAF ∠+∠=︒ 即可证明AD 是O 的切线.(2)由圆内接四边形的性质推出DAE DCA △∽△ 得到DA DE DC DA= 代入有关数据 即可求出CE 的长. 【详解】(1)证明:作圆的直径AF 连接CF⊙,DAC ABC ABC AFC ∠∠∠∠==⊙DAC AFC ∠∠=⊙AF 是O 的直径⊙90ACF ∠=︒⊙90CAF AFC ∠+∠=︒⊙90DAC CAF ∠+∠=︒是O的切线;)解:连接AE(2)O的半径为【分析】(1)如图所示 连接OD 在Rt ACD △中 1290∠+∠=︒ 根据OB OD = 可证13∠=∠ 可得90ADO ∠=︒ 由此即可求证;(2)根据题意 在Rt ACD △中求出AD 的长 根据ADE ABD ∽可求出AB 的长 由此即可求解.【详解】(1)证明:如图所示 连接OD⊙OB OD =⊙3B ∠=∠⊙1B ∠=∠⊙13∠=∠在Rt ACD △中 1290∠+∠=︒⊙4180239()0∠=︒-∠+∠=︒⊙OD AD ⊥⊙AD 为O 的切线.(2)解:⊙223CD AE AC ===,⊙在Rt ACD △中 2222(23)24AD AC CD =+=+=⊙AD 为O 的切线 如图所示 连接DE BE 是直径⊙90BDE C ∠=∠=︒⊙∥DE AC⊙CAD ADE ∠=∠⊙CAD B ∠=∠⊙ADE B ∠=∠ 且DAE BAD ∠=∠⊙ADE ABD ∽=AD AE AB AD2•AD AE AB = 即24AE AB ==216AB =8AB =6BE AB AE =-=⊙O 的半径为【点睛】本题主要考查圆与直角三角形的综合相似三角形的判定和性质的知识是解题的关键..(1)直线AC (2)203 理由:BED ∠与BED DAB =∠BED C ∠=∠DAB C ∴∠=∠OC AD ⊥90AFO ∴∠=︒DAB ∴∠+∠C ∴∠+∠OAC ∴∠AB 是O 直径90ADB ∴∠=︒22221086BD AB AD ∴=-=-=OC AD ⊥90AFO ∴∠=︒又OAF BAD ∠=∠AFO ADB ∴∽AOC FOA ∠=∠ 90CAO AFO ∠=∠=︒CAO AFO ∴∽CAO ADB ∴∽OA AC BD AD ∴= 即568AC = 203AC ∴=. 【点睛】本题考查了直线与圆的关系 圆周角定理 垂径定理 切线的判定 相似三角形的判定和性质 熟练掌握知识点并灵活运用是解题的关键.7.(1)证明见解析(2)2【分析】(1)由圆周角定理 平行线的性质可得OC AD ⊥ 再由垂径定理即可证明;(2)由条件可以证明ACE BCA ∽可得2•AC CE BC = 于是可求AC 的长.【详解】(1)证明:⊙AB 为O 的直径⊙90ADB ∠=︒⊙DB AD ⊥⊙OC BD ∥∽⊙ACE BCA=AC BC CE AC::2•=AC CE BC()21134 AC=⨯+=2AC=.⊙AE=292 ABAD=.⊙DE=95222-=(cm).【点睛】本题综合考查了角平分线相似三角形圆内接四边形的性质是中学阶段的常规题目.9.(1)见解析(2)5【分析】(1)根据条件AD AE分别平分⊙BAC和⊙BAC的外角⊙BAF证明⊙2+⊙3=90°即可;(2)由⊙1=⊙2得出点D为弧BC的中点从而得出DE垂直平分BC连接BE设圆的半径为r然后证明⊙CDG⊙⊙EBG利用相似三角形的性质和勾股定理可求出r的值.【详解】(1)解:因为AD AE分别是⊙BAC和⊙BAF的平分线所以⊙1=⊙2=12⊙BAC⊙3=⊙EAF=12⊙BAF所以⊙2+⊙3=12(⊙BAC+⊙BAF)因为⊙BAC+⊙BAF=180°所以⊙2+⊙3=90°所以⊙EAD=90°所以DE是圆O的直径;(2)因为⊙1=⊙2 所以BD CD=又DE是⊙ABC的外接圆的直径所以DE垂直平分BC连接BE则⊙BEG=⊙DCG又⊙BGE=⊙DGC所以⊙CDG⊙⊙EBG所以DG CG BG EG=设圆的半径为r所以33r CGBG r-=+又BG=CG⊙BC=2 ⊙P A=6.点睛:本题考查了相似三角形的性质和判定全等三角形的性质和判定切线的判定勾股定理等知识点的运用主要培养学生的推理能力题目具有一定的代表性难度也适中.11.(1)证明见解析;(2)1.【分析】(1)要证PB是⊙O的切线只要连接OB求证⊙OBP=90°即可;(2)连接OP交AB于点D求半径时可以证明△APO⊙⊙DP A还可证明△P AO⊙⊙ABC在Rt△OAP中利用勾股定理.【详解】(1)证明:连接OB⊙OA=OB⊙⊙OAB=⊙OBA⊙P A=PB⊙⊙P AB=⊙PBA⊙⊙OAB+⊙P AB=⊙OBA+⊙PBA⊙⊙P AO=⊙PBO.又⊙P A是⊙O的切线⊙⊙P AO=90°⊙⊙PBO=90°⊙OB⊙PB.又⊙OB是⊙O半径⊙PB是⊙O的切线(2)连接OP交AB于点D⊙⊙ACB=⊙OPB=90° ⊙B=⊙B,⊙⊙ACB⊙⊙OPB⊙AC CB OP PB=,⊙342 r=⊙r=3 2.(2)如图当点P与点B重合时⊙O的半径最大此时点O在BC的垂直平分线上过点O作OD⊙BC于点D 则BD=12BC⊙AB是切线⊙⊙ABO=90°⊙⊙ABC+⊙OBD=⊙BOD+⊙OBD=90°⊙⊙ABC=⊙BOD,⊙sin⊙BOD= sin⊙ABC=BDOB=ACAB=35,⊙OB=10 3即半径的最大值为10 3.【点睛】本题考查了圆的切线及相似三角形的性质与判定熟练掌握相关知识是解题关键.13.(1) 圆的半径为4.5;(2) EF=32.【分析】(1)连接OD根据垂径定理得:DH=25设圆O的半径为r根据勾股定理列方程可得结论;(2)过O作OG⊙AE于G证明⊙AGO⊙⊙AHF列比例式可得AF的长从而得EF的长.【详解】(1)连接OD⊙直径AB⊙弦CD CD=4⊙DH=CH=CD=2在Rt⊙ODH中AH=5⊙AG=AE=×6=3⊙⊙⊙AF=⊙EF=AF﹣AE=﹣6=.