(完整word版)六年级上奥数第一讲找规律
- 格式:doc
- 大小:245.01 KB
- 文档页数:6
相遇问题概念:速度=路程÷时间路程=速度×时间时间=路程÷速度1、甲、乙两人分别从两地同时相向而行,8小时可以相遇,如果两人每小时都少行千米。
那么10小时后相遇,问两地相距多少千米?2、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,骑自行车每小时行11千米,两人同时出发,然后在离甲、乙两地中点9千米处相遇。
求甲乙两地间的距离是多少千米?3、A、B两地相距21千米,上午6时甲、乙分别从A、B两地出发,相向而行。
甲到达B地后立即返回,乙到达A地后也立即返回,上午9时他们第二次相遇,此时甲行的路程比乙行的路程多9千米,甲每小时行多少千米?4、某城市的环城公路全长180千米,甲、乙两辆汽车同时从同地背向出发绕这条环城公路行驶了小时相遇。
如果甲车先行36千米,那么在乙车出发几小时后两车相遇?5、兄弟两人同时从家里出发步行去车站,16分钟哥哥到达车站,弟弟离车站还有240米,哥哥的速度是每分钟82米,弟弟每分钟走多少米?16、甲、乙两人同时以相距4800米的两地相向而行,甲骑自行车,乙步行。
6分钟两人相遇。
甲的速度是乙的速度的3倍,求甲乙两人的速度各是多少?7、小明步行45分钟从A地到B地,小华乘车15分钟可以B地到A地,当小明和小华在路上相遇时,小明已经走了30分钟,小华接小明乘车返回B地,还需要多少分钟?8、一辆客车和一辆货车同时从相距225千米的两地相向而行,客车每小时行50千米,货车每小时行40千米,行了几小时后两车相距45千米?再行几小时后两车又相距45千米?9、甲、乙两辆车从相距240千米的两地同时相向而行,因遇雾天,甲车每小时比原来少行15千米,乙车每小时比原来少行10千米,出发后,经过3小时两车相遇。
甲车原来每小时比乙车快15千米,甲、乙两车原来的速度各是多少?10、甲、乙两车相距516千米,两车同时从两地出发相向行,乙车行驶6小时后停下修车,这时两车相距72千米,甲车保持原速继续前进,经过2小时与乙车相遇,求乙车的速度?211、两辆汽车上午8点整分别从相距210千米的甲、乙两度相向而行,第一辆汽车在途中修车停了45分钟,第二辆车因加油停了半小时。
第一章分数的简便计算第一节巧用运算定律和性质探究目标1.能够根据四则运算的定律及性质使一些计算变得简便。
2.能利用和、差、积、商的变化规律进行简便运算。
3.进一步提高分析、抽象、综合、概括等能力。
探究过程参与一下“做数学”的过程,探究过程参与一下“做数学”的过程,乐趣尽在其中哦!例1 计算:分析:通过观察发现这样就可以运用乘法的分配律达到简算目的。
通过观察,还可以发现55加上1正好等于56,所以也可以这样简算:本题关键是先要观察题目的特点,可以将第一个因数变化,也可以将第二个因数进行变化。
例2 计算:本题中关键是将再运用乘法分配率进行简便计算。
例3 计算:本题的关键是将算式中的某个整体看作一个数,再运用有关定律进行简便计算。
例4计算:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.24+0.65)×(0.23+0.34).[完全解题] 仔细观察,这组算式中的数就是1,0.23,0.34,0.65,它们按某种规律排列,像这样的题目可以将它的某一部分看作一个整体,用字母代替,这样可简化计算的过程。
设A=0.23+0.34,B=0.23+0.34+0.65。
原式=(1+A)×B-(1+B)×A=B+AB-A-AB(AB与BA一样的结果,且可相互抵消)=B-A=0.23+0.34+0.65-(0.23+0.34)=0.65[技法点睛] 本题从题目本身看是不能简便计算的,所以要善于运用拆数的方法。
例5 (2003·浙江省小学数学活动课夏令营)计算:[技法点睛] 本题在利用乘法分配律之前,要运用等差数列求和的方法求出这些数的和一共有多少个。
例6 (2002·天津市数学学科竞赛)计算:例7 (2002·四川省小学生数学夏令营)计算:[完全解题] 题目中每组两个因数中的第一个因数接近一个整十数,并且这个整十数正好是第二个因数分母的倍数。
六年级奥数——行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
练习1:1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
找 规 律1、观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n 个点阵相对应的等式_____________________。
2、观察下列等式:221.4135−=×;222.5237−=×;223.6339−=×224.74311−=×;…………第5个等式位 .则第n (n 是自然数)个等式为3、自己观察下列算式,寻找规律填数.2+4=2×32+4+6=3×42+4+6+8=4×52+4+6+8+10+…+50= × .4.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )………… ①1=12; ②1+3=22; ③1+3+5=32④ ; ⑤;A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+315、 观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…… .猜想:第n 个等式(n ____________________________.6、观察下列各式:1×3=21+2×1,2×4=22+2×2,3×5=23+2×3,请你将猜想到的规律用自然数n (n ≥1)表示出来: 。
