数学建模-第9章随机数学模型2
- 格式:ppt
- 大小:674.50 KB
- 文档页数:22
(数学建模)人力资源安排模型文档:人力资源安排模型一、教学内容本节课我们将学习人力资源安排模型,这是数学建模中的一个重要内容。
我们将通过一个具体的例子来引入这个模型,然后讲解其数学原理和应用。
教材的章节为《数学建模》中的第9章,具体内容为“人力资源安排模型”。
二、教学目标1. 理解人力资源安排模型的概念和原理;2. 学会如何应用人力资源安排模型解决实际问题;3. 培养学生的数学建模能力和解决问题的能力。
三、教学难点与重点重点:理解人力资源安排模型的概念和原理,学会如何应用人力资源安排模型解决实际问题。
难点:如何将实际问题转化为数学模型,并求解。
四、教具与学具准备教具:PPT、黑板、粉笔;学具:纸、笔、计算器。
五、教学过程1. 实践情景引入:以一个公司的员工排班为例,讲解人力资源安排模型的实际应用。
2. 讲解人力资源安排模型的概念和原理:介绍人力资源安排模型的定义,讲解其数学原理和应用。
3. 例题讲解:给出一个具体的人力资源安排问题,引导学生如何将其转化为数学模型,并求解。
4. 随堂练习:让学生自己尝试解决一个人力资源安排问题,然后进行讲解和讨论。
5. 板书设计:将人力资源安排模型的数学公式和步骤板书在黑板上,方便学生理解和记忆。
6. 作业设计:给出一个人力资源安排问题,让学生课后解决,并写上下节课的PPT演示稿。
六、作业设计题目:某公司有三个部门,每个部门需要安排一名员工值班。
假设三个部门的员工分别为A、B、C,他们的值班时间分别为2小时、3小时和4小时。
要求每个部门的员工都不能连续值班,问如何安排员工的值班表?答案:可以安排如下:A值班:0002B值班:0205C值班:0509七、课后反思及拓展延伸本节课通过一个具体的例子引入了人力资源安排模型,让学生了解了其概念和原理,并学会了如何应用这个模型解决实际问题。
在教学过程中,我发现有些学生对于如何将实际问题转化为数学模型还有一定的困难,因此在课后我需要加强对这部分学生的辅导,让他们更好地理解和掌握这个模型。
《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。
“数学建模”课程简介及教学大纲课程代码:112010131课程名称:数学建模课程类别:专业基础课总学时/学分:72/4开课学期:第五学期适用对象:数学与应用数学专业、信息与计算科学专业先修课程:数学分析、高等代数、概率统计内容简介:本课程主要通过各个领域中的实例介绍各种数学方法建模,主要包括:初等数学方法与实验;Matlab、Lingo的使用;微分法建模与实验;微分方程建模与实验;差分法建模与实验;优化方法建模与实验;离散方法建模与实验;随机方法建模与实验。
一、课程性质、目的和任务1.性质:数学与应用数学、信息与计算科学专业必修课。
数学建模是将实际问题依其自身的特点和规律,经过去粗取精、去伪存真、抓住主要矛盾,进行抽象简化和合理假设,用数学的语言和方法转化为数学问题,然后选择适当的数学方法和工具,给予数学的分析与解答,再将所给出的结果返回到所论的实际问题中去进行检验,符合实际则数学建模成功,否则再从头开始,如此反复多次,直至通过实践检验为止。
数学模型是架于数学理论和实际问题之间的桥梁,•数学建模是应用数学解决实际问题的重要手段和途径。
本课程通过大量实例介绍数学建模的全过程。
2.目的:通过向学生展示各种不同实际领域中的数学问题和数学建模方法,通过对一系列来自不同领域的实际问题的提出、分析、建模和求解的学习与训练,激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,开拓知识面,培养创新精神,提高学生分析问题、解决问题和计算机应用的能力。
3. 任务:本课程旨在通过建模训练培养:(1)学生用数学工具分析解决实际问题的意识并逐步提高其洞察能力。
(2)学生用数学思想和方法综合分析实际问题的能力。
(3)学生的联想能力。
(4)学生熟练地使用计算机和数学软件包的能力。
即培养学生的建模能力和解决实际问题的能力。
二、课程教学内容及要求第一章绪论:1、数学建模的意义;2、数学建模的方法和步骤;数学模型的分类。
两种随机存贮管理模型的建立和求解摘 要:本文建立了仓库容量有限条件下单品种、多品种的允许缺货随机存贮模型。
采用连续的时间变量更合理地描述了问题,简化了模型的建立。
模型的求解是一个以分段的平均损失费用函数作为目标的带约束最优化问题。
针对题目中的具体数据对随机量送货滞后时间的密度函数进行了估计,解出了单品种、多品种条件下最优订货点的值和存贮方案。
通过分情况讨论把单品种存贮模型推广为多品种(m 种)存贮模型,论证了目标函数的独立变量为21m -个,使模型更加清晰、求解方便。
类比控制论中的相关理论提出了一定条件下多品种存贮的最优性原理,给出了证明,指出该原理简化模型和验证模型求解结果的作用。
讨论了销售速率具有随机性时的存贮模型,实际当中调整修正订货点的方法,以及仓库最大存贮量的一种预测办法。
最后指出了模型的优缺点。
0问题重述工厂生产需定期地定购各种原料,商家销售要成批地购进各种商品。
无论是原料或商品,都有一个怎样存贮的问题。
存得少了无法满足需求,影响利润;存得太多,存贮费用就高。
因此说存贮管理是降低成本、提高经济效益的有效途径和方法。
问题1 某商场销售的某种商品。
市场上这种商品的销售速率假设是不变的,记为r ;每次进货的订货费为常数1c 与商品的数量和品种无关;使用自己的仓库存贮商品时,单位商品每天的存贮费用记为2c ,由于自己的仓库容量有限,超出时需要使用租借的仓库存贮商品,单位商品每天的存贮费用记为3c ,且32c c ≤;允许商品缺货,但因缺货而减少销售要造成损失,单位商品的损失记为4c ;每次订货,设货物在X 天后到达,交货时间X 是随机的;自己的仓库用于存贮该商品的最大容量为0Q ,每次到货后使这种商品的存贮量q 补充到固定值Q 为止,且Q Q <0;在销售过程中每当存贮量q 降到L 时即开始订货。
请你给出求使总损失费用达到最低的订货点*L (最优订货点)的数学模型。
问题 2 现给出来自某个大型超市的关于三种商品的真实数据,按你的模型分别计算出这三种商品各自相应的最优订货点*L 。