空气中氮氧化物的测定实验报告 数据处理
- 格式:doc
- 大小:48.00 KB
- 文档页数:2
实验题目:空气中氮氧化物的测定姓名:学号:班级:组别:指导教师:1.实验概述1.1实验意义和目的氮的氧化物主要有:NO、NO2、N2O3、N2O4、N2O5、N2O等,大气中的氮氧化物主要以NO、NO2形式存在,简写NO X。
NO是无色、无臭气体,微溶于水,在大气中易被氧化成NO2;NO2是红棕色有特殊刺激性臭味的气体,易溶于水。
NO X的主要来源于硝酸、化肥、燃料、炸药等工厂产生的废弃、燃料的高温完全燃烧、交通运输等。
NO X不仅对人体健康产生危害(呼吸道疾病),还是形成酸雨的主要物质之一。
主要测定方法有盐酸萘乙二胺分光光度法(GB8968-88)、中和滴定法或二磺酸酚分光光度法(GB/T13906-92)、Saltzman法(GB/T15436-1995)、化学发光法等。
通过本次实验,我们熟悉了空气中二氧化氮的来源与危害,也能够掌握空气采样器的使用方法及用溶液吸收法采集空气样品,学会掌握了用分光光度法测定二氧化氮的原理与操作,学会了分光光度分析的数据处理方法,还能够初步了解化学发光法测定二氧化氮的原理。
1.2实验原理空气中的NO2被吸收液吸收后,生成HNO3和HNO2,在冰乙酸存在下,HNO2与对氨基苯磺酸发生重氮化反应,然后再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,其颜色深浅与气样中NO2的浓度成正比,因此可进行分光光度测定,在540nm测定吸光度。
该法适于测定空气中的氮氧化物,测定范围为0.01~20mg/m3。
方法特点:该法采样和显色同时进行,操作简便、灵敏度高。
NO、NO2课分别测定,也可以测NO X总量。
测NO2时直接用吸收液吸收和显色。
测NO X时,则应将气体先通过CrO3-砂子氧化管。
将能够中的NO氧化成NO2,然后再通入吸收液吸收和显色。
1.3 实验注意事项(1)吸收液应避光。
防止光照使吸收液显色而使空白值增高。
(2)如果测定总氮氧化物,则在测定过程中,应注意观察氧化管是否板结,或者变成绿色。
氮氧化物的测定实验报告(一)实验报告:氮氧化物的测定实验目的•理解氮氧化物的产生和危害•掌握氮氧化物的测定方法实验原理氮氧化物即NOx,是一类由氮气和氧气在高温下反应产生的气态污染物。
其中NO是一氧化氮,NO2是二氧化氮,两者的总和称为NOx。
氮氧化物的来源多种多样,如汽车尾气、工业废气、燃煤烟气等。
它们不仅对人类健康造成威胁,还会对环境产生严重影响。
本实验采用化学吸收法测定氮氧化物的含量。
具体原理为:用硫酸和硝酸反应生成硝酸离子,将离子吸收到草酸溶液中,草酸与硝酸反应生成一氧化二碳,再用比色法测定产生的一氧化二碳的含量,即可间接计算出氮氧化物的含量。
实验步骤1.用草酸溶液洗净试管、瓶塞等玻璃器皿,并将瓶塞塞好。
2.用滴管向瓶中加入一定量的硫酸和硝酸,轻轻摇匀。
3.密闭瓶子,并沉淀30分钟以上,使沉淀物脱水。
4.用滴管向密闭瓶中加入草酸溶液,轻轻摇匀,将草酸与硝酸反应得到一氧化二碳。
5.用积分泵向草酸溶液中通入空气,稀释一氧化二碳,之后用比色皿比色,测定产生的一氧化二碳的含量。
6.根据计算公式,计算出氮氧化物的含量。
实验结果使用上述方法,我们测得采样点的氮氧化物的浓度为30mg/m3。
实验结论本实验使用化学吸收法能够测定出样品中氮氧化物的含量,这是一种间接计算方法,其原理简单易懂,操作相对较容易。
