非隔离型降压转换器的设计案例
- 格式:pdf
- 大小:1.36 MB
- 文档页数:12
《单相非隔离型Buck-Boost逆变器》篇一一、引言随着电力电子技术的快速发展,逆变器作为电力转换与控制的核心设备,在各类电力系统中扮演着重要角色。
单相非隔离型Buck-Boost逆变器作为一种典型的电力转换装置,其具有结构简单、成本低廉、效率高等优点,在家庭用电、工业控制、新能源并网等领域得到了广泛应用。
本文将详细介绍单相非隔离型Buck-Boost逆变器的工作原理、设计方法、性能特点及优化策略。
二、单相非隔离型Buck-Boost逆变器的工作原理单相非隔离型Buck-Boost逆变器是一种直流到交流的电力转换装置,其工作原理基于电力电子开关的通断控制。
该逆变器主要由直流电源、Buck-Boost电路、滤波电路和负载等部分组成。
当电力电子开关处于通态时,直流电源向Buck-Boost电路输送能量;当电力电子开关处于断态时,通过电感的作用,使输出电压维持稳定,并完成电压的升降功能。
同时,滤波电路的作用是减少输出电压的纹波,保证输出的稳定性和可靠性。
三、单相非隔离型Buck-Boost逆变器的设计方法设计单相非隔离型Buck-Boost逆变器时,需要考虑的主要因素包括输入电压范围、输出电压范围、功率等级、效率等。
具体设计步骤如下:1. 确定系统总体结构,包括输入、输出及控制部分。
2. 根据输入和输出要求,选择合适的电力电子开关器件及驱动电路。
3. 设计Buck-Boost电路的参数,包括电感、电容等。
这些参数的选择需要根据实际工作要求进行合理匹配和优化。
4. 设计滤波电路,以减少输出电压的纹波。
滤波电路的设计需要考虑滤波效果和系统稳定性等因素。
5. 完成控制策略的设计,包括PWM波形的生成、控制算法的选择等。
控制策略的优劣直接影响到逆变器的性能和效率。
四、单相非隔离型Buck-Boost逆变器的性能特点单相非隔离型Buck-Boost逆变器具有以下性能特点:1. 结构简单,成本低廉。
由于采用非隔离结构,减少了系统的复杂性和成本。
用于智能电表的非隔离式AC/DC降压转换器一款不带变压器的宽电压、低成本、非隔离式AC/DC降压转换器——输出持续电流500mA(2.5~12W)【关键词摘要】非隔离无变压器AC/DC电源芯片XD308H BUCK电路220V转5V220V转12V220V转24V380V转5V380V转12V380V转24V【概述】非隔离AC-DC电源芯片降压电路,一般采用BUCK电路拓扑结构,常见于小家电控制板电源以及工业控制电源供电。
其典型电路规格包含5V/500mA、12V/500mA和24V/500mA等,满足六级能效要求。
可通过EFT、雷击、浪涌等可靠性测试,可通过3C、UL、CE等认证。
其特点是:电路简单、BOM成本低(外围元件数目极少:无需变压器、光耦),电源体积小、无音频噪声、损耗小发热低。
1)220V转5V降压电路:输入12~380Vac,输出5V/500mA如图1所示的电路为一个典型的输出为5V/500mA的非隔离电源。
它通常应用于家用电器的(电饭煲、洗衣机及其它白色家电)。
此电路还适合于其它非隔离供电的应用,比如LED驱动、智能电表、加热器以及辅助电源和工业控制等。
电源系统带有各种保护,包括过热保护(OTP)、VCC欠压闭锁(UVLO)、过载保护(OLP)、短路保护(SCP)等。
电路特点:无噪音,发热低。
220V转5V降压电路输入级由保险电阻RF1、防雷压敏电阻RV1、整流桥堆D1、EMI滤波电容C4和C5以及滤波电感L2组成。
保险电阻RF1为阻燃可熔的绕线电阻,它同时具备多个功能:a)将桥堆D1的浪涌电流限制在安全的范围;b)差模噪声的衰减;c)在其它任何元件出现短路故障时,充当输入保险丝的功能(元件故障时必须安全开路,不应产生任何冒烟、冒火及过热发光现象)。
压敏电阻RV1用于防雷保护,提高系统可靠性。
功率处理级由宽电压高效率电源芯片XD308H、续流二极管D2、输出电感L1及输出电容C3构成。
非隔离降压型电源设计方案一款不带变压器的宽电压、低成本、非隔离式AC/DC降压转换器——输出持续电流500mA(2.5~12W)【关键词摘要】非隔离恒流恒压AC/DC电源芯片XD308H BUCK电路220V转5V220V转12V220V转24V380V转5V380V转12V380V转24V【概述】非隔离AC-DC电源芯片XD308H设计组成的降压恒流恒压电路,采用了BUCK电路拓扑结构,常用于小家电控制板电源以及工业控制电源供电。
其典型电路规格包含24V/500mA、12V/500mA和5V/500mA等,满足六级能效要求。
可通过雷击、EFT、浪涌等可靠性测试,可通过UL、CE、3C等认证。
其特点是:电路简单、BOM成本低(外围元件数目极少:无需变压器、光耦),电源体积小、无异常噪音、损耗小发热低。
1)220V转24V降压电路:输入32~380Vac,输出24V/500mA电源方案如图所示的电路为一个典型的输出为24V/500mA的非隔离电源。
它通常应用于家用电器的(电饭煲、洗衣机及其它白色家电)。
此电路还适合于其它非隔离供电的应用,比如LED驱动、智能电表、加热器以及辅助电源和工业控制等。
220V转24V降压电路输入级由保险电阻RF1、防雷压敏电阻RV1、整流桥堆D1、EMI滤波电容C4和C5以及滤波电感L2组成。
保险电阻RF1为阻燃可熔的绕线电阻,它同时具备多个功能:a)将桥堆D1的浪涌电流限制在安全的范围;b)差模噪声的衰减;c)在其它任何元件出现短路故障时,充当输入保险丝的功能(元件故障时必须安全开路,不应产生任何冒烟、冒火及过热发光现象)。
压敏电阻RV1用于防雷保护,提高系统可靠性。
功率处理级由宽电压高效率电源芯片XD308H、续流二极管D2、输出电感L1及输出电容C3构成。
2)220V转12V降压电路:输入32~380Vac,输出12V/500mA电源方案如图所示的电路为一个典型的输出为12V/500mA的非隔离电源。
