单元14p1反函数的导函数与原函数的导函数呈颠倒数关系讲解学习
- 格式:ppt
- 大小:200.50 KB
- 文档页数:3
一、教学目标1. 理解反函数的概念及其与原函数的关系。
2. 学会求解基本函数的反函数。
3. 掌握反函数的性质及其在实际问题中的应用。
二、教学内容1. 反函数的概念:反函数是指如果两个函数的定义域和值域相同,且它们的自变量和因变量互换位置后,这两个函数仍然相等,这两个函数互为反函数。
2. 反函数的求解方法:对于基本函数(如线性函数、指数函数、对数函数等),可以通过交换自变量和因变量来求解其反函数。
3. 反函数的性质:反函数的定义域等于原函数的值域,反函数的值域等于原函数的定义域;反函数的图像与原函数的图像关于直线y=x 对称。
三、教学重点与难点1. 重点:反函数的概念、求解方法及其性质。
2. 难点:反函数在实际问题中的应用。
四、教学过程1. 导入:通过复习原函数的概念,引出反函数的概念。
2. 讲解:讲解反函数的定义、求解方法及其性质。
3. 例题:求解线性函数、指数函数、对数函数等的基本函数的反函数。
4. 练习:让学生独立求解一些基本函数的反函数。
五、课后作业a) y = 2x + 3b) y = 3^xc) y = log2(x)2. 运用反函数解决实际问题,如:已知一个函数的图像经过点(2, 3) 和(4, 5),求该函数的反函数。
六、教学策略1. 采用案例教学法,通过具体的例题来引导学生理解和掌握反函数的概念和求解方法。
2. 利用数形结合的方法,通过反函数的图像来帮助学生理解反函数的性质。
3. 鼓励学生进行自主学习,通过课后作业和实际问题来巩固反函数的知识。
七、教学评价1. 通过课堂讲解和例题练习,评价学生对反函数概念的理解程度。
2. 通过课后作业和实际问题的解决,评价学生对反函数求解方法和性质的掌握情况。
3. 通过课堂提问和小组讨论,评价学生对反函数在实际问题中应用的理解和运用能力。
八、教学拓展1. 引导学生思考反函数与原函数的关系,探讨反函数在数学和其他学科中的应用。
2. 引导学生探究反函数的性质,如反函数的单调性、奇偶性等。
反函数基础概念 一、基础知识概述本周主要学习了反函数,了解反函数的概念及互为反函数的函数图象间的关系,掌握并会灵活应用互为反函数的函数图象间的关系.二、重难点知识归纳1、反函数的概念: (1)只有自变量x 与其对应的函数值y 是一一对应的函数才存在反函数,反函数的对应法则是原函数对应法则f 的逆对应,反函数的定义域、值域分别是原函数的值域、定义域.(2)互为反函数的两个函数的图象关于直线x y =对称,即点),(b a 在)(x f y =的图象上,则点),(a b 必在)(1x f y -=图象上.(3)互为反函数的两个函数具有相同的单调性.2、反函数的性质: (1))(1x fy -=是)(x f y =的反函数,则)(x f y =也是)(1x f y -=的反函数,即)(x f y =和)(1x f y -=互为反函数.(2)函数)(x f y =存在反函数的充要条件是函数)(x f y =是定义域到值域的一一映射.(3)函数)(x f y =和反函数)(1x fy -=的定义域,值域互换,即:函数)(x f y = 函数)(1x f y -= 定义域A C 值域C A 3、互为反函数的图象关系:函数)(x f y =的图象和它的反函数)(1x fy -=的图象关于直线x y =对称. 4、反函数与函数的其它性质的联系:(1)反函数与原函数:x x ff =-)]([1,x x f f =-)]([1. 注意:)]([11x ff --并不是反函数的反函数,而是)(1x f y -=与自身形成的复合函数,谨防出现)()]([11x f x f f =--的错误作法.(2)反函数与单调性:如果函数)(x f y =有单调性,则反函数)(1x f y -=也有与)(x f y =一致的单调性,即)(x f y =在],[b a 上为增函数,则)(1x f y -=在)](,)([b f a f 上为增函数;)(x f y =在],[b a 上为减函数,则)(1x f y -=在)](,)([a f b f 上为减函数.典型例题例1、求下列函数的反函数:(1)⎩⎨⎧<-≥-=)0(12)0(1)(2x x x x x f ;(2))23(321)(≥-+=x x x f ;(3))1(12)(2>-=x x x x f . 解析: (1)分析:求分段函数的反函数,也应分段来求,要注意分段后在所分区间内函数的值域. 设)(x f y =,则:当0≥x 时,1-≥y ,∴12+=y x ,又0≥x ,∴1+=y x ,即)1(1)(1-≥+=-x x x f .