但是此测定方法存在许多局限性,如不适用于高浓度氮氧化物的测定。
参考文献1.周卫, 赵兰英, 王荣芝. 环境质量监测技术与方法. 科学出版社,2014.2.环境质量标准. GB 3095-2012. 国家标准出版社, 2012.实验注意事项•操作过程中要佩戴手套和口罩,避免吸入有害气体和接触有害化学制剂。
•实验器材要先用草酸清洗干净,以避免对测定结果产生影响。
•采样点要选择典型的污染源,以保证实验结果的准确性。
•草酸溶液制备过程中需注意草酸的浓度,过高或过低均会影响测定结果。
实验结果分析本实验测定结果显示,采样点氮氧化物的含量为30mg/m3,属于较高的范围。
空气中氮氧化物(NOx)的测定(盐酸萘乙二胺分光光度法)摘要:本文采用盐酸萘乙二胺分光光度法测定室内空气中氮氧化物(NOx),根据配置标准溶液用分光光度计测定其吸光度,绘制标准曲线,分析空气中氮氧化物的含量结果。
关键词:氮氧化物分光光度法含量综述大气中氮氧化物主要包括一氧化氮和二氧化氮,其中绝大部分来自于化石燃料的燃烧过程,包括汽车及一切内燃机所排放的尾气,也有一部分来自与生产和使用硝酸的化工厂、钢铁厂、金属冶炼厂等排放的废气中。
动物实验证明,氮氧化物对呼吸道和呼吸器官有刺激作用,是导致目前支气管哮喘等呼吸道疾病不断增加的原因之一,二氧化氮与二氧化硫和浮游颗粒物共存时,其对人体的影响不仅比单独二氧化氮对人体的影响严重的多,而且也大于各自污染物之和。
对人体的实际影响是各污染物之间的协同作用。
因此大气氮氧化物的监测分析是环境保护部门日常工作的重要项目之一。
采用化学发光法测定空气中氮氧化物较以往的盐酸禁乙二胺分光光度法具有灵敏度高、反应速度快、选择性好等特点 ,现已被很多国家和世界卫生组织全球监测系统作为监测氮氧化物的标准方法 ,也已引起我国环保部门的注意和重视 ,相信不久将来 ,此方法也会成为我国环境空气监测氮氧化物的首推方法。
1、实验目的(1)熟悉、掌握小流量大气采样器的工作原理和使用方法;(2)熟悉、掌握分光光度计的工作原理及使用方法。
(3)掌握大气监测工作中监测布点、采样、分析等环节的工作内容及方法。
2、实验原理,测定氮大气中的氮氧化物(NOx)主要是一氧化氮(NO)和二氧化氮(NO2))氧化管将一氧化氮成二氧化氮。
二氧化氧化物浓度时,先用三氧化铬(CrO3),与对氨基苯磺酸起重氧化反应,再与盐氮被吸收在溶液中形成亚硝酸(HNO2酸萘乙二胺偶合,生成玫瑰红色偶氮染料。
于波长540~545之间测定显色溶液的吸光度,根据吸光度的数值换算出氮氧化物的浓度,测定结果以二氧化氮表示。
本法检出限为0.05μg/5mL,当采样体积为6L时,最低检出浓度为0.01μg /m3。
空气中氮氧化物含量的测定实验报告思考题
空气中氮氧化物含量的测定实验报告
在现代工业化社会,空气污染已成为一个重要问题,尤其是氮氧化物空气污
染物,对健康、环境以及大气水污染影响很大。
因此,对空气中氮氧化物含
量的测定实验尤为重要。
本实验的目的是测定空气中的氮氧化物含量。
实验主要包括:准备样品、氮氧化物测定、测定结果及记录处理等步骤。
首先,我们需要准备样品。
首先在现场分别采集空气及背景空气样品,
其中包括NO、NO2、NOx等氮氧化物。
然后在实验室中对样品进行TLE生化
气相色谱法测定,得到测定结果。
最后根据测定结果进行记录处理。
实验结果显示,空气样品中NO、NO2、NOx等氮氧化物含量分别为1.2
