求函数解析式的六种常用方法
- 格式:doc
- 大小:56.50 KB
- 文档页数:2
求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.x ≥0, x <0. 四、消去法例4 设函数f (x )满足f (x )+2 f (x1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x1去代替已知中x ,便可得到另一个方程,联立方程组求解即可. 解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 五、特殊值法例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到f (x )函数解析式,只有令x = y.解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.六、对称性法即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式.例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式.解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-xx x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化.。
函数解析式的求解及常用方法
1.直接法:当函数的表达式比较简单时,可以通过观察函数在一些特定点上的值来找到函数的解析式。
例如,给定函数的函数值和定义域,通过观察函数的值与自变量之间的关系来确定函数的解析式。
2. 反函数法:对于一些特殊函数,可以通过求解函数的反函数来得到函数的解析式。
例如,对于幂函数y=x^n,可以通过求解其反函数
y=\sqrt[n]{x}来得到幂函数的解析式。
3.已知条件法:对于一些已知条件,可以通过利用这些条件来求解函数的解析式。
例如,已知函数的导函数或者积分表达式,可以利用这些条件来求解函数的解析式。
4.递归法:有些函数可以通过递归的方式来定义,即函数的值依赖于前面的函数值。
例如,斐波那契数列就是通过递归来定义的,可以通过递归的方式来求解函数的解析式。
5.求导和积分法:对于一些函数,可以通过求导和积分的方式来求解函数的解析式。
特别是对于一些常见的函数,可以通过求导和积分的规则来求解函数的解析式。
以上是常用的函数解析式求解方法,不同函数的特点和已知条件可能需要采用不同的方法来求解函数的解析式。
在实际问题中,需要根据具体情况选择合适的方法来求解函数的解析式。
求函数解析式的六种常用方法精编版函数解析式是描述函数数学规律的公式或表达式。
在数学中,常用的方法有很多,但以下列举的六种方法是最常见且常用的。
一、直接给出公式或表达式最简单直接的方法是通过给出函数解析式来描述函数的规律。
例如,对于一元二次方程 y = ax^2 + bx + c,其中a、b、c为常数,就是一种直接给出函数解析式的方法。
这种方法适用于已知函数规律的情况,可以方便地求函数的值和图像。
二、通过函数图像导出函数解析式对于一些函数,可以通过观察函数的图像来导出其解析式。
例如,对于二次函数y = ax^2 + bx + c,如果已知函数的图像,并能确定顶点坐标和开口方向,那么就可以根据函数图像反推函数解析式。
这种方法适用于已知函数图像的情况,可以通过观察图像特点来确定函数解析式。
三、通过给定函数值求解析式有时候,我们已知函数在一些特定点的函数值,可以通过这些函数值来求解析式。
例如,已知一元一次函数的两个点的函数值,可以通过求解线性方程组来确定函数解析式。
这种方法适用于已知一些特定点的函数值,可以通过点与点之间的关系来求解析式。
四、通过已知函数性质求解析式有时候,我们已知函数满足一些特定的性质,可以通过这些性质来求解析式。
例如,对于一元一次函数y = kx + b,如果已知函数过点(1, 2)和(3, 4),可以利用点斜式或两点式来求解析式。
这种方法适用于已知函数的性质和特点,可以通过这些性质和特点来求解析式。
五、通过已知导数求解析式对于函数的解析式,如果已知其导数的解析式,可以通过积分来求解析式。
例如,对于函数y=2x^2+3x+1,如果已知其导数为y'=4x+3,可以通过积分来求得原始函数的解析式。
这种方法适用于已知函数的导数解析式,可以通过反向求导来求解析式。
六、通过泰勒级数展开求解析式对于一些特殊的函数,如三角函数、指数函数和对数函数等,可以通过泰勒级数展开来求解析式。
泰勒级数展开是利用函数的导数来逼近函数的方法,通过取泰勒级数展开的前几项,就可以得到函数的近似解析式。
求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。
以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。