当0<x 时,1-<y ,∴21+=y x ,∴)1(21)(1-<+=-x x x f . ∴⎪⎩⎪⎨⎧-<+-≥+=-)1(21)1(1)(1x x x x x f . (2)分析:求无理函数的反函数,应先求函数的值域.设)(x f y =,则因23≥x ,∴1≥y . ∴321-=-x y ,∴]3)1[(212+-=y x , ∴)1(]3)1[(21)(21≥+-=-x x x f . (3)分析:求二次分式函数的反函数,一要注意函数的值域,二要注意函数的定义域,即在开方求x 时注意x 的取值范围.)(x f y =,∵1>x ,∴0<y .x yx y 22=-,即022=-+y x yx .∵0<y ,∴yy y y x 22112442+±-=+±-=. ∵1>x ,0<y .∴yy x 211+--=. ∴)0(11)(21<+--=-x x x x f . 点评:分段函数的反函数也是分段函数,一般是先分别求出各区间的反函数,再归纳.在求反函数的过程中,如果在反解x 时需要进行开方运算,特别要注意x 的取值范围,有时还要结合值域来考虑. 例2、已知函数)05(251)(2≤≤-+-=x ax x f ,点)4,2(-- P 在它的反函数的图象上.(1)求)(x f 的反函数)(1x f-; (2)证明)(1x f -在其定义域上是减函数.分析:先由题设条件求出参数a 的值后,再求反函数.解析:(1)∵)4,2(-- P 在)(x f 的反函数图象上,∴)2,4('-- P 在函数)(x f y =的图象上,∴251612+-=-a .∴92516=+a ,∴1-=a ,即251)(2+--=x x f .∵05≤≤-x ,∴1)(4≤≤-x f . 由2512+--=x y 得:22)1(25-=+-y x .∴22)1(25--=y x ,∵05≤≤-x ,∴2)1(25---=y x , ∴)14()1(25)(21≤≤----=-x x x f .(2)∵2)1(25--=x u 在]1,4[ -上是增函数,故对1x 、2x ]1,4[ -∈,当21x x <时,有210u u ≤≤.又u -在0≥u 上是减函数,∴21u u ->-,即)()(2111x f x f-->.∴21)1(25)(---==-x x fy 在]1,4[ -上是减函数.点评: 当点),(b a 在函数)(x f 的图象上时,),(a b 必在)(x f 的反函数的图象上.另外,由于函数与其反函数具有相同的单调性,故可以先证)(x f 在]0,5[ -上是减函数,从而)(1x f -在]1,4[ -上是减函数. 例3、判断函数)(1)(2R x x x x f ∈++= 是否存在反函数,若存在,求出)(1x f -.若不存在,说明理由.分析:函数)(x f 存在反函数的充要条件是确定函数的对应是一一对应.即对于值域中的一个y 值,方程)(x f y =有唯一的解x ,则函数存在反函数,否则,不存在反函数.解析:设120++=x x y .∵R x ∈,∴x x x -≥>+||12,∴00>y ,∴120+=-x x y ,∴12020=-x y y . ∵00>y ,∴02021y y x -=.∴函数)(1)(2R x x x x f ∈++= 存在反函数. 由以上证明过程知)0(21)(21>-=-x x x x f . 点评:根据函数和反函数的概念可知,在定义域上的单调函数一定存在反函数.因此本题还可通过证明)(x f 在R 上是单调函数来证明)(x f 存在反函数. 例4、已知函数b kx y +=的图象过)2,1( 点,它的反函数)(1x f -的图象过)0,4( 点,求函数)(x f 的解析式.解析:)(1x f -的图象过)0,4( 点,)(1x f -与)(x f 的图象关于直线x y =对称,∴)(x f 的图象过)4,0( ,又由已知也过)2,1( 点,∴⎩⎨⎧-==⇒⎩⎨⎧+=+=24204k b b k b , ∴42)(+-=x x f .说明:)(x f y =图象上点),(b a 关于x y =的对称点),(a b 必在)(1x f y -=的图象上.基础练习一、选择题1、函数d cx b ax x f ++=)(的反函数为)(1x f -,若433)1(1++=+-x x x f ,则a 、b 、c 、d 的值依次为( )A .1、2、3、1B .-1、2、3、-1C .1、-2、-3、1D .