又⊙ACD=⊙ABD ⊙⊙BAD=⊙ABD ⊙AD=BD;(2)解:⊙BD=AD BC=AF ⊙==⊙=⊙CD=DF ⊙BC=AF ⊙⊙BDC=⊙ADF ⊙⊙CDA=⊙BDF=⊙EAF由(1)可知⊙DCA=⊙DBA 且⊙EFA=⊙DBA⊙⊙DCA=⊙EFA ⊙⊙AEF⊙⊙DAC ⊙=⊙==⊙EF•DF=30 ⊙DF:FE=3:2⊙设DF=3x 则FE=2x ⊙6x2=30 解得x=⊙DE=DF+FE=5x=5.【点睛】本题主要考查了圆中的计算问题以及相似三角形的应用.BE=.15.()1直线AB与O的位置关系是相切理由见解析;()2855【分析】(1)连接CE推出AD⊙CE得出⊙ECM=⊙DAC=⊙DAB=⊙EBC根据⊙AHB=90°推出⊙DAB+⊙AB E=90°.代入推出⊙ABE+⊙EBC=90° 根据切线的判定推出即可;(2)求出AC长求出AM=AB=3 求出CM=2 证⊙ECM⊙⊙EBC得出比例式推出BE=2EC在⊙BEC中根据勾股定理即可求出BE.【详解】()1直线AB与O的位置关系是相切理由是:连接CE∵BC为直径∴90∠=BEC∵AD BE⊥AD EC∴//∠=∠∴ACE CAD∵弧EF=弧CE∠=∠∴FCE CBE∠=∠∴CAD CBE909090经过直径的外端的切线.ABC 是直角三角形在ABM 中 平分BAC ∠AM AB ==2CM =E E ∠=∠ ∴CME BCE ∽12EC MC EB CB == 2EB EC =在Rt BEC 中 由勾股定理得:855BE =. 【点睛】本题考查了切线的判定圆周角定理等知识的应用 有一定的难度. ⊙O 切BC⊙OC⊙BC ⊙ACB=90°⊙ AD⊙BD ⊙⊙D=90°⊙⊙ABD+⊙BAD =90° ⊙CBD+⊙BOC=90°⊙⊙BOC=⊙AOD ⊙AOD=⊙BAD⊙⊙BOC=⊙BAD⊙⊙ABD=⊙CBD在⊙OBC和⊙OBE中OEA OCBABD CBDOB OB∠=∠⎧⎪∠=∠⎨⎪=⎩⊙⊙OBC⊙⊙OBE⊙OE=OC ⊙OE是⊙O的半径⊙OE⊙AB ⊙AB为⊙O的切线;(2)⊙tan⊙ABC=AC4BC3=BC=6⊙AC=8 ⊙AB=226810+=⊙BE=BC=6 ⊙AE=4⊙⊙AOE=⊙ABC ⊙tan⊙AOE=AE4EO3=⊙EO=3⊙AO=5 OC=3 ⊙BO=226335+=在⊙AOD和⊙BOC中AOD BOCADO BCO∠=∠⎧⎨∠=∠⎩⊙⊙AOD⊙⊙BOC ⊙AO ADBO BC=即5AD635=⊙AD=25.【点睛】本题考查了切线的判定与性质相似三角形的判定与性质等熟练掌握相关的判定与性质定理是解题的关键.是O 的切线求其它边的长)证明:如图 连接OCAC 平分EAC ∴∠=又在圆中ACO ∴∠=EAC ∴∠=OC AE ∴∥是O 的切线.,D D ∠=∠⊙DCO DEA ∽DOCOAD AE =DB BO COAB BD AE +=+336 4.8DB BD +=+2BD =;Rt Rt EAC CAB ∽EAACAC AB =4.86ACAC =21445AC =由勾股定理得:2265 5BC AB AC=-=.【点睛】本题考查了切线的判定相似三角形的性质和勾股定理的运用.解决问题的关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.18.(1)见解析;(2)119 3【详解】分析:(1)连接BE 可证明Rt⊙BCD⊙Rt⊙BED 结合条件可证明⊙BDC=⊙ABD 可证得AB⊙CD,最后看单词结果;(2)连接EF 根据圆周角定理得出⊙AFB=90° 在Rt⊙ABF中根据勾股定理得出BF=5 然后由Rt⊙ABF⊙Rt⊙BDC ED=从而求出AE的长.详解:(1)证明:连接BE.⊙AB是直径⊙⊙AEB=90°.在Rt⊙BCD和Rt⊙BED 中⊙Rt⊙BCD⊙Rt⊙BED.⊙⊙ADB=⊙BDC.又AD=AB⊙⊙ADB=⊙ABD.⊙⊙BDC=⊙ABD.⊙AB⊙CD.⊙⊙ABC+⊙C=180°.⊙⊙ABC=180°-⊙C=180°―90°=90°.即BC⊙AB.又B在⊙O上⊙BD与⊙O相切.(2)解:连接AF.⊙AB是直径⊙⊙AFB=90° 即AF⊙BD.⊙AD=AB BC=10⊙BF=5.在Rt⊙ABF和Rt⊙BDC中⊙Rt⊙ABF⊙Rt⊙BDC.⊙=.⊙=.⊙DC=.⊙ED=.⊙AE=AD―ED=13―=.点睛:本题考查了切线的判定定理勾股定理及相似三角形的判定与性质根据题意正确的作出辅助线是解答本题的关键.。
中考数学圆与相似的综合复习含答案一、相似1.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【答案】(1)解:如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC= ,∴A(-1,),把A(-1,)代入抛物线y=ax2(a>0)中得:a= ;(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,∵CF∥BG,∴,∵AC=4BC,∴ =4,∴AF=4FG,∵A的横坐标为-4,∴B的横坐标为1,∴A(-4,16a),B(1,a),∵∠AOB=90°,∴∠AOD+∠BOE=90°,∵∠AOD+∠DAO=90°,∴∠BOE=∠DAO,∵∠ADO=∠OEB=90°,∴△ADO∽△OEB,∴,∴,∴16a2=4,a=± ,∵a>0,∴a= ;∴B(1,);(3)解:如图3,设AC=nBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),∴AD=am2n2,过B作BF⊥x轴于F,∴DE∥BF,∴△BOF∽△EOD,∴,∴,∴,DE=am2n,∴,∵OC∥AE,∴△BCO∽△BAE,∴,∴,∴CO= =am2n,∴DE=CO.【解析】【分析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。