函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。
明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。
二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。
例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。
又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。
三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。
在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。
例如,求解经济学中的需求函数、生长模型等。
四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。
例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。
又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。
五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。
通过列方程并求解,可以得到函数解析式中的一些未知系数。
例如,可以通过建立差分方程求解离散函数的解析式。
六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。
通过逐项求和,可以得到函数解析式的形式。
例如,可以利用幂级数展开来确定一些特殊函数的解析式。
必修1求函数解析式的常用方法在数学中,函数解析式是表示函数关系的一种方法,能够通过输入一个自变量的值来计算对应的函数值。
在求函数解析式时,有几种常用的方法可以帮助我们推导出函数解析式,包括代数法、求导法、极限法和积分法等。
一、代数法(方程法)代数法是一种常用的求函数解析式的方法,通过建立方程组来解决问题。
具体步骤如下:1.确定未知数:观察函数关系,确定未知数的个数和性质。
2.建立方程:将已知条件和未知数之间的关系转化为方程。
3.求解方程组:利用代数运算的方法求解方程组。
4.验证:将求得的解带入原方程进行验证,确保解的正确性。
例如,已知函数f(x)满足f(x)-f(x-1)=x,我们可以采用代数法求函数解析式。
解:设f(x) = ax + b,将f(x)的表达式带入已知条件f(x) - f(x - 1) = x中,得到:ax + b - a(x - 1) - b = x整理得:ax + b - ax + a - b = x去掉相同项后得:a=1再将a=1代入f(x),得到f(x)=x+b。
因此,函数f(x)的解析式是f(x)=x+b,其中b是常数。
二、求导法求导法是一种通过对函数求导来求解函数解析式的方法。
该方法主要适用于求解一阶线性微分方程。
1.已知已知函数的导数表达式;2.将导数表达式带入微分方程,得到关于未知函数的微分方程;3.求解微分方程,得到未知函数;4.对求得的未知函数进行验证。
例如,已知函数f'(x)=2x+1,我们可以采用求导法求函数解析式。
解:对已知函数f'(x) = 2x + 1进行积分,得到f(x) = ∫(2x + 1)dx = x^2 + x + C其中C为常数。
因此,函数f(x)的解析式是f(x)=x^2+x+C。
三、极限法极限法是一种通过取极限的方法来求解函数解析式的方法。
该方法主要适用于求解极限关系存在的函数。
1.观察函数的极限特征;2.利用极限性质推导函数解析式;3.对推导的解析式进行验证。
函数解析式的七种求法一、通过给定的输入和输出求解析式。
这是最简单直接的方法,当给定了函数的输入和输出时,可以利用这些已知信息求解析式。
例如,如果一个函数在输入为1时输出为3,在输入为2时输出为5,我们可以直接写出函数解析式为f(x)=2x+1二、基于已知函数的变换求解析式。
对于已知的一些基本函数,例如线性函数、多项式函数、指数函数、对数函数等,我们可以通过对它们进行变换得到其他函数的解析式。
例如,如果已知函数f(x)=x^2,我们可以通过对f(x)进行变换得到f(x)=(x-1)^2+1三、利用函数的性质和特点求解析式。
对于一些特殊函数,例如奇函数、偶函数、周期函数等,可以利用它们的性质和特点来求解析式。
例如,如果一个函数是奇函数,那么它的解析式中只包含奇次幂项,可以利用这个特点来求解析式。
四、利用已知函数的级数展开求解析式。
对于一些复杂的函数,可以利用已知函数的级数展开进行逼近,从而得到函数的解析式。
例如,可以利用泰勒级数展开求得函数的解析式,只需要计算到足够高的阶数即可。
五、利用已知函数的导数和积分求解析式。