-1、2、-3、-12、若函数)(x f y =的反函数是)(x g y =,b a f =)(,0≠ab ,则)(b g 等于( )A .aB .a 1C .bD .b1 3、已知函数)(x f y =的反函数是21x y --=,则函数)(x f y =的定义域为( )A .)0,1( -B .]1,1[ -C .]0,1[ -D .]1,0[4、已知函数)(x f 的图象过点)1,0( ,则)4(x f -的反函数的图象过点( )A .)4,1(B .)1,4(C .)0,3(D .)3,0(5、设点)2,1( P 既在函数b ax y +=的图象上,又在它的反函数的图象上,则( ) A .3-=a ,7=b B .1=a ,2=b C .1-=a ,3=b D .2=a ,1=b6、奇函数)(x f 的反函数是)(1x f -,若a a f -=)(,则)()(1a f a f -+-的值是( )A .a 2B .a 2-C .0D .无法确定7、若函数)(x f y =的图象只经过第一、四象限,那么函数)(1x f -的图象一定经过( )A .第一、二象限B .第一、三象限C .第二、三象限D .第一、四象限8、对于]1,0[ ∈x 的所有x 值,函数2)(x x f =与其反函数)(1x f-的相应函数值间一定有( )A .)()(1x f x f -≥B .)()(1x f x f -≤C .)()(1x f x f -<D .)()(1x f x f -=9、若)0(32)1(2≤+-=-x x x x f ,则)(1x f -为( )A .)2(2≥-x xB .)2(21≥--x xC .)3(2≥--x xD .)3(2≤-x x10、设函数)01(11)(2≤≤---=x x x f ,则函数)(1x f -的图象是( ) A . B .C .D .二、填空题 11、函数a x x x f ++=1)(与函数12)(-+=x b x x g 的图象关于x y =对称,则=+b a _________. 12、若函数21++=x ax y 在其定义域内存在反函数,则a 的取值范围是___________. 13、函数)1(1≥+=x x x y 的反函数=-)(1x f ___________. 三、解答题14、已知)21(12)(≠++=x a x x x f . (1)求它的反函数;(2)若函数)(x f 的图象关于x y =对称,求a 的值;(3)若af 2)3(1-=-,求a 的值. 15、已知函数)1(12≥-=x x y 的图像为1C ,函数)(xg y =的图像为2C ,1C 与2C 关于直线x y =对称,又)(x g y =的定义域为M ,对于任意1x 、2x M ∈,且21x x ≠,试比较|)()(|21x g x g -与||21x x -的大小.16、已知13)(-+=x ax x f .(1)求)(x f y =的反函数)(1x fy -=的值域; (2)若点)7,2( 是)(1x f y -=的图象上的一点,求)(x f y =的值域.。
反函数知识点总结讲义教案一、教学目标1. 理解反函数的概念,掌握反函数的性质和运算法则。
2. 学会求解反函数,并能应用反函数解决实际问题。
3. 培养学生的逻辑思维能力和数学表达能力。
二、教学内容1. 反函数的概念:什么是反函数,反函数的定义和性质。
2. 反函数的求解方法:如何求解一个函数的反函数。
3. 反函数的应用:反函数在实际问题中的应用举例。
4. 反函数的运算法则:反函数的组合和复合。
5. 反函数的局限性:反函数存在的条件和不存在的条件。
三、教学重点与难点1. 教学重点:反函数的概念、性质、求解方法和应用。
2. 教学难点:反函数的求解方法和反函数的运算法则。
四、教学方法与手段1. 教学方法:讲授法、案例分析法、问题驱动法。
2. 教学手段:黑板、PPT、数学软件。
五、教学过程1. 引入:通过一个实际问题引入反函数的概念。
2. 讲解:讲解反函数的定义、性质和求解方法。
3. 案例分析:分析一些实际问题,让学生了解反函数的应用。
4. 练习:让学生做一些练习题,巩固反函数的知识。
5. 总结:总结本节课的主要内容和知识点。
六、教学评估1. 课堂提问:通过提问了解学生对反函数概念的理解程度。
2. 练习题:布置一些有关反函数的练习题,检查学生掌握反函数性质和求解方法的情况。
3. 小组讨论:让学生分组讨论反函数在实际问题中的应用,评估学生对反函数应用的理解。
七、教学拓展1. 反函数与其他数学概念的联系:例如,反函数与对数函数、反三角函数等的关系。
2. 反函数在科学研究和实际生活中的应用:例如,反函数在优化问题、信号处理等方面的应用。
八、教学反思1. 反思教学内容:检查教学内容是否全面、透彻,是否涵盖了反函数的所有重要知识点。
2. 反思教学方法:评估所采用的教学方法是否有效,是否能够帮助学生理解和掌握反函数知识。