中考数学—圆与相似的综合压轴题专题复习及答案一、相似1.如图的中点1,过等边三角形M, N,连接 MN .ABC 边AB 上一点 D 作交边AC 于点E,分别取BC, DE(1)发现:在图 1 中,________;(2)应用:如图2,将绕点 A 旋转,请求出的值;(3)拓展:如图3,和是等腰三角形,且, M , N 分别是底边 BC, DE 的中点,若,请直接写出的值.【答案】(1)(2)解:如图 2 中,连接AM、 AN,,,都是等边三角形,,,,,,,,,∽,(3)解:如图 3 中,连接AM、 AN,延长 AD 交 CE于 H,交 AC 于 O,,,,,,,,,,,,,,,∽,,,,,,≌,,,,,,,,,,【解析】【解答】解:(1)如图 1 中,作于H,连接AM,,,,时等边三角形,,,,,平分线段DE,,、 N、 M 共线,,四边形 MNDH 时矩形,,,故答案为:;【分析】( 1)作DH ⊥ BC 于 H,连接AM.证四边形MNDH 时矩形,所以MN=DH,则MN : BD=DH:BD=sin60 ,°即可求解;(2)利用△ ABC ,△ ADE 都是等边三角形可得AM : AB=AN: AD,易得∠BAD = ∠MAN ,从而得△ BAD ∽ △ MAN,则 NM: BD=AM:AB=sin60 ,°从而求解;(3)连接 AM、 AN,延长 AD 交 CE 于 H,交 AC 于 O.先证明△BAD∽△ MAN可得NM : BD=AM:AB=sin∠ ABC;再证明△ BAD ≌ △ CAE,则∠ ABD = ∠ ACE ,进而可得∠ABC = 45 ,可求出°答案 .2.如图, Rt△ AOB 在平面直角坐标系中,已知:B(0,),点OA=3,∠BAD=30°,将△ AOB 沿 AB 翻折,点O 到点 C 的位置,连接A 在 x 轴的正半轴上,CB 并延长交 x 轴于点D.(1)求点 D 的坐标;(2)动点 P 从点 D 出发,以每秒 2 个单位的速度沿 x 轴的正方向运动,当△ PAB为直角三角形时,求 t 的值;(3)在( 2)的条件下,当△ PAB为以∠ PBA为直角的直角三角形时,在y 轴上是否存在一点 Q 使△ PBQ 为等腰三角形?如果存在,请直接写出Q 点的坐标;如果不存在,请说明理由 .【答案】( 1)解:∵ B(0,),∴OB=.∵OA=OB,∴OA=3,∴AC=3.∵∠ BAD=30 ,°∴∠ OAC=60 .°∵∠ ACD=90 ,°∴∠ ODB=30 ,°∴=,∴O D=3,∴D(﹣ 3,0);(2)解:∵ OA=3,OD=3,∴ A( 3,0), AD=6,∴A B=2,当∠PBA=90时°.∵P D=2t,∴O P=3﹣2t.∵△ OBA∽ △ OPB,2∴3﹣ 2t==1,解得 t=1,当∠APB=90 时°,则 P 与 O 重合,∴t=;(3)解:存在 .①当 BP 为腰的等腰三角形.∵OP=1,∴BP==2,∴Q1( 0,+2), Q3( 0.﹣2);②当 PQ2=Q2B 时,设 PQ2=Q2 B=a,在 Rt△ OPQ2中, 12+(﹣x)2=x2,解得x=,∴Q2( 0,);③当 PB=PQ 时, Q ( 0,﹣)4 4综上所述:满足条件的点Q 的坐标为Q1( 0,+2), Q2( 0 ,), Q3( 0.﹣2), Q4( 0,﹣) .【解析】【分析】( 1)根据已知得出OA、 OB 的值以及∠ DAC 的度数,进而求得∠ ADC,即可求得 D 的坐标;( 2)根据直角三角形的判定,分两种情况讨论求得;(3)求得 PB 的长,分四种情形讨论即可解决问题.3.(1)问题发现:如图① ,正方形 AEFG的两边分别在正方形ABCD的边 AB 和 AD 上,连接 CF.①写出线段CF与 DG 的数量关系;②写出直线CF与 DG 所夹锐角的度数.(2)拓展探究:如图②,将正方形AEFG绕点用图②进行说明 .(3)问题解决如图③,A 逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利△ABC 和△ ADE 都是等腰直角三角形,D 在直线 BC 上运动,连接OE,则在点∠BAC=∠ DAE=90°, AB=AC=4,O 为 AC 的中点 .若点D 的运动过程中,线段OE 的长的最小值.(直接写出结果)【答案】( 1)①CF=(2)解:如图:DG,②45①连接 AC、 AF,在正方形ABCD中,延长CF交 DG 与 H 点,∠CAD=∠BCD=45,设 AD=CD=a,易得 AC=a=AD,同理在正方形AEFG中,∠FAG=45 ,AF=AG,∠CAD=∠FAG,∠ CAD-∠ 2=∠ FAG-∠ 2,∠1=∠ 3又△CAF∽ DAG,=,CF=DG;②由△ CAF∽ DAG,∠ 4=∠ 5,∠ACD=∠ 4+∠ 6=45 ,∠5+∠ 6=45,∠5+∠ 6+∠ 7=135 ,在△ CHD中,∠CHD=180 -135 =45,(1)中的结论仍然成立(3) OE 的最小值为.【解析】【解答】( 3)如图:由∠ BAC=∠ DAE=90 ,可得∠ BAD=∠ CAE,又AB=AC,AD=AE, 可得△ BAD≌ △ CAE,∠A CE=∠ ABC=45 ,又∠ ACB=45 ,∠ BCE=90 ,即CE⊥ BC,根据点到直线的距离垂线段最短,OE⊥ CE时, OE 最短,此时OE=CE,△ OEC为等腰直角三角形,OC=AC=2,由等腰直角三角形性质易得,OE=,OE 的最小值为.【分析】( 1 )①易得CF=DG;②45;(2)连接AC、 AF,在正方形ABCD 中,可得△CAF∽ DAG,=,CF=DG,在△ CHD 中,∠ CHD=180 -135 =45,(1)中的结论是否仍然成立;(3) OE⊥ CE 时, OE 最短,此时OE=CE,△ OEC 为等腰直角三角形, OC=AC=2,可得 OE 的值 .4.