对于一些函数,可以通过对它们的导数和积分进行运算得到其他函数的解析式。
例如,如果已知一个函数的导数或积分,可以通过对这个导数或积分进行逆运算来求得函数的解析式。
六、基于已知函数的函数逼近求解析式。
对于一些复杂的函数,可以利用一些已知的简单函数进行逼近,从而得到函数的解析式。
例如,可以利用多项式函数对一个非多项式函数进行逼近,从而得到函数的解析式。
七、利用差分方程或微分方程求解析式。
对于一些具有差分方程或微分方程性质的函数,可以通过求解这些方程来得到函数的解析式。
例如,可以利用差分方程或微分方程求解线性递推函数的解析式。
以上是七种常用的求解函数解析式的方法。
不同方法适用于不同情况,根据具体的问题和已知信息选择合适的方法可以更高效地求解函数的解析式。
求函数解析式的六种常用方法函数解析式是用数学语言描述数学函数的一种方法。
它可以方便地表示函数的定义域、值域、性质等,并且能够通过函数图像和方程表达式等形式直观地展现函数的特征。
下面将介绍六种常用的方法来求函数的解析式。
1.常函数法:常函数法是求解常函数的一种简单方法。
常函数表示所有的输入值都对应着相同的输出值。
常函数的解析式通常形如"f(x)=c",其中c是常数。
常函数的定义域和值域都是全体实数值。
例如,函数f(x)=3就是一个常函数,它的输出始终为32.幂函数法:幂函数是一种具有形如y=x^a的解析式的函数。
幂函数法是通过给定了函数的一些特定点来推导出整个函数的解析式。
常见的幂函数包括正幂函数、负幂函数和倒数函数。
例如,给定函数f(x)通过点(1,2)和(2,4),我们可以通过观察得出f(x)=2^x。
3.分段函数法:分段函数是一种具有不同解析式在不同区间上的函数。
分段函数法是通过将函数的定义域按照不同的区间划分,然后在每个区间上分别确定函数的解析式来得到函数的解析式。
例如,函数f(x)=,x,在x<0时取值为-x,在x≥0时取值为x,这就是一个分段函数。
4.复合函数法:复合函数是通过使用一个函数的输出结果作为另一个函数的输入来得到的函数。
复合函数法是通过将两个或多个函数的定义域和值域相互组合,然后确定新函数的解析式来求解函数的解析式。
例如,给定函数f(x)=x+1和g(x)=2x,我们可以求得f(g(x))=2x+15.反函数法:反函数是指一个函数的自变量和因变量对换后得到的新函数。
反函数法是通过将一个函数的自变量和因变量交换位置,然后求解得到函数的解析式。
例如,给定函数f(x)=2x,我们通过交换x和y的位置,可以求得反函数f^(-1)(x)=x/26.曲线拟合法:曲线拟合法是通过已知函数的一些点来找到一个与这些点最接近的函数的解析式。
它可以应用于实验数据分析和模型建立等领域。
求函数解析式的6种方法一、待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数,指数函数,对数函数、幂函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1 (1)已知二次函数()f x 满足(1)1f =,(1)5f -=,图象过原点,求()f x ;(2)已知二次函数()f x ,其图象的顶点是(1,2)-,且经过原点,()f x .(3)已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式 (4)已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:(1)由题意设 2()f x ax bx c =++, ∵(1)1f =,(1)5f -=,且图象过原点,∴150a b c a b c c ++=⎧⎪-+=-⎨⎪=⎩ ∴320a b c =⎧⎪=-⎨⎪=⎩∴2()32f x x x =-.(2)由题意设 2()(1)2f x a x =++,又∵图象经过原点,∴(0)0f =,∴20a += 得2a =-, ∴2()24f x x x =--.(3)解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0由(1)()1f x f x x +=++ 得22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得 ax 2+(2a+b)x+a+b+c=ax 2+(b+1)x+c+1得 212211120011()22a ab b a bc c b c c f x x x⎧=⎪+=+⎧⎪⎪⎪++=+⇒=⎨⎨⎪⎪=⎩=⎪⎪⎩∴=+(4)解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ②由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 例2 (1)已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