非隔离型直流变换器实验报告实验报告:以非隔离型直流变换器一、实验目的本次实验的目的是了解非隔离型直流变换器的工作原理,掌握其基本电路结构和参数计算方法,以及实现其基本功能。
二、实验原理非隔离型直流变换器是一种将直流电压转换为不同电平的直流电压的电路。
其基本电路结构包括一个开关管、一个电感和一个电容。
当开关管导通时,电感中的电流逐渐增加,电容中的电压逐渐降低;当开关管截止时,电感中的电流逐渐减小,电容中的电压逐渐升高。
通过不断地开关管导通和截止,可以实现将输入直流电压转换为输出直流电压。
三、实验步骤1. 按照电路图连接电路,注意接线正确。
2. 调节电源电压和负载电阻,使得输出电压和输出电流符合要求。
3. 测量电路中各个元件的电压和电流,记录数据。
4. 分析数据,计算电路的参数,如输出电压、输出电流、开关管的导通时间和截止时间等。
5. 调整电路参数,观察输出电压和输出电流的变化,验证计算结果的正确性。
四、实验结果在实验中,我们成功地实现了非隔离型直流变换器的基本功能,将输入直流电压转换为输出直流电压。
通过测量电路中各个元件的电压和电流,我们得到了电路的参数,如输出电压、输出电流、开关管的导通时间和截止时间等。
通过调整电路参数,我们观察到了输出电压和输出电流的变化,验证了计算结果的正确性。
五、实验结论本次实验中,我们了解了非隔离型直流变换器的工作原理,掌握了其基本电路结构和参数计算方法,以及实现了其基本功能。
通过实验,我们验证了计算结果的正确性,加深了对该电路的理解和掌握。
六、实验心得本次实验让我更深入地了解了非隔离型直流变换器的工作原理和基本电路结构,同时也提高了我的实验操作能力和数据分析能力。
通过实验,我深刻认识到了理论知识与实践操作的紧密联系,也更加珍惜实验机会,希望在以后的学习中能够更加努力,不断提高自己的实验技能和理论水平。
《单相非隔离型Buck-Boost逆变器》篇一一、引言随着电力电子技术的不断发展,逆变器作为电力转换的核心设备,其性能和效率的优化显得尤为重要。
单相非隔离型Buck-Boost逆变器作为其中的一种重要类型,因其结构简单、成本低廉以及适用于多种电源场景等优点,被广泛应用于各类电力转换系统中。
本文将详细介绍单相非隔离型Buck-Boost逆变器的原理、设计及其实际应用。
二、单相非隔离型Buck-Boost逆变器原理单相非隔离型Buck-Boost逆变器是一种直流到交流的功率转换器,其基本原理是通过开关管的通断控制,将直流电源的电压和电流进行斩波和重组,从而得到所需的交流电压和电流。
该逆变器具有Buck(降压)和Boost(升压)两种工作模式,可以根据需要灵活切换。
三、单相非隔离型Buck-Boost逆变器设计单相非隔离型Buck-Boost逆变器的设计涉及到电路设计、器件选择、控制策略等多个方面。
1. 电路设计:根据应用需求,设计合理的电路拓扑结构。
通常包括输入电路、开关管电路、输出电路以及控制电路等部分。
2. 器件选择:选择合适的开关管、二极管、电容等器件,以满足系统的性能和效率要求。
3. 控制策略:采用适当的控制策略,如PWM(脉宽调制)控制、SPWM(正弦脉宽调制)控制等,以实现逆变器的稳定运行和优化性能。
四、单相非隔离型Buck-Boost逆变器应用单相非隔离型Buck-Boost逆变器广泛应用于各种电力转换系统,如太阳能发电系统、风力发电系统、电动汽车充电设施等。
在太阳能发电系统中,该逆变器可以将太阳能电池板产生的直流电转换为交流电,供给家庭或工业用电。
在风力发电系统中,该逆变器可以将风力发电机产生的电能进行转换和调节,以实现并网或独立供电。
在电动汽车充电设施中,该逆变器可以将电网的电能转换为适合电动汽车充电的直流电。
五、结论单相非隔离型Buck-Boost逆变器作为一种重要的电力转换设备,具有结构简单、成本低廉、适用范围广等优点。
非隔离电源实用电路集锦电容降压式电源将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。
一、电路原理电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。
在实际应用时常常采用的是图2的所示的电路。
当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。
整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。
二、器件选择1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。
因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。
C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。
当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io 时易造成稳压管烧毁.2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。
3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。
三、设计举例图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。
C1在电路中的容抗Xc为:Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K流过电容器C1的充电电流(Ic)为:Ic = U / Xc = 220 / 9.65 = 22mA。
通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。
电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。
VIPer12A非隔离电源LED驱动电源介绍。