3. 反思学生反馈:根据学生的课堂表现和练习情况,调整教学策略,以便更好地满足学生的学习需求。
九、课后作业1. 完成课后练习题:巩固反函数的基本概念和求解方法。
反函数的导数怎么求
y=arcsinx y'=1/√(1-x^2)
反函数的导数:
yarcsinx,
那么,siny=x,
求导得到,cosy *y'=1
即y'=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)
反函数的求导法则是:反函数的导数是原函数导数的倒数。
例题:求y=arcsinx 的导函数。
首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。
1、反函数的导数就是原函数导数的倒数。
2、设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作
y=f^(-1)(x)。
反函数y=f^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。
3、若一函数有反函数,此函数便称为可逆的。
4、求导是数学计算中的一个计算方法。
5、导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商
的极限。
在一个函数存在导数时称这个函数可导或者可微分。
可导的函数一定连续。
不连续的函数一定不可导。
6、除了在某几个原函数的导数为0的点以外,利用原函数的可导性就可以说明反函数可导了。
反函数求导法则、
答案:反函数的求导法则是:反函数的导数是原函数导数的倒数。
例题:求y=arcsinx的导函数。
首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。
分析:
1、反函数的导数就是原函数导数的倒数。
2、设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x)。
反函数y=f^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。
3、若一函数有反函数,此函数便称为可逆的。
4、求导是数学计算中的一个计算方法。
5、导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
在一个函数存在导数时称这个函数可导或者可微分。
可导的函数一定连续。
不连续的函数一定不可导。
6、除了在某几个原函数的导数为0的点以外,利用原函数的可导性就可以说明反函数可导了。
反函数导数
反函数的导数是什么?在求反函数的导数时,我们需要使用链式法则和反函数定理。
其中,链式法则用于求导函数,而反函数定理则用于求反函数的导数。
具体来说,反函数的导数可以通过以下公式进行计算:如果 y=f(x) 是一个可逆函数,则其反函数 x=g(y) 在 y=y0 处的导数为 1/f′(x0),其中 f′(x) 表示函数 f(x) 在 x 处的导数。
需要注意的是,反函数的导数与原函数的导数在相应点处互为倒数。
因此,求反函数的导数时,我们可以先求出原函数在相应点处的导数,再将其倒数即可得到反函数的导数。
- 1 -。
反函数导数与原函数导数关系反函数导数与原函数导数是什么关系原始函数的导数是反函数导数的倒数。
首先,这里的反函数必须理解它是什么样的反函数。
我们通常设置一个原始函数y=f(x)然后将反函数设置为y = f-1 (x),两个图像关于y = x线对称。
但它是原函数和反函数之间的导数,它们之间没有关系。
那么什么样的反函数呢?它必须是以x = f-1 (y)的形式写成的反函数,它的导数是与原函数的导数的倒数关系。
我们知道,在同一个x-y坐标系中,原始函数y=f(x)和反函数x = f-1 (y)是同一个图像,那么函数上同一点(x0,y0)的切线当然是同一个切线。
在原始函数y=f(x)中,我们寻求的导数在几何上是从x轴的正半轴到切线的角度的切线在反函数x = f-1 (y)中,我们寻求的导数,从几何学上讲,是从y轴的正半轴到切线的角度的切线。
这两个函数是同一x-y坐标系中的同一曲线和同一点(x0,y0)上的同一切线。
这个切线的“x轴的正半轴转切线的角度”和“y轴的正半轴转切线的角度”之和当然是90,那么这两个角度的切线当然是互逆的。
这就是为什么有“原函数的导数和反函数的导数是互逆的”的性质。
是什么导数1.导数是变化率、切线斜率、速度和加速度,用导数的符号来判断函数的增减,在一定区间(a,b)内,如果f(x)0,则函数y=f(x)在此区间内单调递增,如果f(x)0是f(x)在这个区间上是增函数的充分条件,但不是必要条件。
