高一数学反函数的图象
- 格式:ppt
- 大小:446.50 KB
- 文档页数:19
反函数及其图象知识点的辅导:反函数也是函数,它是函数部分的重要概念之一.从映射的观点认识,反函数也是一种映射:如果函数y =f (x )是定义域集合A 到值域集合C 的映射,那么它的反函数y=f -1(x )是集合C 到集合A 的映射.但必须明确只有一一映射确定的函数才有反函数.要正确地理解反函数的概念,关键是要弄清y =f (x )、x= f -1(y )以及y =f -1(x )三者之间的关系,特别是在不同的函数中x 、y 在含义、地位上的区别,以及三个函数的图象之间的关系. 一、反函数的定义函数y =f (x )中x 是自变量,y 是x 的函数,设它的定义域为A ,值域为C ,我们根据函数y =f (x )中x 、y 的关系,用y 把x 表示出,得到x=φ(y ),如果对于y 在C 中的任何一个值,通过x=φ(y ),x 在A 中都有唯一的值和它对应,那么x=φ(y )就表示y 是自变量,x 是自变量y 的函数,这样的函数x=φ(y )(y ∈C )叫做函数y= f (x )(x ∈A )的反函数.记作x= f -1(y ).在函数x= f -1(y )中,y 是自变量,x 表示函数,但在习惯上,我们一般用x 表示自变量,用y 表示函数,为此我们常常对调函数x= f -1(y )中的字母x 、y ,把它改写成y =f -1(x ).注:1o不是任何函数都有反函数,因为函数是数集A 到数集B 的映射,它的对应法则包括一对一和多对一两种情况,根据反函数的定义,只有给出的函数y= f (x )的对应关系是一对一的,才有反函数.例:(1)函数y=x 2(x ∈R )有没有反函数?为什么?(2)怎样改变定义域才能使它有反函数?反函数是什么?解:(1)函数y=x 2(x ∈R )没有反函数(2)如果把定义域分为(-∞,0]、[0,+∞)两个区间,则y =x 2在(-∞,0]上存在反函数,其反函数是y =-)0(≥x x ,y =x 2在[0,+∞)上存在反函数,其反函数是y =)0(≥x x .一般地,由于严格单调函数的对应关系是从“定义域到值域”的“一对一”,所以能求出它的反函数,即严格单调函数必有反函数,且严格递增函数的反函数也必严格递增,如果用某一个解析式表示的函数不是单调函数,可以将其定义域限制在一个单调区间内,也能研究它的反函数.2o 反函数的定义域与值域正好是原函数的值域与定义域,否则,即使对应法则互逆,也不能算是原函数的反函数.如:)(2)(2z x x y z y y x ∈=∈=与前者的值域不是后者的定义域,所以求原来函数的反函数时,必须已知或先确定原来函数的值域.3o 函数y =f (x )如果有反函数y =f -1(x ),那么原来函数y=f (x )也是反函数 y =f -1(x )的反函数,即它们互为反函数.因而f -1[f (x )]=x ,f[f -1(x )]=x.4o y =f (x ),x =f -1(y ),y =f -1(x )之间的关系.a. y =f (x )与x =f -1(y ):x ,y 所表示的量相同,但是地位不同.在y=f (x )中,x 是自变量,y 是函数值;在x =f -1(y )中,y 是自变量,x 是函数值. b. y =f (x )与y =f -1(x ):x 、y 地位相同,x 都是自变量,y 是函数值,这比较符合 习惯,并给研究函数带来某些方便,但是x 、y 所表示的量(指实际意义)在两式中被互换了,在y =f (x )中的x 、y 所表示的量分别是y =f -1(x )中的y 、x 所表示的量.c. x =f -1(y )与y =f -1(x ):都是y =f (x )的反函数,它们的对应法则相同,故实质上是同一个函数.二、互为反函数的函数图象间的关系例:求函数y=3x -2(x ∈R )的反函数,并且画出y =f (x )、x =f -1(y )与y =f -1(x )考虑:在例中,函数y =3x -2的图象与其反函数32+=y x 的图象有何关系?函数y=3x -2的图象与其反函数32+=x y 的图象有何关系?为什么?分析:函数y =3x -2与其反函数32+=y x ,虽然形式上它们的图象是同一条直线,但它们的自变量轴与因变量轴恰恰相反.如果我们把x 轴都看作是自变量轴,y 轴看作因变量轴,那么它们的图象是关于直线y=x 对称的.