4统计规律-3麦克斯韦分子速率分布定律
- 格式:ppt
- 大小:776.00 KB
- 文档页数:34
麦克斯韦速度分布律任何宏观物理系统的温度都是组成该系统的分子和原子的运动的结果。
这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。
然而,对于大量粒子来说,如果系统处于或接近处于平衡,处于一个特定的速度范围的粒子所占的比例却几乎不变。
麦克斯韦-玻尔兹曼分布具体说明了这个比例。
它以詹姆斯麦克斯韦和路德维希玻尔兹曼命名。
1定义气体中个别分子的速度具有怎样的数值和方向完全是偶然的,但就大量分子的整体来看,在一定的条件下,气体分子的速度分布也遵从一定的统计规律。
这个规律也叫麦克斯韦速率分布律。
2历史1859年,麦克斯韦首先获得气体分子速度的分布规律,尔后,又为玻耳兹曼由碰撞理论严格导出。
处于平衡状态下的理想气体分子以不同的速度运动,由于碰撞,每个分子的速度都不断地改变,使分子具有各种速度。
因为分子数目很大,分子速度的大小和方向是无规的,所以无法知道具有确定速度υ的分子数是多少,但可知道速度在υ1与υ2之间的分子数是多少。
麦克斯韦首先得到,在平衡状态下,当气体分子间相互作用可以忽略时,分布在任一速率区间υ~υd υ内的分子数与总分子数的比率为:麦克斯韦速率分布函数。
3内容在平衡态下,当气体分子间的相互作用可以忽略时,分布在任一速率区间v~vdv的分子数占总分子数的比率为: 麦克斯韦速率分布函数。
4速率分布函数按统计假设,各种速率下的分子都存在,可以用某一速率区间内分子数占总分子数的百分比来表示分子按速率的分布规律。
1)将速率从0→∞分割成很多相等的速率区间。
例如速率间隔取100m/ ,整个速率分为0-100;100-200;…等区间。
2)总分子数为N,在v→v△v区间内的分子数为△N在v→v△v区间内的概率为△Ni/N。
则可了解分子按速率分布的情况。
3)概率错误!△Ni/N与v有关,不同v附近概率不同。
错误!△Ni/N与△v有关,速率间隔大概率大。
→dv速率间隔很小,该区间内分子数为dN,在该速率区间内分子的概率dN/N∝dv写成等式fv=dN/Ndv表示分布在v→vdv区间内的分子数占总分子数的比率或百分比。
麦克斯韦气体速率分布律Maxwell Velocity Distribution大家知道,由气体的温度公式可以得出气体分子的方均根速率。
例如在时,氦气。
氧气。
但我们要注意的是,方均根速率仅是运动速率的一种统计平均值,并非气体分子都以方均根速率运动。
事实上,处于平衡状态下的任何一种气体,各个分子均以不同的速率、沿各个方向运动着。
有的速率大于方均根速率,有的速率小于方均根速率,它们的速率可以取零到无穷大之间的任意值。
而且由于气体分子间的相互碰撞,每个分子的速度也在不断地改变,所以在某一时刻,对某个分子来说,其速度的大小和方向完全是偶然的。
然而就大量分子整体而言,在平衡状态下,分子的速率分布遵守一个完全确定的统计性分布规律又是必然的。
下面我们介绍麦克斯韦应用统计理论和方法导出的分子速率分布规律。
气体分子按速率分布的统计规律,最早是由麦克斯韦于1859年在概率论的基础上导出的,1877年玻耳兹曼由经典统计力学中也导出该规律。
由于技术条件的限制,测定气体分子速率分布的实验,直到本世纪二十年代才实现。
1920年斯特恩(O.Stern首先测出银蒸汽分子的速率分布;1934年我国物理学家葛正权测出铋蒸汽分子的速率分布;1955年密勒(Mlier和库士(Kusch测出钍蒸汽分子的速率分布。
斯特恩实验是历史上最早验证麦克斯韦速率分布律的实验。
限于数学上的原因和本课程的要求,我们不推导这个定律,只介绍它的一些基本内容。
*麦克斯韦(J. C. Maxwell,1831—1879)英国物理学家,经典电磁理论的奠基人,气体动理论的创始人之一。
他提出了有旋电场和位移电流概念,建立了经典电磁理论,这个理论包括电磁现象的所有基本定律,并预言了以光速传播的电磁波的存在。
1873年,他的《电磁学通论》问世,这本书凝聚着杜费、富烂克林、库仑、奥斯特、安培、法拉第……的心血,这是一本划时代巨著,它与牛顿时代的《自然哲学的数学原理》并驾齐驱,它是人类探索电磁规律的一个里程碑。
麦克斯韦速度分布定律麦克斯韦速度分布定律是研究理想气体分子速度分布的重要理论依据。
它是由苏格兰物理学家詹姆斯·麦克斯韦于19世纪中期提出的,对于理解气体分子的运动规律具有重要意义。
麦克斯韦速度分布定律描述了气体分子在给定温度下的速度分布特征,为热力学和统计物理领域的研究提供了极为宝贵的工具。
麦克斯韦速度分布定律的推导基于统计学和概率论的原理,它假设了分子之间的相互作用可以忽略不计。
在这个假设下,理想气体中各个分子的速度是相互独立的,并且服从正态分布。
这意味着,在给定温度下,气体分子的速度存在一个平均值和一个标准差,而速度的分布则呈现出钟形曲线。
根据麦克斯韦速度分布定律,气体分子的速度分布与温度有关,即温度越高,分子的平均速度越大。