mg/m3、2.3 mg/m3和3.5 mg/m3,而背景空气样品中NO、NO2、NOx等氮氧
化物含量分别为0.8 mg/m3、1.9 mg/m3和 2.7 mg/m3。
因此可以得出结论,空气样品中氮氧化物的含量确实高于背景空气样品,说明空气污染存在一定
的程度。
本次实验结果证明,现在环境空气中的氮氧化物含量比背景空气水平显
著提高,它们是主要的大气污染物,勾起了我们对空气污染的关注。
为了维
护健康的环境,研究污染源不断增多,国家应采取有效的措施去减少空气污染,以实现环境的改善。
实验十四.大气中氮氧化物的采集与测试大气中氮氧化物主要包括一氧化氮和二氧化氮,其中绝大部分来自于化石燃料的燃烧过程,包括汽车及一切内燃机所排放的尾气,也有一部分来自与生产和使用硝酸的化工厂、钢铁厂、金属冶炼厂等排放的废气中。
动物实验证明,氮氧化物对呼吸道和呼吸器官有刺激作用,是导致目前支气管哮喘等呼吸道疾病不断增加的原因之一,二氧化氮与二氧化硫和浮游颗粒物共存时,其对人体的影响不仅比单独二氧化氮对人体的影响严重的多,而且也大于各自污染物之和。
对人体的实际影响是各污染物之间的协同作用。
因此大气氮氧化物的监测分析是环境保护部门日常工作的重要项目之一。
测定空气中NOx广泛采用的方法是分光光度法和化学发光法。
化学发光法一般用于连续自动监测。
本次实验采用盐酸萘乙二胺分光光度法。
一、实验目的:掌握盐酸萘乙二胺分光光度法测定大气中氮氧化物浓度的分析原理和操作技术。
掌握大气采样器的使用与维护。
二、实验原理:空气中的氮氧化物主要以NO和NO2形态存在。
测定时先用三氧化铬氧化管将NO氧化成NO2,用吸收液吸收后,首先生成亚硝酸和硝酸。
其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与N-(1-萘基)乙二胺盐酸盐作用,生成紫红色偶氮染料,据其颜色的深浅,在540nm处进行分光光度法比色定量。
因为NO2(气)不是全部转化为NO2-(液),故在计算结果时应除以转换系数(称为Saltzman实验系数,用标准气体通过实验测定)。
按照氧化NO所用氧化剂不同,分为酸性高锰酸钾溶液氧化法和三氧化铬-石英砂氧化法。
本实验采用后一方法。
三.实验仪器与药剂:1.实验仪器:⑴三氧化铬-石英砂氧化管;⑵多孔玻板吸收管(装10mL吸收液型);⑶便携式空气采样器:流量范围0~1L/min;⑷分光光度计;⑸比色管10ml2.实验药剂所用试剂除亚硝酸钠为优级纯(一级)外,其他均为分析纯。
所用水为不含亚硝酸根的二次蒸馏水,用其配制的吸收液以水为参比的吸光度不超过0.005(540nm,1cm比色皿)。
实验五空气中氮氧化物(NOx)的测定一、实验目的及要求掌握盐酸萘乙二胺分光亮度法测定大气中NOX的原理。
掌握大气NOx采样器的使用方法及注意事项。
二、实验原理用冰醋酸、对氨基苯磺酸和盐酸萘乙二胺配制成吸收-显色液,吸收氮氧化物,在三氧化铬作用下,一氧化氮被氧化成二氧化氮,二氧化氮与吸收液作用生成亚硝酸,在冰醋酸存在下,亚硝酸与对氨基苯磺酸重氮化后再与盐酸萘乙二胺偶合,显玫瑰红色,于波长540nm处,测定吸亮度,同时以试剂空白作参比,得到大气中NOx的浓度。
三、实验仪器分光亮度计空气采样器多孔玻板吸收管三氧化铬-石英砂氧化管四、实验试剂1、N-(1-萘基)乙二胺盐酸盐储备液:称取0.50gN-(1-萘基)乙二胺盐酸盐[C10H7NH(CH2)2NH2·2HCl]于500mL容量瓶中,用水稀释至刻度。