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△ CFE中, CF=6,CE=12,∠ FCE=45°,以点 C 为圆心,以任意长为半径作AD,再分别以点 A 和点 D 为圆心,大于AD 长为半径做弧,交于点 B,AB∥ CD.(1)求证:四边形 ACDB为△ CFE的亲密菱形;(2)求四边形 ACDB的面积 .【答案】( 1)证明:由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC 是∠ FCE 的角平分线 ,∴∠ ACB=∠ DCB,又∵ AB∥ CD,∴∠ ABC=∠ DCB,∴∠ ACB=∠ ABC,∴AC=AB,又∵ AC=CD,AB=DB,∴AC=CD=DB=BA,四边形 ACDB是菱形,又∵∠ ACD与△ FCE中的∠ FCE重合,它的对角∠ABD顶点在EF上,∴四边形 ACDB为△ FEC的亲密菱形 .(2)解:设菱形 ACDB的边长为 x,∵ CF=6,CE=12,∴FA=6-x,又∵ AB∥ CE,∴△ FAB∽ △ FCE,∴,即,解得: x=4,过点 A 作 AH⊥ CD于点 H,在Rt△ ACH中,∠ ACH=45°,∴s in∠ ACH= ,∴AH=4 ×=2,∴四边形 ACDB的面积为:.【解析】【分析】( 1)依题可得: AC=CD,AB=DB,BC是∠ FCE 的角平分线 ,根据角平分线的定义和平行线的性质得∠ ACB=∠ ABC,根据等角对等边得 AC=AB,从而得 AC=CD=DB=BA,根据四边相等得四边形是菱形即可得四边形ACDB是菱形;再根据题中的新定义即可得证. (2)设菱形ACDB 的边长为x,根据已知可得CF=6,CE=12,FA=6-,x根据相似三角形的判定和性质可得,解得: x=4,过点 A 作 AH⊥CD 于点 H,在 Rt△ ACH 中,根据锐角三角形函数正弦的定义即可求得AH ,再由四边形的面积公式即可得答案.5.如果三角形的两个内角α与β满足2α +β =90,那°么我们称这样的三角形为“准互余三角形”.(1)若△ ABC 是“准互余三角形”,∠ C> 90°,∠ A=60°,则∠B=________°;(2)如图①,在 Rt△ ABC中,∠ ACB=90°, AC=4, BC=5.若 AD 是∠BAC 的平分线,不难证明△ ABD 是“准互余三角形”试.问在边 BC上是否存在点 E(异于点 D),使得△ ABE 也是“准互余三角形”?若存在,请求出 BE的长;若不存在,请说明理由 .(3)如图②,在四边形 ABCD 中, AB=7, CD=12, BD⊥ CD,∠ ABD=2∠BCD,且△ABC 是“准互余三角形”,求对角线AC 的长 .【答案】( 1) 15(2)解:如图①中,在Rt△ ABC中,∵ ∠ B+∠ BAC=90°,∠ BAC=2∠ BAD,∴∠ B+2∠BAD=90 ,°∴△ ABD 是“准互余三角形”,∵△ ABE 也是“准互余三角形”,∴只有 2∠ B+∠ BAE=90 ,°∵∠ B+∠BAE+∠ EAC=90 ,°∴∠ CAE=∠ B,∵∠ C=∠ C=90 ,°∴△ CAE∽ △ CBA,可得 CA2=CE?CB,∴C E= ,∴B E=5﹣= .(3)解:如图②中,将△ BCD沿 BC 翻折得到△BCF.∴CF=CD=12,∠BCF=∠ BCD,∠CBF=∠ CBD,∵∠ ABD=2∠ BCD,∠BCD+∠CBD=90 ,°∴∠ ABD+∠ DBC+∠CBF=180 ,°∴A、B、 F 共线,∴∠ A+∠ ACF=90 °∴2∠ ACB+∠ CAB≠ 90,°∴只有 2∠ BAC+∠ ACB=90 ,°∴∠ FCB=∠ FAC,∵ ∠ F=∠ F,∴△ FCB∽ △ FAC,∴CF2=FB?FA,设 FB=x,则有: x( x+7) =122,∴x=9 或﹣ 16(舍去),∴AF=7+9=16,在 Rt△ ACF中, AC=【解析】【解答】( 1)∵ △ ABC是“准互余三角形”,∠ C> 90°,∠ A=60°,∴2∠ B+∠A=90 ,°解得,∠ B=15°;【分析】( 1 )根据“准互余三角形”的定义构建方程即可解决问题;( 2 )只要证明△CAE∽△ CBA,可得 CA2=CE?CB,由此即可解决问题;( 3)如图②中,将△ BCD沿 BC翻折得到△ BCF只.要证明△ FCB∽ △ FAC,可得 CF2=FB?FA,设 FB=x,则有: x( x+7)=122 ,推出 x=9 或﹣ 16(舍弃),再利用勾股定理求出AC即可;6.如图,点O 为矩形 ABCD的对称中心,AB= 5cm, BC= 6cm,点 E.F.G分别从 A.B.C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点 E 的运动速度为1cm/s ,点 F 的运动速度为 3cm/s ,点 G 的运动速度为 1.5cm/s,当点 F 到达点 C(即点 F 与点 C 重合)时,三个点随之停止运动 .在运动过程中,△ EBF 关于直线 EF 的对称图形是△ EB′设F.点 E.F.G运动的时间为 t(单位: s) .(1)当 t 等于多少s 时,四边形EBFB′为正方形;(2)若以点E、 B、 F 为顶点的三角形与以点F, C, G 为顶点的三角形相似,求t 的值;(3)是否存在实数t ,使得点B’与点 O 重合?若存在,求出t 的值;若不存在,请说明理由.【答案】( 1)解:若四边形 EBFB′为正方形,则 BE= BF, BE= 5﹣ t, BF=3t,即: 5﹣ t = 3t,解得 t= 1.25;故答案为: 1.25(2)解:分两种情况,讨论如下:①若△ EBF∽ △ FCG,则有,即,解得: t= 1.4;②若△ EBF∽ △ GCF,则有,即,解得: t=﹣ 7﹣(不合题意,舍去)或∴当 t= 1.4s 或 t =(﹣ 7+)s时,以点点的三角形相似. t =﹣ 7+.E、 B、F 为顶点的三角形与以点F, C, G 为顶(3)解:假设存在实数t,使得点B′与点 O 重合 .