具体来说,根据麦克斯韦速度分布定律,一个单原子理想气体的速度分布函数可以表示为:f(v) = 4π(μ/2πkT)^(3/2) * v^2 * exp(-μv^2 / 2kT)其中,f(v)表示速度分布函数,v表示分子速度,μ表示分子的质量,k表示玻尔兹曼常数,T表示温度。
从这个函数的表达式可以看出,速度分布函数是一个关于速度的概率密度函数,可以用来计算速度在某个范围内的概率。
对于正常的气体条件,速度的平均值与大多数分子的速度接近,而速度的标准差则反映了分子速度的分散程度。
麦克斯韦速度分布定律的应用范围非常广泛。
首先,它在热力学和统计物理中被广泛用于描述气体分子的运动和能量分布。
通过分析分子速度的分布特征,可以推导出气体的热力学性质,如压强、内能和热容等。
其次,麦克斯韦速度分布定律还在化学动力学研究中有着重要的应用。
通过对反应物分子的速度分布进行分析,可以预测反应速率和反应机理。
此外,该定律还可以应用于材料科学、天体物理学和等离子体物理学等领域。
尽管麦克斯韦速度分布定律是从理想气体模型出发推导得出的,但它在实际气体中的适用性相当广泛。
实际气体的分子间相互作用虽然不能完全忽略,但在适当条件下,可以将其近似看作理想气体,并利用麦克斯韦速度分布定律进行研究。
麦克斯韦分子速率分布定律的推导麦克斯韦分子速率分布定律是分子运动理论中一个重要的概念,它用来描述分子或微粒在一定条件下的速率分布情况。
它表明,当以相同速率出射分子时,在不同瞬间可以得到不同的分子速度,而这些分子速度是具有特定分布函数的随机变化,这个分布函数就是麦克斯韦分子速率分布函数。
一般来说,微粒的运动属于无序性运动。
在实验中,出射的分子速度的分布状况不容易分析,只能藉助于实验结果推断出微粒速度的分布规律。
而麦克斯韦分子速率分布定律是1859年俄国物理学家麦克斯韦(Maxwell)推导出来的一个概念,他结合热力学原理和拉格朗日机械统计原理,以蒙特卡洛方法推导出了质点和分子在不同温度下的速率分布情况,结果发现分子速度都符合高斯分布,即可以用一个正态分布概率密度函数来对分子速度进行分析,而这就是麦克斯韦分子速率分布定律。
f(v) = 4πa^3v^2exp(-a^2v^2)其中f(v)是速度为v的粒子数,a是系统的温度模式,用a^3来表示。
其定义概括地表示出温室质点和分子在温度T下的速度分布情况。
而推导时最重要的一个步骤就是综合考虑热力学和机械统计原理,通过这两个原理,可以使得统计模型的概率守恒,即有能量的分配都是满足守恒定律的,从而可得到正态分布,即f(v)为高斯分布函数,最后积分得到麦克斯韦分子速率分布定律。
总的来说,麦克斯韦分子速率分布定律可以较为完整地描述出温室质点或分子在某一温度下的运动规律,统计是一种相对稳定的状态。
它在应用到能量或物质传输等实际场合中有重要作用,比如应用到气体流体动力学中。
历史上,麦克斯韦分子速率分布定律有很多改进版本,比如上面函数中的指数可以做出改变,也可以对新的分子进行同样的推导,从而求出其对应的概率分布函数。
因此,麦克斯韦分子速率分布定律仍然是理解物理世界中的质点运动、热力学和机械统计的重要工具,是实验物理学的理论基础。
麦克斯韦速度分布定律麦克斯韦速度分布定律是描述气体分子速度分布的统计规律之一,由19世纪末的苏格兰物理学家詹姆斯·麦克斯韦提出。
该定律在热力学和统计物理学中有着广泛的应用,能够揭示气体分子运动特征,对于理解气体动力学和热传导等现象具有重要意义。
根据麦克斯韦速度分布定律,理想气体分子的速度服从麦克斯韦-玻尔兹曼速度分布。
其概率密度函数为:f(v) = (m / (2πkT))^(3/2) * 4πv^2 * e^(-mv^2 / (2kT))其中,f(v)表示速度为v的分子的概率密度,m为分子质量,k为玻尔兹曼常数,T为气体温度。
该概率密度函数描述了气体分子速度的分布情况。
根据这一函数,可以得到气体分子不同速度下的概率密度,以及平均速度、平均速度的平方等相关参数。
麦克斯韦速度分布定律具体刻画了速度分布的趋势,从而为研究气体热力学性质提供了重要依据。
根据麦克斯韦速度分布定律可以得到以下几个重要结论:1. 峰值速度:麦克斯韦速度分布定律的概率密度函数在具体速度处取得最大值,即存在一个峰值速度。
这个峰值速度与气体的温度和质量有关,温度越高或质量越小,峰值速度越大。
2. 平均速度:根据麦克斯韦速度分布定律,可以计算出气体分子的平均速度。
平均速度与系统的温度有关,随着温度的升高,平均速度也增加。
3. 速度分散度:麦克斯韦速度分布定律还可以用来计算气体分子速度的分散度。
速度分散度可以通过计算速率最大值附近的速度范围来确定。
由于速度分散度对于描述气体的输运性质至关重要,因此,该定律在研究气体动力学和热学性质时经常被应用。
麦克斯韦速度分布定律是热力学和统计物理学中的重要模型,它将分子速度的概率分布与系统的热力学性质联系在一起。
通过该定律,我们可以更好地理解气体分子的运动规律,研究气体的输运性质和热传导现象。
同时,在工程和科学领域的应用中,麦克斯韦速度分布定律也为材料设计、能源开发和天文物理学等提供了重要指导。