为了看清这一点,我们把函数y =3x -2的反函数32+=y x 换写成32+=x y ,这时函数与反函数中x 都表示自变量,y 都表示因变量,从图中看到,它们的图象是关于直线y=x 对称的.结论:1o .函数y =f (x )的图象和它的反函数y=f -1(x )的图象关于直线y=x 对称; 2o .y =f (x )与x =f -1(y )的图象重合知识点的讲解例1:求下列函数的反函数:(1)y=)1(11≠-+x xxxxx(2)y=x 2-8x +13 (x ≥4) (3)y =x|x|+2x (4)y =1-)01(12<≤-x x -(1)解:在原函数中,y=xxx xx -+-=-++--=-+12112)1(111-≠∴y 由y=xx -+11得:1+x =(1-x )y∴y -xy=1+x∴(y +1)x =y -1 ① y ≠-1 ∴x=11+-y y ②∴原函数的反函数是y=11+-x x (x ≠-1)说明:本题在由①式得到②式时,不能想当然将等式两边同除y +1,应注意,这样做的前提条件是y ≠-1 ,所以本题一开始先求原函数的值域,一方面是为了得到反函数的定义域,另一方面是为了保证后面正确运算的可能性. (2)解:y =f (x )=x 2-8x +16=(x -4)2-3 ∴ 当x ≥4时,f (x )单调递增 ∴它存在反函数.由y=(x -4)2-3得 (x -4)2=y +3 ∴x -4=3+±y∴x =43+±y 4≥x ∴ x =4+3+y又)4(1382≥+-=x x x y的值域是 y ≥-3∴原函数的反函数是y =4+3+x (x ≥-3)说明:通过本小题再次说明只有一一映射确定的函数才有反函数,y =x 2-8x+13本不存在反函数,但当把x 的取值范围限定在定义域的某个单调区间上以后,可以求出反函数,而且它的反函数也是唯一的,其表达式应由原函数中x 的范围(即x ≥4)加以确定. (3)解:y =x|x|+2x =⎩⎨⎧<+-≥+0,20,222x x x x x x 1o .当x ≥0时,由y =x 2+2x =(x +12)-1,得x +1=1+±y ,11011++-=∴≥+±-=y x x y x又 y =x 2+2x ,当x ≥0时,y ≥0∴y =x|x|+2x 当x ≥0时的反函数是y =-1+)0(1≥+x x ;2o .当x<0时,由y =-x 2+2x =-(x -12)+1,得(x -12)=1-y ,即x-1=y -±1,x =1y -±1 x<0 ∴x =1-y -1 又 y =x|x|+2x 当x<0时,y<0∴y =x|x|+2x (x<0)的反函数是y =1-)0(1<-x x∴y =x|x|+2x 的反函数是 y =⎩⎨⎧<--≥++-)0(11)0(11x xx x说明:1o对于求分段函数的反函数问题,应分别求出每一段上原函数的反函数,然后再表示成分段函数的形式.2o要注意,本题反函数中的x ≥0与x<0是由原函数的值域得到的,而不是由原函数中的x ≥0,x<0直接得来的. (4)解:由y =1-21x -得21x -=1-y ∴1-x 2=1-2y +y 2 ∴x =-22y y - 又 y =1-)01(12<≤--x x 的值域是0<y ≤1∴原函数的反函数是y =-)10(22≤<-x x x小结:求函数的反函数的步骤:①判断确定f(x)的映射是否为一一映射.一般情况下,所给的f(x)都是由一一映射所确定的函数,但是大家应明确不是由一 一映射确定的函数就求不出反函数;②将y=f(x)看成方程,解出x =f -1(y);③将x,y 互换,得到y =f -1(x);④写出y =f -1(x)的定义域.一般情况下,应通过原函数的值域确定反函数的定义域.例2:已知函数),(cd x R x dcx b ax y -≠∈++=中a 、b 、c 、d 均不为0(1)试求a 、b 、c 、d 满足什么条件时有反函数,并求出此反函数; (2)试求a 、b 、c 、d 满足什么条件时函数与反函数的图象重合.解:(1)由dcx b ax y ++=得cyx +dy =a x +b ,得(cy -a )x=b -dy ,这里必须cy -a ≠0,即 000·≠-≠+--+≠-++ad cb dcx adcax cb cax a dcx bax c 得得,在此条件下,得acy dy b x --=∴知当cb -a d ≠0时,函数)(cd x R x dcx b ax y -≠∈++=且的反函数是)(c b x R x acx b dx y ≠∈-+-=且(2)由条件,函数与反函数的图象重合即两函数是同一函数.由dcx b ax y ++=与acx b dx y -+=-比较可得a +d =0,知当cb -a d ≠0且a +d=0时,函数与反函数的图象重合.说明:本题中的结论可作为一个规律,加以记忆,这样对于dcx b ax y ++=型的反函数,不需进行推导,可直接写出结果. 例3:求下列函数的反函数。