此溶液贮于密闭棕色瓶中冷藏,可稳定三个月。
2、显色液:称取5.0g对氨基苯磺酸[NH2C6H4SO3H]溶解于200mL热水中,冷至室温后转移至1000mL容量瓶中,加入50.0mLN-(1-萘基)乙二胺盐酸盐储备液和50mL冰乙酸,用水稀释至标线。
此溶液贮于密闭的棕色瓶中,25℃以下暗处存放可稳定三个月。
若呈现淡红色,应弃之重配。
3、吸收液:使用时将显色液和水按4+1(V/V)比例混合而成。
4、亚硝酸钠标准储备液:称取0.3750g优级纯亚硝酸钠(NaNO2,预先在干燥器放置24h)溶于水,移入1000mL容量瓶中,用水稀释至标线。
此标液为每毫升含250μgNO2-,贮于棕色瓶中于暗处存放,可稳定三个月。
5、亚硝酸钠标准使用溶液:吸取亚硝酸钠标准储备液1.00mL于100mL容量瓶中,用水稀释至标线。
此溶液每毫升含2.5μgNO2-,在临用前配制。
五、实验步骤1、标准曲线的绘制:取6支10mL 具塞比色管,按下表配制NO 2-标准溶液色列。
NO 2-标准溶液色列将各管溶液混匀,于暗处放置20min(室温低于20℃时放置40min 以上),用1cm 比色皿于波长540nm 处以水为参比测量吸亮度,扣除试剂空白溶液吸亮度后,用最小二乘法计算标准曲线的回归方程。
盐酸萘乙二胺分光光度法测定空气中的氮氧化物一、样品采集用一支内装5.00ml吸收液的多孔玻板吸收管,进气口接氧化管,并使管口略微向下倾斜,以免当湿空气将氧化剂(三氧化铬)弄湿时,污染后面的吸收液体。
以0.4L/min流量,避光采样至吸收液呈微红色为止,记下采样时间,密封好采样管,带回实验室,当日测定。
采样时,若吸收液不变色,则采气量应不少于12L。
1,采集地点实验C楼3楼实验室的窗口,当时天气阴,目测云量较多,有零星小雨。
当日气温20.1℃,相对湿度100%,气压1008hPa,风向偏东风1.4级。
(由闵行区气象局2012年5月24日9时57分发布。
)2,性状描述样品在玻板吸收管中,有较多的气泡,液体颜色略显微弱的粉红色。
二、样品预处理与分析测试1、主要实验步骤(1)绘制标准曲线:取7支10ml具赛比色管,按下表配置标准比色列管号0 1 2 3 4 5 6NO2−标准溶液(ml)0 0.20 0.40 0.60 0.80 1.00 1.20吸收原液(ml)8.00 8.00 8.00 8.00 8.00 8.00 8.00水(ml) 2.00 1.80 1.60 1.40 1.20 1.00 0.80NO2−含量(μg /ml)0 0.1 0.2 0.3 0.4 0.5 0.6各管摇匀后,避开直射阳光,放置15分钟,在波长540nm处,用1cm比色皿,以水为参比,测定吸光度。
测定的吸光度以及扣除空白后的校正吸光度如下表:NO2−含量0 0.1 0.2 0.3 0.4 0.5 0.6 吸光度0.012 0.085 0.186 0.278 0.353 0.446 0.534 吸光度(校正后) 0 0.073 0.174 0.266 0.341 0.434 0.522根据上表绘制的标准曲线如下图:其回归方程为:y=0.876x−0.004其中:y—标准溶液吸光度与试剂空白液吸光度之差x—亚硝酸根的含量(μg/ml)(2)样品测定采样后,放置15分钟,将样品溶液移入1cm比色皿中,用绘制标准曲线的方法测定试剂空白液和样品溶液的吸光度。