7、 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数是 。
10.观察下列等式:211=2132+=4=1+3 9=3+6 16=6+10…2++=1353……………根据观察可得:13521_________.(n为非0自然数)n++++−=8、观察下列等式9-1=816-4=1225-9=1636-16=20…………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为 .9、观察下列等式:第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n行的等式为____________10、观察下列各式:3211=332+=1233322++=123633332123410+++=……猜想:333312310++++= .11、观察下列几个算式,找出规律:1+2+1=41+2+3+2+1=91+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25……利用上面规律,请你迅速算出:①1+2+3+…+99+100+99+…+3+2+1= ②据①你会算出1+2+3+…+100是多少吗?③据上你能推导出1+2+3+…+n 的计算公式吗?12、你能很快算出21995吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方,任意一个个位数为5的自然数可写成10•n +5,即求2)510(+n 的值(n 为自然数),你试分析 ,3,2,1===n n n 这些简单情况,从中控索其规律,并归纳,推测出结论(在下面空格内填上你的控索结果)。
六年级找规律知识点知识点一:图形规律在六年级的数学学习中,图形规律是一个重要的知识点。
通过观察和分析不同的图形,我们可以发现它们之间的规律。
以下是一些常见的图形规律:1. 图形的重复:有些图形会按照一定的规律进行重复。
例如,正方形阵列中的正方形图案,每一行和每一列都有相同的图形。
2. 图形的增长:有些图形会按照一定的规律进行增长或减小。
例如,数字金字塔中每一行的数字都比上一行多一个。
3. 图形的旋转:有些图形可以通过旋转一定的角度来得到下一个图形。
例如,正五边形可以通过旋转72度得到下一个正五边形。
知识点二:数字规律除了图形规律,数字规律也是六年级数学学习中的重要内容。
通过观察和分析数字序列,我们可以找到它们之间的规律。
以下是一些常见的数字规律:1. 数字的增长:有些数字序列会按照一定的规律递增或递减。
例如,2、4、6、8、10是一个递增的数字序列,每一项比前一项大2。
2. 数字的乘法规律:有些数字序列可以通过乘法规律得到下一个数字。
例如,2、4、8、16、32是一个每一项都是前一项乘以2的序列。
3. 数字的变化规律:有些数字序列中的数字会按照一定的规律变化。
例如,1、3、6、10、15是一个每一项都比前一项多1的三角形数序列。
知识点三:字母规律除了图形和数字规律,字母规律也是六年级数学学习中的一部分。
通过观察字母序列,我们可以找到它们之间的规律。
以下是一些常见的字母规律:1. 字母的增加规律:有些字母序列会按照字母表的顺序逐渐增加。
例如,A、B、C、D、E是一个按照字母表顺序逐渐增加的序列。
2. 字母的循环规律:有些字母序列会按照一定的规律进行循环。
例如,A、B、C、D、A、B、C、D是一个按照循环规律进行变化的序列。
3. 字母的间隔规律:有些字母序列中的字母之间会按照一定的间隔进行变化。
例如,A、C、E、G是一个每个字母之间间隔一个字母的序列。
通过学习和掌握图形规律、数字规律和字母规律,六年级的学生可以在解决问题、寻找规律等方面更加得心应手。
1.数列的规律:
数列是一组按照一定顺序排列的数的集合。
在六年级,学生需要掌握常见数列的规律,如等差数列和等比数列。
例如,等差数列是指数列中相邻两项之间的差值都相等;等比数列是指数列中相邻两项之间的比值都相等。
可以通过观察数列中的数字规律,找到数列的通项公式,进而求解问题。
2.图形的规律:
3.运算的规律:
在六年级,学生需要通过观察和分析数字运算的规律。
这包括四则运算、整数运算、分数运算等。
例如,学生需要能够找出加法和乘法中的交换律和结合律,帮助简化计算。
学生还需要能够观察分数的加法和乘法运算规律,例如两个分数相乘时,可以先约分再计算。
4.题目的规律:
在解决数学问题时,有时可以通过观察题目的规律来找到解题方法。
这包括题目中的数字规律、排列组合规律等。
例如,在解决排列组合问题时,可以通过观察问题中的条件,找到排列组合的方法。
总之,找规律是六年级数学课程中的重要知识点。
通过寻找数列、图形、运算和题目的规律,学生可以培养逻辑思维和解决问题的能力。
掌握找规律的方法,对学生进一步学习数学课程以及日后的学习和生活都具有重要的意义。