2.不是所有的函数都有导数,一个函数不一定在所有的点上都有导数,让函数y=f(x)定义在点x=x0及其附近,当自变量x在x0处有变化△x时(△x可以是正的也可以是负的),那么函数y相应地有变化△y=f(xax的导数是什么△x)-f(x0),这两个变化的比值称为从x0到x0的函数y=f(x)。
3.如果一个函数的导数存在于某一点,则称其在该点可导,否则称其不可导,当自变量的增量趋近于零时,因变量的增量与自变量的增量的商的极限,当一个函数有导数时,就说这个函数是可导的或可微的,可微函数必须是连续的,不连续函数必须是不可微的。
反函数的二阶导数与原函数二阶导数的关系反函数是指在一定条件下,能够使得一个函数的值域对应到定义域上的另一个函数。
对于某些函数而言,它们是可逆的,也就是说它们存在反函数。
而这些函数符合反函数需要满足的条件,这些条件包括函数必须是一一对应的、函数的定义域和值域必须连续、单调性必须满足等等。
在数学的学习中,反函数是重要的概念之一。
在反函数的推导过程中,我们需要了解反函数的求导公式。
反函数的一阶导数是由原函数的一阶导数所决定的,而反函数的二阶导数则与原函数的二阶导数有一定的关系。
具体而言,如果我们知道了某个函数f(x)的二阶导数,我们就可以利用反函数的求导公式来求得反函数的二阶导数。
反函数的二阶导数与原函数的二阶导数之间的关系,可以通过以下公式进行表示:(g⁻¹)′′(y) = -f′′(x)/(f′(x))³其中g⁻¹(x)表示函数g(x)的反函数,f(x)表示函数g(x)的导函数,y=g(x)表示可以用x表示的函数值。
这个公式告诉我们,反函数的二阶导数与原函数的二阶导数之间是有关系的,具体的关系可以通过以上公式进行计算得出。
除此之外,反函数的二阶导数还与原函数的变化率有一定的关系。
反函数的一阶导数代表了函数在某个点上的变化率,而反函数的二阶导数则代表了函数变化率的变化率。
如果原函数的二阶导数是正的,那么反函数的二阶导数也会是正的,这意味着反函数的变化率正在增加,函数愈加陡峭。
反之,如果原函数的二阶导数是负的,那么反函数的二阶导数就会是负的,表示反函数的变化率正在减少,函数的曲率愈加平缓。
总的来说,反函数的二阶导数与原函数的二阶导数之间存在着一定的关系。
在数学推导和计算中,这个关系会对我们的一些问题产生一定的指导意义。
因此,在学习数学时,应该注意理解反函数与原函数之间的关系,以及反函数的二阶导数与原函数的二阶导数之间的对应关系,使得我们能够更好地掌握此概念。
反导数公式及运算法则
反函数的求导法则是:反函数的导数是原函数导数的倒数。
例题:求y=arcsinx的导函数。
首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy
因为x=siny,所以cosy=√1-x2
所以y‘=1/√1-x2。
同理可以求其他几个反三角函数的导数。
所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。
最后将y想法设法换成x即可。
扩展资料:
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。
第1 页共1 页。
原函数和反函数
原函数和反函数是数学中相互关联但又有显著区别的两个概念。
原函数,也被称为原始函数或反导数函数,是一个已经给定的函数。
对于这个函数,如果存在一个可导函数,使得在这个函数的定义域内的每一点,该可导函数的导数都等于给定函数在该点的值,那么这个可导函数就被称为给定函数的原函数。
原函数通常用于求解不定积分,也就是求解一个函数的原函数或反导数函数。
反函数则是一个与原函数有特定关系的函数。
如果对于原函数f(x)中的每个x,当x属于原函数的定义域时,都有f(x)等于某个y值,那么对于反函数g(y)中的每个y,当y属于反函数的定义域时,都有g(y)等于对应的x值。
简单来说,反函数就是将原函数中的x和y互换得到的函数。
需要注意的是,并不是所有的函数都有反函数,只有那些一一映射的函数,即对于每一个x值,只有一个y值与之对应,才存在反函数。
原函数和反函数之间存在一些重要的关系。
首先,原函数和反函数的定义域和值域是互换的,即原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。
其次,原函数和反函数在其各自的定义域内具有相同的单调性。
此外,原函数和反函数的图像关于直线y=x对称。
总的来说,原函数和反函数是数学中两个相互关联但又有显著区别的概念。
原函数用于求解不定积分,而反函数则是将原函数中的x和y 互换得到的函数。
两者之间存在一些重要的关系,如定义域和值域的互换、单调性的相同以及图像的对称性。