1. 反函数定义:设函数f(x)是从其定义域A到值B上的一一映射f:A→B,则其逆映射f-1:B→A确定的函数叫做函数f(x)的反函数,记为y=f-1(x),函数f(x)叫做原函数。
反函数f-1(x)的定义域和值域,分别是f(x)的值域B和定义域A。
①函数f(x)是从定义域到值域上的一一映射,是函数f(x)存在反函数的充要条件。
②定义域上的单调函数必存在反函数,存在反函数的函数不一定是定义域上的单调函数。
③求解反函数的步骤:(i)求原函数f(x)的值域;(ii)由y=f(x)反解x=f-1(y);(iii)交换变量x、y,写出y=f-1(x)解析式;(iv)以f(x)的值域作为y=f-1(x)的定义域。
2.反函数定理:函数y=f(x)的图象和它的反函数y=f-1(x)的图象关于直线y=x对称。
①函数f(x)与f-1(x)图象关于y=x对称是f(x)与f-1(x)互为反函数的充要条件。
②函数f(x)是定义域上单调函数,则f-1(x)与f(x)具有相同的单调性。
③函数f(x)的图象关于直线y=x对称的充要条件是f(x)的反函数是其自身。
3. 正确、灵活的应用函数的单调性、奇偶性,求解函数的值域,确定函数解析式,求解函数不等式等应用。
[教学难点]1. 在求解反函数的过程中,先确定原函数f(x)的值域,以确保反解y=f(x)的运算有意义。
2. 若y=f(x)的反解结果不唯一时,由f(x)的定义域确定其唯一性。
3. 反函数y=f-1(x)的定义域不一定是各运算同时有意义的自变量取值集合,它必须由f(x)的值域确定。
4. 复合函数单调性的性质:设f(x)、g(x)是两个单调函数(1)若f(x)、g(x)是两个单调性相同(同为增函数或同为减函数)则复合函数f[g(x)]是其定义域上的增函数。
(2)若F(x)、g(x)单调性相反,(一个是增函数,一个是减函数)则复合函数f[g(x)]是其定义域上的减函数。
[教学例题]例1. 设函数f(x)=x2-4x-1,当,求f(x)的反函数。
第七讲反函数及函数图象一.知识归纳:1.反函数的概念:一般地,函数y=f(x)(x∈A)中,设它的值域为C,我们根据这个函数中x, y的关系,用y把x表示出,得到x=φ(y),如果对于y在C中的任何一个值,通过x=φ(y),x在A中都有唯一的值和它对应,那么,x=φ(y)就表示y是自变量,x是自变量y的函数。
这样的函数x=φ(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y)。
习惯上,我们一般用x表示自变量,用y表示函数,为此对调函数x=f-1(y)中的字母x, y,把它改写成y=f-1(x)。
注意:只有单调函数(一一对应的函数)才具有反函数。
2.求反函数的步骤:(1)确定原来函数的值域,也就是反函数的定义域(2)将函数y=f(x)看作方程,解出x=f-1(y)(3)将x=f-1(y)中的字母对调得y=f-1(x)3.反函数的图象:(1)函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而函数y=f(x)和函数x=f-1(y)的图象是同一个图象。
(2)如果两个函数的图象关于直线y=x对称,那么这两个函数互为反函数。
(3)点(a, b)在y=f(x)的图象上 点(b, a)在y=f-1(x)的图象上。
(4)如果一个函数的图象关于直线y=x对称,那么这个函数的反函数就是它本身。
4 . 函数图象不同函数的函数图象是不同的。
同一函数由于函数定义域的不同,函数图象也不同。
对于分段函数,因根据不同的定义域范围,画出各段函数。
5. 函数图象的变换(1)平移变换①将函数y=f(x)的图象向左(向右)平移|k|个单位(k>0 向左,k<0 向右)得y=f(x+k)的图象。
②将函数y=f(x)的图象向上(向下)平移|k|个单位(k>0 向上,k<0 向下)得y=f(x) +k的图象。
(2)对称变换函数y=f(x)的图象与y=-f(x),y=f(-x)及y=-f(-x)的图象分别关于x轴,y轴,原点对称。