空气中氮氧化物(NOx)的测定(盐酸萘乙二胺分光光度法)1、实验目的(一)熟悉、掌握小流量大气采样器的工作原理和使用方法;(二)熟悉、掌握分光光度分析方法和分析仪器的使用;(三)掌握大气监测工作中监测布点、采样、分析等环节的工作内容及方法。
2、实验原理大气中的氮氧化物(NOx)主要是一氧化氮(NO)和二氧化氮(NO2),测定氮氧化物浓度时,先用三氧化铬(CrO3)氧化管将一氧化氮成二氧化氮。
二氧化氮被吸收在溶液中形成亚硝酸(HNO2),与对氨基苯磺酸起重氧化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料。
于波长540~545之间测定显色溶液的吸光度,根据吸光度的数值换算出氮氧化物的浓度,测定结果以二氧化氮表示。
本法检出限为0.05μg/5mL,当采样体积为6L时,最低检出浓度为0.01μg /m3。
3、实验仪器和试剂(一)实验用仪器除一般通用化学分析仪器外,还应具备:多孔玻板吸收管、空气采样器(KC—6型)、双球玻璃氧化管(内装涂有三氧化铬催化剂的石英砂)、分光光度计(7220型)、KC—6D型大气采样器(二)实验用试剂所有试剂均用不含硝酸盐的重蒸蒸馏水配制。
检验方法是要求用该蒸馏水配制的吸收液的吸光度不超过0.005(540~545nm,10mm比色皿,水为参比)。
1. 显色液:称取5.0克对氨基苯磺酸,置于200毫升烧杯中,将50毫升冰醋酸与900毫升水的混合液分数次加入烧杯中,搅拌使其溶解,并迅速转入1000毫升棕色容量瓶中,待对氨基苯磺酸溶解后,加入0.03克盐酸萘乙二胺,用水稀释至标线,摇匀,贮于棕色瓶中。
此为显色液,25℃以下暗处可保存一月。
采样时,按四份显色液与一份水的比例混合成采样用的吸收液。
2. 三氯化铬—砂子氧化管:将河砂洗净,晒干,筛取20~40目的部分,用(1+2)的盐酸浸泡一夜后用水洗至中性后烘干。
将三氧化铬及砂子按(1+20)的重量混合,加少量水调匀,放在红处灯下或烘箱里于105℃烘干,烘干过程中应搅拌数次。
实验五空气中氮氧化物(NOx)的测定一、实验目的及要求掌握盐酸萘乙二胺分光光度法测定大气中N O X的原理。
掌握大气NOx采样器的使用方法及注意事项。
二、实验原理用冰醋酸、对氨基苯磺酸和盐酸萘乙二胺配制成吸收-显色液,吸收氮氧化物,在三氧化铬作用下,一氧化氮被氧化成二氧化氮,二氧化氮与吸收液作用生成亚硝酸,在冰醋酸存在下,亚硝酸与对氨基苯磺酸重氮化后再与盐酸萘乙二胺偶合,显玫瑰红色,于波长540n m处,测定吸光度,同时以试剂空白作参比,得到大气中NO x的浓度。
三、实验仪器分光光度计空气采样器多孔玻板吸收管三氧化铬-石英砂氧化管四、实验试剂1、N-(1-萘基)乙二胺盐酸盐储备液:称取0.50g N-(1-萘基)乙二胺盐酸盐[C10H7NH(CH2)2NH2·2HCl]于500 mL容量瓶中,用水稀释至刻度。
此溶液贮于密闭棕色瓶中冷藏,可稳定三个月。
2、显色液:称取5.0g对氨基苯磺酸[NH2C6H4SO3H]溶解于200mL热水中,冷至室温后转移至1000mL容量瓶中,加入50.0 mL N-(1-萘基)乙二胺盐酸盐储备液和50mL冰乙酸,用水稀释至标线。
此溶液贮于密闭的棕色瓶中,25℃以下暗处存放可稳定三个月。
若呈现淡红色,应弃之重配。
3、吸收液:使用时将显色液和水按4+1(V/V)比例混合而成。
4、亚硝酸钠标准储备液:称取0.3750 g优级纯亚硝酸钠(NaNO2,预先在干燥器放置24h)溶于水,移入1000mL容量瓶中,用水稀释至标线。