函数解析式的求解及常用方法函数解析式的求解是数学中常见的问题之一、它涉及到将已知的数学条件转化为一个函数关系表达式,从而描述出函数的性质和特点。
在实际应用中,函数解析式的求解非常重要,可以帮助我们了解函数的行为、性质、变化规律等,进而应用于解决实际问题。
下面将介绍一些常用的方法来求解函数解析式。
1.根据问题中的条件列方程:在实际问题中,往往会给出一些条件,如函数过一些点、满足一些关系等。
根据这些条件,我们可以列出一些方程,然后通过求解这些方程来得到函数解析式。
例如,如果问题中已知函数经过点$(x_0,y_0)$,则可以得到函数解析式$y=f(x)$中的常数项$C$通过代入点$(x_0,y_0)$所得的方程$f(x_0)=y_0$来求解。
2.利用已知函数的性质和变化规律:有些函数的解析式已知,可以利用已知函数的性质和变化规律来求解新的函数解析式。
例如,如果已知函数$f(x)$的解析式,要求解函数$g(x)$的解析式,且知道函数$g(x)$是由函数$f(x)$经过平移、伸缩等变换得到的,那么可以通过对已知函数的解析式进行相应的平移、伸缩等操作得到函数$g(x)$的解析式。
3.利用函数的性质和条件的显式或隐式表达:有些函数的性质和条件可以用显式或隐式的数学表达式表示出来。
通过分析这些表达式,可以求解函数解析式。
例如,假设问题中已知函数$f(x)$满足$f'(x)=k$,其中$k$为常数,那么可以通过对函数$f(x)$进行积分来求解函数解析式。
4. 利用函数的级数展开式:有些函数可以使用级数展开式来表示。
级数展开式可以通过泰勒级数或幂级数来表示函数。
通过计算级数的前几项或者使用截断误差的方法,可以得到函数的解析式。
例如,函数$e^x$可以使用泰勒级数展开为$e^x = 1 + x + \frac{x^2}{2!} +\frac{x^3}{3!} + \cdots$,通过计算级数的前几项,可以得到函数$e^x$的解析式。
高中数学-求函数解析式的六种常用方法求函数解析式是高中数学中的重要内容之一,常用的方法有六种。
下面分别介绍这六种方法。
一、换元法如果已知复合函数$f[g(x)]$的解析式,要求原函数$f(x)$的解析式,可以令$g(x)=t$,求$f(t)$的解析式,再把$t$换为$x$即可。
例如,已知$f(x)=\frac{x^2+11x+1}{x(x+1)}$,要求$f(x)$的解析式。
设$g(x)=\frac{1}{x}$,则$x=\frac{1}{g(x)}$,代入$f(x)$得$f(g(x))=\frac{g(x)^2+11g(x)+1}{g(x)+1}$,再令$t=g(x)$,则$f(t)=\frac{t^2+11t+1}{t+1}$,最后把$t$换为$x$,得到$f(x)=\frac{x^2+11x+1}{x(x+1)}$。
二、配凑法如果已知$f(x+1)=x+2x^2$,要求$f(x)$的解析式,可以使用配凑法。
首先,把$x+1$视为自变量$x$,则有$f(x)=x^2-1$,但要注意函数的定义域的变化,即$x+1\geq 1$,即$x\geq 0$。
三、待定系数法如果已知函数类型,可以使用待定系数法求函数的解析式。
例如,已知二次函数$f(x)$满足$f(0)=0$,$f(x+1)=f(x)+2x+8$,要求$f(x)$的解析式。
设$f(x)=ax^2+bx+c$,代入已知条件得到$c=0$,$a+b=8$,$2a+b=0$,解得$a=1$,$b=7$,$c=0$,所以$f(x)=x^2+7x$。
四、消去法如果已知$f(x)+2f(\frac{1}{x})=\frac{x}{x-1}$,要求$f(x)$的解析式,可以使用消去法。
把已知中的$f(\frac{1}{x})$用$f(x)$表示出来,得到$2f(x)+f(\frac{1}{x})=\frac{x}{x-1}$,再把$x$换成$\frac{1}{x}$,得到$2f(\frac{1}{x})+f(x)=\frac{1}{x-1}$,解得$f(x)=-\frac{x}{3(x-1)}$。
函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 练习1. 已知x 2x )1x (f +=+,求)x (f 。
解:因为)1x (1x )x (f ,11x ,1]1)x [(x 2x )1x (f 22≥-=≥+-+=+=+所以二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x 练习3:已知f(3x+1)=4x+3, 求f(x)的解析式.令t=3x+1, x=31-t 354)(3314)(-=⇒+-⨯=⇒t t f t t f 354)(-=⇒x x f四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
求函数解析式的六种常用方法精编版一、直接构造法直接构造法适用于已知函数的性质和条件的情况下,可通过组合各种基本函数形式来构造出所需的函数形式。