等差数列知识点:等差数列的和= (首项+末项)×项数÷2项数= (末项-首项)÷公差+1公差= 第二项-首项等差数列的第n项= 首项+(n-1)×公差首项= 末项-公差×(项数-1)例1、计算。
1+3+5+7+……+95+97+99解:1+3+5+7+……+95+97+99=(1+99)×50÷2=2500例2、(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)解:(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)=(1+1999)×1000÷2-(2+1998)×999÷2=-=1000例3、计算1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999解:1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999 ==例4、求首项为5,末项为155,项数是51的等差数列的和。
解:(5+155)×51÷2=160×51÷2=80×51=4080例5、有60个数,第一个数是7,从第二个数开始,后一个数总比前一个数我4 。
求这60个数的和。
解:(1)末项为: 7+4×(60-1)=7+4×59=7+236=243(2)60个数的和为:(7+243)×60÷2=250×60÷2=7500例6、数列3、8、13、18、……的第80项是多少?例7、求3+7+11+……+99=?例8、一个15项的等差数列,末项为110,公差为7,这个等差数列的和是多少?例9、一个大礼堂,第一排有28个座位,以后每排比前排多一个座位,第35排是最后一排,这个大礼堂共有多少个座位?练一练一、计算1、2+4+6+……+96+982、68+65+……+11+83、2+3+4+……+2000+2001+2002+2003二、列式计算1、8、15、22……这列数的第100项是多少?2、一个有20项的等差数列,公差为5,末项是104,这个数列的首项是几?3、一个公差为4的等差数列,首项为7,末项为155.这个数列共有多少项?4、有一列数,已知第1个数为11,从第二个数起每个数都比前一个数多3,这列数的前100个数的和是多少?三、解答下列各题1、王师傅每天工作8小时,第1小时加工零件50个,从第二小时起每小时比前一小时多加工零件3个,求王师傅一天加工多少个零件?2、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下,时钟一昼夜敲打多少次?3、一个剧院设置了30排座位,第一排有38个座位,往后每排都比前一排多1个座位,这个剧院共有多少个座位?4、一个物体从空中自由落下,第一秒下落4.9米,以后每秒多下落9.8米,经过20秒落到地面,物体原来离地面多高?。
小 学 六 年 级 奥 数 讲 义规 律 探 索※1、数一数,右图中共有( )个三角形。
A 、19 B 、35 C 、172、一张纸上有7个不同的点,这些点可以连接成( )条线段。
3、、根据下图所示的(1),(2),(3)三个图所表示的规律,依次下去第5个图中平行四边形的个数是( )※4、有7家中国公司,4家美国公司,2家法国公司参加国际会议洽谈贸易,彼此都希望与异国的每家公司单独洽谈一次,要安排( )次会谈场次。
※5、……的循环节是( ),小数点后第2011位数是( )※6、 把▼.●.■按▼●●■■■▼●●■■■▼●●■■■……规律排列,那么第50个●排在从左往右的第( )位。
7观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆).●□☆●●□☆●□☆●●□☆●若第一个图形是圆,则第2011个图形是 (填名称).……(1(2(38、根据下列图形的排列规律,第2010个图形是福娃(填写福娃名称即可).9、将自然数按以下规律排列,则2012所在的位置是第行第列。
第一列第二列第三列第四列…第一行 1 2 9 10 …第二行 4 3 8 11 …第三行 5 6 7 12 …第四行16 15 14 13 …第五行17 ……10、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数1234n正三角形个数471013…a剪10次后,有个小小正三角形11、下图由边长为1厘米的正六边形排列而成。
其中每个黑色六边形与6个白色六边形相邻。
若一共有35个黑色六边形,则共有几个( )白色六边形。
12、如图,按照这样的规律摆下去,则第8个图形需棋子 枚13、如图是由火柴棒搭成的几何图案,则第10个图案中有_________根火柴棒。
14、搭建如图的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.15、观察下边图形,依照此规律,第20个图形共有 个★16、根据图中数字的规律,在最后一个图形中填空.图1 图2 图3第1个图 第2个图第3个图…1 233 4 155 6 3584根 12根24根n =1n =2n =317、如右图,表2是从表1中截取的一部分,则_____.a18、观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a+b=表一表二表三19、下列给出的一串数:2,5,10,17,26,,50.仔细观察后回答:缺少的数是 .※20、求数列2、22、222、2222、……中,前30个数和的十位数字是( )。