如图,过点O 作 OM⊥ BC于点 M,则在 Rt△ OFM 中, OF= BF= 3t ,FM=BC﹣ BF= 3﹣ 3t, OM = 2.5,由勾股定理得: OM 2+FM 2= OF2,即: 2.52+( 3﹣ 3t)2=( 3t )2解得: t=;过点 O 作 ON⊥AB 于点 N,则在Rt△ OEN 中, OE=BE=5 ﹣t , EN= BE﹣ BN=5﹣ t ﹣2.5=2.5﹣t ,ON= 3,由勾股定理得:ON2+EN2= OE2,即: 32+( 2.5﹣ t)2=( 5﹣ t )2解得: t=.∵≠,∴不存在实数t ,使得点B′与点 O 重合【解析】【分析】( 1 )利用正方形的性质,得到BE= BF,列一元一次方程求解即可;( 2)△ EBF 与△ FCG 相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题 .假设存在,则可以分别求出在不同条件下的t 值,它们互相矛盾,所以不存在7.如图,在 Rt△ ABC中,∠ ACB= 90°,AC= 6cm, BC=8cm.动点 M 从点 B 出发,在 BA 边上以每秒 3cm 的速度向定点 A 运动,同时动点 N 从点 C 出发,在 CB 边上以每秒 2cm 的速度向点 B 运动,运动时间为t 秒,连接MN.(1)若△ BMN 与△ABC 相似,求t 的值;(2)连接 AN, CM,若 AN⊥ CM,求 t 的值.【答案】(1)解:∵∠ ACB= 90°, AC= 6cm, BC= 8cm,∴ BA==10(cm).由题意得BM=3tcm ,CN= 2tcm,∴ BN= (8- 2t)cm.当△ BMN∽ △ BAC时,,∴=,解得t=;当△ BMN∽ △ BCA时,=,∴=,解得t=.综上所述,△ BMN 与△ ABC相似时, t 的值为或(2)解:如图,过点M 作 MD ⊥CB 于点 D,∴∠ BDM=∠ACB= 90 °,又∵ ∠B=∠ B,∴ △BDM ∽ △ BCA,∴==. ∵ AC= 6cm, BC= 8cm, BA= 10cm, BM=3tcm ,∴DM =tcm, BD=tcm ,∴CD=cm.∵AN⊥CM,∠ ACB= 90 °,∴∠ CAN+∠ ACM= 90 °,∠ MCD+∠ ACM= 90 °,∴∠ CAN=∠MCD. ∵ MD ⊥CB,∴ ∠ MDC=∠ ACB= 90 °,∴ △ CAN∽ △ DCM,∴=,∴=,解得t=.【解析】【分析】( 1)在直角三角形ABC 中,由已知条件用勾股定理可求得AB 的长,再根据路程 =速度时间可将BM、 CN 用含 t 的代数式表示出来,则BN=BC-CN也可用含t 的代数式表示出来,因为△ BMN与△ABC相似,由题意可分两种情况,①当△BMN ∽△ BAC 时,由相似三角形的性质可得比例式:,将已知的线段代入计算即可求解;②当△ BMN∽ △BCA 时,由相似三角形的性质可得比例式:的线段代入计算即可求解;( 2 )过点M作MD ⊥ CB 于点 D ,根据有两个角对应相等的两个三角形相似可得,将已知△BDM ∽ △ BCA,于是可得比例式数式表示 DM 、 BD 的长,则,将已知的线段代入计算即可用含CD=CB-BD 也可用含t的代数式表示出来,同理易证t 的代△CAN∽ △ DCM,可得比例式,将已表示的线段代入计算即可求得t 的值。
中考数学《圆与相似的综合》专项训练及答案解析一、相似1.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.【答案】(1)解:设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣ x+2;把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,∴抛物线解析式为y=﹣ x2+ x+2(2)解:∵M(m,0),MN⊥x轴,∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),∴NP=﹣ m2+4m,PM=﹣ m+2,而NP=PM,∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,∴N点坐标为(,)(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),∴AB= = ,BP= = m,而NP=﹣ m2+4m,∵MN∥OB,∴∠BPN=∠ABO,当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);综上所述,点M的坐标为(,0)或(,0)【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。
中考数学专题复习圆与相似的综合题含答案解析一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