例如,已知函数在区间[0,1]上的表达式为f(x)=x^2,并且我们想要构造一个在同一区间上的连续函数,且在x=0和x=1处与f(x)相等。
我们可以构造出一个函数解析式为:g(x)=(1-x)f(x)+x(x-1)f(1)这里,g(x)在[0,1]上连续,并且在x=0和x=1处分别等于f(x)。
二、数列法数列法适用于问题可以抽象为数列的情况下,可通过观察数列特点找到函数的解析式。
例如,已知数列{an}的前n项和为Sn = n(n + 1),我们希望求解出数列{an}的通项公式。
我们可以观察得到,Sn - Sn-1 = n,即{an}是一个等差数列,公差为1、因此,{an}的通项公式为an = an-1 + 1三、变量代换法变量代换法适用于已知函数的变量可以通过代换转化为已知函数形式的情况下,可通过变量代换求解出函数的解析式。
例如,已知函数的解析式为f(t) = sin(t),现在我们想要求解出函数的解析式f(x)。
我们可以通过将变量t用x表示,并使用三角函数的关系sin(t) = sin(x)来代换,得到f(x) = sin(x)。
四、变量插值法变量插值法适用于已知函数在离散点上的取值情况下,可通过连接各个离散点并找到插值函数的形式来求解函数的解析式。
例如,已知函数在离散点(0,1),(1,2),(2,3)上的取值,我们可以通过连接这三个点得到插值函数,形式为f(x)=x+1五、递推法递推法适用于问题可以通过递推关系来求解的情况下,可通过观察得到递推关系,从而求解出函数的解析式。
例如,已知递推关系为an = an-1 + n,其中a0 = 1、我们可以通过观察到an - an-1 = n,得到an = 1 + 1 + 2 + ... + n = n(n + 1)/2六、级数展开法级数展开法适用于问题可以通过级数展开来求解的情况下,可通过展开级数并进行合并化简,从而求解出函数的解析式。
解析式的求法解析式(Analytic Expression)是指由基本运算符(如加减乘除)、变量和常数通过一系列运算规则或函数得到的数学表达式。
求解解析式就是要通过给定的表达式求取其数值结果或求解变量的取值范围等问题。
在数学和工程领域,求解解析式是很常见且重要的任务。
下面将介绍一些常用的方法和技巧来求解解析式。
1.联立方程法当已知多个方程式时,可以通过联立方程的方法求解解析式。
这种方法常用于求解线性方程组。
通过联立多个方程,可以得到更多的信息,进而求解未知变量的值。
2.代入法代入法是一种常用的解析式求解方法。
当已知某些变量值,但不知道其他变量的值时,可以通过代入已知变量值的方式,将未知变量用已知变量表示,从而求解解析式。
3.分离变量法分离变量法常用于求解微分方程。
当已知方程中的变量可以通过分离的方式,将方程分成两个只与一个变量有关的方程时,可以通过对两个方程进行求解,得到解析式的形式。
4.递推法递推法是一种通过递归方式求解解析式的方法。
常用于求解递归关系式或递推关系式。
通过给定初始值和递推关系,可以逐步计算出解析式的值。
5.微分法微分法常用于求解解析式的最值、极限和变化率等问题。
通过对解析式进行微分运算,可以得到函数的导数,从而求解相关的问题。
6.积分法积分法是微分法的逆过程,常用于求解面积、弧长、体积等问题。
通过对解析式进行积分运算,可以求解这些几何问题。
7.特殊函数法特殊函数法是一种利用特殊函数求解解析式的方法。
常用的特殊函数包括三角函数、指数函数、对数函数、伽玛函数等。
通过运用这些特殊函数的性质和公式,可以简化解析式的求解过程。
8.迭代法迭代法是一种通过反复逼近求解解析式的方法。
常用于求解复杂的非线性方程或方程组。
通过设定初始值,逐步逼近解析式的值,直至满足预设误差要求。
以上是常用的几种求解解析式的方法。
在实际问题中,通常需要根据具体情况选择合适的方法。
通过灵活应用这些方法,可以高效地求解解析式,得到问题的准确解答。
求函数解析式的几种常用方法一、配凑法:例1:设23)1(2+-=+x x x f ,求)(x f .练1:设函数()23,(2)()f x x g x f x =++=,求()g x 。
练2:设21)]([++=x x x f f ,求)(x f .练3:设33221)1(,1)1(xx x x g x x x x f +=++=+,求)]([x g f .二、待定系数法:例1:如果反比例函数的图象经过点(1,2)-,那么这个反比例函数的解析式为 。
练1:在反比例函数k y x=的图象上有一点P ,它的横坐标m 与纵坐标n 是方程2420t t --=的两个根,求反比例解析式。
练2:已知二次函数()x f 满足()00=f ,()()821++=+x x f x f ,求()x f 的解析式。