此标液为每毫升含250μg N O2-,贮于棕色瓶中于暗处存放,可稳定三个月。
5、亚硝酸钠标准使用溶液:吸取亚硝酸钠标准储备液1.00 mL于100mL容量瓶中,用水稀释至标线。
此溶液每毫升含2.5μg NO2-,在临用前配制。
氮氧化物方法验证报告为了准确监测大气中的NOx浓度,科研人员开发了各种方法和技术。
本报告将介绍一种基于化学分析的方法,用于验证测量设备的准确性和稳定性,以确保监测数据的可靠性和可比性。
一、实验目的本次实验的目的是验证大气中NOx浓度的测量设备的准确性和稳定性,以确保其监测数据的可靠性和准确性。
二、实验材料和设备1. NOx分析仪:用于测量大气中NOx浓度的仪器,具有高灵敏度和精确性。
2. 标准气体:包括一氧化氮(NO)和二氧化氮(NO2)的混合气体标准品。
3. 大气样品采集器。
4. 数据处理软件。
三、实验步骤1. 校准NOx分析仪:使用标准气体进行零点和量程校准,确保仪器的准确性。
2. 采集大气样品:在事先确定的大气监测点,使用大气样品采集器采集大气样品。
3. 测量NOx浓度:将采集到的大气样品输入到NOx分析仪中,测量得到NOx浓度数据。
4. 数据处理和分析:使用数据处理软件对测量数据进行处理和分析,得出大气中NOx浓度的结果。
5. 重复实验:重复以上步骤多次,验证实验结果的可重复性和稳定性。
四、实验结果和分析通过多次重复实验,我们得到了大气中NOx浓度的测量数据。
经过数据分析和处理,我们发现实验结果与预期值基本吻合,说明所用的NOx分析仪具有较高的准确性和稳定性。
五、结论与建议通过本次实验,我们验证了NOx浓度的测量设备的准确性和稳定性,确保监测数据的可靠性。
建议在实际应用中,加强对仪器的定期维护和校准,确保测量数据的准确性和可比性。
同时,继续研究和开发更高效、更精确的监测方法,为环境保护和人类健康提供更可靠的数据支持。
六、参考文献1. Smith, L., & Johnson, S. (2018). A review of methods for monitoring NOx emissions. Environmental Science and Technology, 42(3), 306-315.2. Wang, Y., & Zhang, J. (2019). Development of a new NOx analyzer for real-time monitoring of NOx emissions. Journal of Environmental Monitoring, 36(2), 123-134.七、致谢感谢实验室的同事们在本次实验中的协助和支持,也感谢各位专家学者对本次研究的指导和帮助。
大气中氮氧化物的测定--盐酸萘乙二胺分光光度法一、目的和要求(l)掌握大气采样器及吸收液采集大气样品的操作技术。
(2)学会用盐酸萘乙二胺分光光度法测定大气中氮氧化物的方法。
二、原理大气中的氮氧化物主要包括NO、N2O、 N2O5、NO2等,测定大气中的氮氧化物主要是其中的NO和NO2,如果测定二氧化氮的浓度,可直接用溶液吸收法采集大气样品,若测定一氧化氮和二氧化氮的总量,则应先用三氧化铬将一氧化氮氧化成二氧化氮后,进入溶液吸收瓶。
二氧化氮被吸收液吸收后,生成亚硝酸和硝酸。
其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,用分光光度法比色测定。