中考数学圆与相似综合题含答案一、相似1.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,求,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则 =________;(3)如图3,若 =k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)【答案】(1)解:如图1中,作PG⊥AC于G,PH⊥BC于H,∵AC=BC,∠ACB=90°,且D为AB的中点,∴CD平分∠ACB,∵PG⊥AC于G,PH⊥BC于H,∴PG=PH,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴ =1(2)(3)解:如图3中,作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K,易证△PMH∽△PGN,∴,∵,∴,∵DT∥PG,DK∥PH,∴,∴,∴【解析】【解答】解:(2)如图2中,作PG⊥AC于G,PH⊥BC于H,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴,∵△PHC∽△ACB,PG=HC,∴,故答案为:;【分析】(1)作PG⊥AC于G,PH⊥BC于H,根据已知条件可证△PHM和△PGN的两角对应相等,进而可得△PHM∽△PGN,由相似三角形的对应边成比例即可求出。
(2)作PG⊥AC于G,PH⊥BC于H,由两角对应相等,可得△PHM∽△PGN,由相似三角形的对应边成比例可得 = ,由两角对应相等,可得△PHC∽△ACB,又PG=HC,相似三角形的对应边成比例及等量代换即可求出。
中考数学压轴题专题圆与相似的经典综合题附详细答案一、相似1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(﹣1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,当x=0时,y=﹣3a,∴C(0,﹣3a)(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),∴AB=4,OC=3a,∴S△ACB= AB•OC=6,∴6a=6,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=90°时,∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴ = ,即,解得m=9,∴Q的坐标为(9,0);当∠CFG=90°时,∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴ = ,即 = ,解得m=4,∴Q的坐标为(4,0);∠GCF=90°不存在,综上所述,点Q的坐标为(4,0)或(9,0).【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。
中考数学圆与相似综合经典题及答案解析一、相似1.已知:如图一,抛物线C,直线经过A、 C 两点,且与 x.轴正半轴交于A、B 两点,与y 轴交于点(1)求抛物线的解析式;(2)若直线 DE 平行于 x 轴并从 C 点开始以每秒 1 个单位的速度沿 y 轴正方向平移,且分别交 y 轴、线段BC 于点 E, D,同时动点P 从点运动,如图;当点P 运动到原点O 时,直线B 出发,沿BO 方向以每秒 2 个单位速度DE 与点 P 都停止运动,连DP,若点P运动时间为 t秒;设,当 t 为何值时, s 有最小值,并求出最小值.(3)在的条件下,是否存在t 的值,使以P、B、 D 为顶点的三角形与相似;若存在,求 t的值;若不存在,请说明理由.【答案】(1)解:由直线:知:、;∵,∴,即.设抛物线的解析式为:,代入,得:,解得∴抛物线的解析式:(2)解:在中,,,则;∵,∴;而;∴,∴当时, s 有最小值,且最小值为1(3)解:在中,在中,,∴以 P、 B、 D 为顶点的三角形与;,,则,则相似,已知;;,则有两种情况:,解得;,解得;综上,当或时,以P、B、D为顶点的三角形与相似【解析】【分析】( 1)由直线与坐标轴相交易求得点A、 C 的坐标,用待定系数法即可求得抛物线的解析式;(2)由题意可将ED、 OP 用含 t 的代数式表示出来,并代入题目中的s 与 OP、 DE 的关系式整理可得s=(0<t<2),因为分子是定值1,所以分母越大,则分式的值越小,则当分母最大时,分式的值越小,即t=1 时, s 有最小值,且最小值为1;( 3)解直角三角形可得BC 和 CD、 BD 的值,根据题意以P、 B、 D 为顶点的三角形与△ABC相似所得的比例式有两种情况:,,将这些线段代入比例式即可求解。
2.(1)问题发现:如图 1,在等边三角形ABC中,点 M 为 BC 边上异于B、 C 的一点,以AM 为边作等边三角形 AMN ,连接 CN, NC 与 AB 的位置关系为 ________;(2)深入探究:如图 2,在等腰三角形 ABC中, BA=BC,点 M 为 BC边上异于 B、C 的一点,以 AM 为边作等腰三角形 AMN ,使∠ ABC=∠ AMN, AM=MN ,连接 CN,试探究∠ ABC 与∠ACN 的数量关系,并说明理由;(3)拓展延伸:如图 3,在正方形ADBC 中, AD=AC,点 M 为 BC 边上异于B、C 的一点,以AM 为边作正方形 AMEF,点 N 为正方形AMEF 的中点,连接CN,若【答案】(1) NC∥ ABBC=10, CN=,试求EF的长.(2)解:∠ ABC=∠ ACN,理由如下:∵=1 且∠ ABC=∠ AMN ,∴△ ABC~△ AMN∴,∵A B=BC,∴∠ BAC=(180°﹣∠ABC),∵AM=MN∴∠ MAN=(180﹣°∠ AMN),∵∠ ABC=∠ AMN ,∴∠ BAC=∠ MAN ,∴∠ BAM=∠ CAN,∴△ ABM~△ ACN,∴∠ ABC=∠ ACN(3)解:如图3,连接 AB, AN,∵四边形 ADBC, AMEF 为正方形,∴∠ ABC=∠ BAC=45 ,°∠ MAN=45 °,∴∠ BAC﹣∠MAC=∠ MAN ﹣∠ MAC 即∠ BAM=∠ CAN,∵,∴,∴△ ABM~△ ACN∴,∴=cos45 = °,∴,∴B M=2,∴CM=BC﹣ BM=8,在 Rt△ AMC,AM=,∴EF=AM=2.