练3:已知1392)2(2+-=-x x x f ,求)(x f .三、换元(或代换)法: 例1:已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式练1:已知1)f x =+()f x 及2()f x ;练2:已知22111(),x x f x x x++=+求()f x .四、消去法:例1:设函数()f x 满足()x x f x f =⎪⎭⎫ ⎝⎛+12,()0≠x ,求()f x .练1:已知1()2()32f x f x x-=+,求()f x .练2:已知定义在R 上的函数()f x 满足()()12+=+-x x f x f ,()0≠x ,求()f x .练3:已知()3()21f x f x x +-=+,求()f x .练4:设函数()f x 满足1()()af x bf cx x+=(其中,,a b c 均不为0,且a b ≠±),求()f x .五、反函数法:例1:已知2)(21+=-x af x ,求)(x f .练1:已知函数1ln +=x y ,()0>x ,求它的反函数六:函数性质法例1:已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.练1:已知()f x 是定义在R 上的奇函数,当0<x 时,()13-=x x f ,求()f x 的解析式.例1:设)(x f 是定义在N 上的函数,满足1)1(=f ,对于任意正整数y x ,,均xy y x f y f x f -+=+)()()(,求)(x f .练1:设定义在R 上的函数)(x f ,且满足()10=f ,并且对于任意实数y x ,均有()()()12+--=-y x y x f y x f ,求)(x f .练2:设定义在R 上的函数)(x f ,对于任意实数y x ,均有()()()()1232++-+=-y x x y f x f y x f ,求)(x f .练3:已知偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.例1:已知a f N x x f x f =*∈+=+)1()(),(212)1(且,求)(x f .综合运用 例1:(1)已知3311()f x x x x+=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()()3f x f x x+=,求()f x 。
求函数解析式的六种常用方法一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.练习:1)已知f (x+x 1)=3x +31x,求f(x)。
2)已知f (x+x 1)=28x +28x+1,求f(x)。
3) 已知2211(),f x x x x -=+求()f x . 4) f (sinx )=-x 2sin 2cos(2x),求f(x )函数解析式。
三、待定系数法例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.练习:1)已知,f(x)是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f(x)的表达式2)已知,f(x)是二次函数,且满足f (x+1)+f (x-1)=2x 2 -4x+4,求f(x)的表达式3)f (x)是x 的二次函数,g(x) = 2x ·f (x),且g(x + 1)-g(x) = 21+x ·x 2,求函数f (x)和g(x)的解析式.解:设f (x) = ax 2+ bx + c (a ≠0),则g(x) = 2x ·(ax 2+ bx + c).由g(x + 1)-g(x) = 21+x ·x 2得:21+x ·[a (x + 1)2+ b(x + 1) + c]-2x ·(ax 2+ bx + c) = 21+x ·x 2,即ax 2+ (4a + b)x + (2a + 2b + c) = 2x 2.这是关于x 的恒等式,比较系数,得⎪⎩⎪⎨⎧=++=+=.022,04,2c b a b a a ⇒⎪⎩⎪⎨⎧=-==.21,8,2c b a ∴f (x) = 2x 2-8x + 12 ,g(x) = 21+x ·(x 2-4x + 6).4) 已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。
求函数解析式常用的方法函数解析式是指用数学表达式来表示一个函数的关系式。
常用的方法有以下几种:一、常数法:当函数表达式中只包含常数时,可以直接表示为一个确定的常数。
例如,函数f(x)=5表示f(x)始终等于5,不管x的取值如何。
二、线性函数法:线性函数是指函数的表达式中只包含一次项(通常是x)和常数项的函数。
常用的线性函数有一次函数、斜率截距式和两点式。
一次函数的函数表达式为f(x) = ax + b,其中a和b为常数。
通过给定的一对坐标点,可以利用斜率公式或两点式公式求解得到函数解析式。
三、二次函数法:二次函数是指函数的表达式中包含二次项(x的平方)的函数。
函数解析式为f(x) = ax^2 + bx + c,其中a、b和c为常数。