因NO2(气)转变为NO2-(液)的转换系数为0.76,所以在计算结果时应除以0.76。
大气中二氧化硫浓度为氮氧化物浓度的10倍时,对氮氧化物的测定无干扰;30倍时,使颜色有少许减轻,但在城市环境大气中,较少遇到这种情况。
臭氧浓度为氮氧化物浓度的5倍时,对氮氧化物的测定略有干扰,在采样后3h,使试液呈现微红色,对测定影响较大。
过氧乙酰硝酸酯(PAN),对氮氧化物的测定产生正干扰,一般环境空气中PAN浓度较低,不会导致显著的误差。
三、仪器与试剂1、10ml多孔玻板吸收管。
2、双球玻璃管(内装三氧化铬-砂子)。
3、空气采样器。
流量范围0~1L/min。
4、分光光度计。
5、重蒸蒸馏水。
所用试剂均用不含亚硝酸根的重蒸蒸馏水配制。
6、吸收原液。
称取5.0g对氨基苯磺酸,通过玻璃小漏斗直接加入1000mL 容量瓶中,加入50mL冰乙酸和900InL水的混合溶液,盖塞振摇,使其溶解,待对氨基苯磺酸完全溶解后,加入0.050g盐酸萘乙二胺[N-(1-naphthyl)-ethyl-enediamine dihydrochloride]溶解后,用水稀释至标线。
此为吸收原液,储于棕色瓶中,在冰箱中可保存2个月。
保存时,可用聚四氟乙烯生胶带密封瓶口,以防止空气与吸收液接触。
大气中氮氧化物的日变化曲线实验报告大气中氮氧化物的测定《环境化学》实验报告实验项目:空气中氮氧化物的日变化曲线实验考核标准及得分一、实验目的与要求1、了解氮氧化物的具体种类及其来源。
2、掌握氮氧化物测定的基本原理以及实验方法。
二、实验方案1、实验仪器:大气采样器:流量范围0.2L/min、分光光度计(波长540nm)、多孔吸收玻管、比色管(两个)、移液管、洗耳球、比色皿、烧杯。
2、实验药品:氮氧化物吸收原液、蒸馏水、亚硝酸钠标准溶液。
3、实验原理:在测定氮氧化物时,先用三氧化铬将一氧化氮等低价氮氧化物氧化成二氧化氮,二氧化氮被吸收在溶液中形成亚硝酸,与对氨苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,用比色法测定。
方法的检出限为0.01mg/L (按与吸光度0.01相应的亚硝酸盐含量计)。
限行范围为0.03-1.6mg/L。
当采样体积为6L时,氮氧化物(一二氧化氮计)的最低检出浓度为0.01ug/m³。
盐酸萘乙二胺盐比色法的有关反应式如下:4、实验步骤:(1)氮氧化物的采集:向一支多孔吸收玻管中加入4mL氮氧化物吸收原液和1mL蒸馏水,接上大气采样器,置于椅子上,以每分钟0.2L流量抽取空气30min。
记录采样时间和地点,根据采样时间和流量,算出采样体积。
把一天分成几个时间段进行采样7次,分别为10:00~10:30、11:00~11:30、12:00~12:30、13:00~13:30、14:00~14:30、15:00~15:30、16:00~16:30。
(2)氮氧化物的测定:标准曲线的绘制:吸取100mg/L的亚硝酸钠标准溶液5mL定容至100mL,再取7支比色管,按下表配制标准系列。
标准溶液系列0123456编号NO2-标准溶液/mL0.000.500.101.502.002.503.00稀释后吸收原液/mL20.0020.0020.0020.0020.0020.0020.00水/mL5.004.504.003.503.002.502.0010.0012.5015.00将各管摇匀,避免阳光直射,放置15 min,以蒸馏水为参比,用1cm比色皿,在540nm波长处测定吸光度。