【解析】【解答】解:(1) NC∥ AB,理由如下:∵△ ABC与△ MN 是等边三角形,∴A B=AC, AM=AN,∠BAC=∠MAN=60 °,∴∠ BAM=∠ CAN,在△ ABM 与△ ACN 中,,∴△ ABM≌ △ ACN( SAS),∴∠ B=∠ACN=60 ,°∵∠ ANC+∠ ACN+∠ CAN=∠ ANC+60 +°∠CAN=180 ,°∴∠ ANC+∠ MAN+∠ BAM=∠ANC+60 +°∠ CAN=∠ BAN+∠ANC=180 ,°∴CN∥ AB;【分析】(1)由题意用边角边易得△ABM≌△ACN,则可得∠B=∠ACN=60°,所以∠BCN+∠B=∠BCA+∠ ACN+∠ B=180 ,°根据平行线的判定即可求解;(2)由题意易得△ABC~△AMN,可得比例式,由三角形内角和定理易得∠BAM=∠ CAN,根据相似三角形的判定可得△ ABM~△ACN,由相似三角形的性质即可求解;(3)要求EF 的值,只须求得CM 的值,然后解直角三角形AMC 即可求解。
中考数学复习《圆与相似》专项综合练习含详细答案一、相似1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.求:(1)AK为何值时,矩形EFGH是正方形?(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.(3)x为何值时,S EFGH达到最大值.【答案】(1)解:设边长为xcm,∵矩形为正方形,∴EH∥AD,EF∥BC,根据平行线的性质可以得出: = 、 = ,由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,∵BE+AE=AB,∴ + = + =1,解得x= ,∴AK= ,∴当时,矩形EFGH为正方形(2)解:设AK=x,EH=24-x,∵EHGF为矩形,∴ = ,即EF= x,∴S EFGH=y= x•(24-x)=- x2+16x(0<x<24)(3)解:y=- x2+16x配方得:y= (x-12)2+96,∴当x=12时,S EFGH有最大值96【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。
(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。
(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。
2.如图,在△ABC中,∠C=90°,AC=8,BC=6。
P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x.(1)在△ABC中,AB= ________;(2)当x=________时,矩形PMCN的周长是14;(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。
【答案】(1)10(2)5(3)解:∵PM⊥AC,PN⊥BC,∴∠AMP=∠PNB=∠C=90º.∴AC∥PN,∠A=∠NPB.∴△AMP∽△PNB∽△ABC.当P为AB中点时,可得△AMP≌△PNB此时S△AMP=S△PNB= ×4×3=6而S矩形PMCN=PM·MC=3×4=12.所以不存在x的值,能使△AMP的面积、△PNB的面积与矩形PMCN面积同时相等.【解析】【解答】(1)∵△ABC为直角三角形,且AC=8,BC=6,( 2 )∵PM⊥AC PN⊥BC∴MP∥BC,AC∥PN(垂直于同一条直线的两条直线平行),∴,∵AP=x,AB=10,BC=6,AC=8,BP=10-x,∴矩形PMCN周长=2(PM+PN)=2( x+8- x)=14,解得x=5;【分析】在△ABC中,∠C=90°,AC=8,BC=6根据勾股定理,可求出AB的长;AP=x,可以得到矩形PMCN的周长的表达式,构造方程,解方程得到x值.可以证明△AMP∽△PNB∽△ABC,只有当P为AB中点时,可得△AMP≌△PNB,此时S△AMP=S△PNB,分别求出当P为AB中点时△PAM的面积、△PBN的面积与矩形PMCN的面积比较即可.3.(1)问题发现如图1,四边形ABCD为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE,PF分别交BC,DC于点M,N,当PM⊥BC,PN⊥CD时, =________(用含a,b的代数式表示).(2)拓展探究在(1)中,固定点P,使△PEF绕点P旋转,如图2,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决如图3,四边形ABCD为正方形,AB=BC=a,点P在对角线AC上,M,N分别在BC,CD 上,PM⊥PN,当AP=nPC时,(n是正实数),直接写出四边形PMCN的面积是________(用含n,a的代数式表示)【答案】(1)(2)解:如图3,过P作PG⊥BC于G,作PH⊥CD于H,则∠PGM=∠PHN=90°,∠GPH=90°∵Rt△PEF中,∠FPE=90°∴∠GPM=∠HPN∴△PGM∽△PHN∴由PG∥AB,PH∥AD可得, ,∵AB=a,BC=b∴,即 ,∴,故答案为(3)【解析】【解答解:(1)∵四边形ABCD是矩形,∴AB⊥BC,∵PM⊥BC,∴△PMC∽△ABC∴∵四边形ABCD是矩形,∴∠BCD=90°,∵PM⊥BC,PN⊥CD,∴∠PMC=∠PNC=90°=∠BCD,∴四边形CNPM是矩形,∴CM=PN,∴,故答案为;( 3 )∵PM⊥BC,AB⊥BC∴△PMC∽△ABC∴当AP=nPC时(n是正实数),∴PM= a∴四边形PMCN的面积= ,故答案为:.【分析】(1)由题意易得△PMC∽△ABC,可得比例式,由矩形的性质可得CM=PN,则结论可得证;(2)过P作PG⊥BC于G,作PH⊥CD于H,由辅助线和已知条件易得△PGM∽△PHN,则得比例式,由(1)可得比例式,即比值不变;(3)由(2)的方法可得,则四边形PMCN的面积= .4.