常用的求解方法有配方法和因式分解法。
配方法是通过将二次项与其他项配对,使得被配对的两项的和或差为一个完全平方。
通过这种方法可以将二次函数转化为完全平方的形式从而求解。
因式分解法是将二次函数进行因式分解,通过找出两个一次函数的乘积形式来求解。
通过因式分解可以得到二次函数的解析式。
四、指数函数法:指数函数是指函数的表达式中包含指数项的函数。
函数解析式为f(x)=a^x,其中a为底数,x为指数。
指数函数的图像表现为指数的增长或衰减。
五、对数函数法:对数函数是指函数的表达式中包含对数项的函数。
函数解析式为f(x) = loga(x),其中a为底数,x为真数。
对数函数的性质使得复杂的乘除运算可以转化为简单的加减运算。
六、三角函数法:三角函数是指函数的表达式中包含三角函数项的函数。
常用的三角函数有正弦函数、余弦函数和正切函数等。
函数解析式可以表示为一个周期性的曲线。
通过这些常用的方法,我们可以求解各种函数的解析式,根据函数的特点和已知条件选择适当的方法进行求解。
需要注意的是,在求解函数解析式时,需要满足函数的定义域和值域的限制,以确保函数的合法性和准确性。
求函数解析式的六种常用方法
一、换元法
已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可.
例1 已知f (
x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1
+= t ,则 x=
11-t (t ≠1), ∴f (t )= 11
1)1
1(1)11
(22-+
-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).
评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.
二、配凑法
例2 已知f (x +1)= x+2x ,求f (x )的解析式.
解: f (x +1)= 2)(x +2x +1-1=2
)1(+x -1,
∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有 f (x )= x 2-1 (x ≥1).
评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.
三、待定系数法
例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.
解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①
f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ②
由f (x+1)= f (x )+2x+8 与①、② 得
⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.
四、消去法
例4 设函数f (x )满足f (x )+2 f (x 1
)= x (x ≠0),求f (x )函数解析式.
分析:欲求f (x ),必须消去已知中的f (
x 1
),若用x 1去代替已知中x ,便可得到另一个方程,联立方程组求解即可.
解:∵ f (x )+2 f (x 1
)= x (x ≠0) ①
由x 1
代入得 2f (x )+f (x 1
)=x 1
(x ≠0) ②
解 ①② 构成的方程组,得 f (x )=x 32-3x
(x ≠0).
五、特殊值法
例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y , 有f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式.
分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到 f (x )函数解析式,只有令x = y.
解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得
f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.
六、对称性法
即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式. 例6 已知是定义在R 上的奇函数,当x ≥0时,f (x )=2x -x 2,求f (x )函数解析式. 解:∵y=f (x )是定义在R 上的奇函数, ∴y=f (x )的图象关于原点对称. 当x ≥0时,f (x )=2x -x 2的顶点(1,1),它关于原点对称点(-1,—1),
因此当x<0时,y=2)1(+x -1= x 2 +2x.故 f (x )=⎩⎨⎧+-x x x x 2222 评注: 对于一些函数图象对称性问题,如果能结合图形来解,就会使问题简单化. x ≥0, x <0.。