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的影子是什么形状?(2)当把白炽灯向上平移时,影子的大小会怎样变化?(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?【答案】(1)解:球在地面上的影子的形状是圆.(2)解:当把白炽灯向上平移时,影子会变小.(3)解:由已知可作轴截面,如图所示:依题可得:OE=1 m,AE=0.2 m,OF=3 m,AB⊥OF于H,在Rt△OAE中,∴OA= = = (m),∵∠AOH=∠EOA,∠AHO=∠EAO=90°,∴△OAH∽△OEA,∴,∴OH= == (m),又∵∠OAE=∠AHE=90°,∠AEO=∠HEA,∴△OAE∽△AHE,∴ = ,∴AH= ==2625 (m).依题可得:△AHO∽△CFO,∴ AHCF=OHOF ,∴CF= AH⋅OFOH = 2625×32425=64 (m),∴S影子=π·CF2=π· (64)2 = 38 π=0.375π(m2).答:球在地面上影子的面积是0.375π m2.【解析】【分析】(1)球在灯光的正下方,根据中心投影的特点可得影子是圆.(2)根据中心投影的特点:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;所以白炽灯向上移时,阴影会逐渐变小.(3)作轴截面(如图)由相似三角形的判定得三组三角形相似,再根据相似三角形的性质对应边成比例,可求得阴影的半径,再根据面积公式即可求出面积.5.如图1,过等边三角形ABC边AB上一点D作交边AC于点E,分别取BC,DE 的中点M,N,连接MN.(1)发现:在图1中, ________;(2)应用:如图2,将绕点A旋转,请求出的值;(3)拓展:如图3,和是等腰三角形,且,M,N分别是底边BC,DE的中点,若,请直接写出的值.【答案】(1)(2)解:如图2中,连接AM、AN,,都是等边三角形,,,,,,,,,,∽,(3)解:如图3中,连接AM、AN,延长AD交CE于H,交AC于O,,,,,,,,,,,,,,,∽,,,,,,≌,,,,,,,,,,【解析】【解答】解:(1)如图1中,作于H,连接AM,,,,时等边三角形,,,,,平分线段DE,,、N、M共线,,四边形MNDH时矩形,,,故答案为:;【分析】(1)作DH ⊥BC 于H,连接AM.证四边形MNDH时矩形,所以MN=DH,则MN:BD=DH:BD=sin60°,即可求解;(2)利用△ABC ,△ADE 都是等边三角形可得AM:AB=AN:AD,易得∠BAD = ∠MAN ,从而得△ BAD ∽△ MAN,则NM:BD=AM:AB=sin60°,从而求解;(3)连接AM、AN,延长AD交CE于H,交AC于O.先证明△BAD ∽△MAN可得NM:BD=AM:AB=sin∠ABC;再证明△ BAD ≌△ CAE,则∠ ABD = ∠ ACE ,进而可得∠ ABC = 45°,可求出答案.6.如图,∠C=90°,点A、B在∠C的两边上,CA=30,CB=20,连结AB.点P从点B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点P与B、C两点不重合时,作PD⊥BC交AB于D,作DE⊥AC于E.F为射线CB上一点,且∠CEF=∠ABC.设点P的运动时间为x(秒).(1)用含有x的代数式表示CE的长;(2)求点F与点B重合时x的值;(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求y与x之间的函数关系式;(4)当x为某个值时,沿PD将以D、E、F、B为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值. 【答案】(1)解:∵∠C=90°,PD⊥BC,∴DP∥AC,∴△DBP∽△ABC,四边形PDEC为矩形,CE=PD..∴ .∴CE=6x;(2)解:∵∠CEF=∠ABC,∠C为公共角,∴△CEF∽△CBA,∴ .∴ .当点F与点B重合时,CF=CB,9x=20.解得 .(3)解:当点F与点P重合时,BP+CF=CB,4x+9x=20,解得 .当时,=-51x2+120x.当<x≤ 时,= (20-4x)2.(或)(4)解:①如图③,当PD=PF时,6x=20-13x,解得:x= ;△B′DE为拼成的三角形;②如图④当点F与点P重合时,4x+9x=20,解得:x= ;△BDC为拼成的三角形;③如图⑤,当DE=PB,20-4x=4x,解得:x= ,△DPF为拼成的三角形.【解析】【分析】(1)首先证明△ABC∽△DBP∽△FEC,即可得出比例式进而得出表示CE的长;(2)根据当点F与点B重合时,FC=BC,即可得出答案;(3)首先证明Rt△DOE∽Rt△CEF,得出,即可得出y与x之间的函数关系式;(4)根据三角形边长相等得出答案.7.如图,抛物线与坐标轴交点分别为,,,作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;(3)条件同,若与相似,求点P的坐标.【答案】(1)解:把,,代入得:,解得:,,,抛物线的解析式为(2)解:设点P的坐标为(t,- t×2+ t+2),∵A(-1,0),B(3,0),∴AB=4,∴S=(3)解:当∽时,,即,整理得:,解得:或舍去,,,点P的坐标为;当∽,则,即,整理得,解得:或舍去,,,点P的坐标为,综上所述点P的坐标为或【解析】【分析】(1)利用待定系数法,将点A、B、C三点坐标分别代入函数解析式,建立方程组,就可求出a、b、c的值,即可解答;或设函数解析式为交点式,即y=a (x+1)(x-3),再将点C的坐标代入可解答。