六年级奥数知识点大汇总1、六年级奥数知识点讲解:不定方程2、六年级奥数知识点:约数与倍数3、六年级奥数知识点:数的整除4、六年级奥数知识点:余数及其应用5、六年级奥数知识点:余数问题6、六年级奥数知识点:分数与百分数的应用7、六年奥级数知识点:分数大小的比较8、六年级奥数知识点:完全平方数9、六年级奥数知识点讲解:称球问题10、六年级奥数知识点讲解:质数与合数11、六年级奥数知识点讲解:二进制及其应用12、六年级奥数知识点讲解:定义新运算13、六年级奥数知识点讲解:周期循环数14、六年级奥数知识点讲解:牛吃草问题15、六年级奥数知识点讲解:鸡兔同笼问题16、六年级奥数知识点讲解:归一问题17、六年级奥数知识点讲解:逻辑推理问题18、六年级奥数知识点讲解:几何面积19、六年级奥数知识点讲解:时钟问题20、六年级奥数知识点讲解:浓度与配比21、六年级奥数知识点讲解:经济问题22、六年级奥数知识点讲解:简单方程23、六年级奥数知识点讲解:循环小数24、六年级奥数知识点:综合行程问题25、六年级奥数知识点讲解:工程问题26、六年级奥数知识点讲解:比和比例27、六年级奥数知识点讲解:加法原理28、六年级奥数知识讲解:数列求和29、六年级奥数知识讲解:抽屉原理30、六年级奥数知识点讲解:平均数问题31、六年级奥数知识点讲解:盈亏问题32、六年级奥数知识点讲解:植树问题33、六年级奥数知识点讲解:年龄问题的三大特征34、小学奥数知识点总结之:和差倍问题35、小学奥数知识点总结之:分数拆分1、六年级奥数知识点讲解:不定方程不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;2、六年级奥数知识点:约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a 的约数。
1小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
数学的思考教学内容分析例5体现了找规律对解决问题的重要性。
这里的规律的一般化表述是:以平面上几个点为端点,能够连多少条线段。
这种以几何形态显现的问题,便于学生动手操作,通过画图,由简到繁,发现规律。
解决这类问题的常用策略是,由最简单的情况入手,找出规律,以简驭繁。
这也是数学问题解决比较常用的策略之一。
例7是一个比较复杂的逻辑推理问题,借助列表,则比较容易逐步缩小范围,找到答案。
这里渗透了逻辑推理的常用方法“排除法”。
教学目标1.通过学生观察、探索,使学生掌握数线段的方法。
2.渗透"化难为易"的数学思想方法,能使用一定规律解决较复杂的数学问题。
3.培养学生归纳推理探索规律的水平。
教学重难点【教学重、难点】引导学生发现规律,找到数线段的方法教具学具准备多媒体课件教学设计思路(1)出示例5前,能够先让学生说说几年来每一学期的“数学广角”学了些什么。
探索例5时,理应先让学生理解问题。
能够通过读题、说题意,使学生明白每两点之间都能连一条线段。
然后让学生自己动手在纸上画画、试试,再来讨论有没有什么好方法2)探究例7时,必须先让学生仔细读题,理解题意。
教学环节教学内容安排、教师及学生活动设计二次设计复习回顾一、游戏设疑,激趣导入。
1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。
(课件出现下图,之后学生操作)2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。
(板书课题)新知学习二、逐层探究,发现规律。
1. 从简到繁,动态演示,经历连线过程。
师:同学们,用8个点来连线,我们觉得很困难,如果把点减少一些,是不是会容易一些呢?下面我们就先从2个点开始,逐步增加点数,找找其中的规律。
师:2个点能够连1条线段。
为了方便表述我们把这两个点设为点A和点B。
1. 利用质数、合数的性质解题.2. 灵活掌握质数、合数的拆分方法.本讲主要是对质数、合数的性质的灵活运用,并对质数2、5的特殊性深刻理解,同时对一些质数、合数的拆分规律进行归纳总结.1. 质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2. 判断一个数是否为质数的方法根据定义如果能够找到一个小于P 的质数p (均为整数),使得p 能够整除P ,那么P 就不是质数,所以我们只要拿所有小于P 的质数去除P 就可以了;但是这样的计算量很大,对于不太大的P ,我们可以先找一个大于且接近P 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除P ,如没有能够除尽的那么P 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.第6讲质数、合数3. 若干个整数的和已知,求这些整数的积最大的方法拆分原则:多拆3,最多拆两个2,不拆1――拆分后乘积最大4. 找n 个连续合数的方法方法一:(1)!2n ++,(1)!3n ++,(1)!4n ++,…,(1)!(1)n n +++这n 个数分别能被2、3、4、…、(n +1)整除,它们是连续的n 个合数.其中!n 表示从1一直乘到n 的积,即1⨯2⨯3⨯…⨯n .方法二:[2,3,4,5,,,(1)]n n ++,[2,3,4,5,,,(1)]3n n ++ ,[2,3,4,5,,,(1)]4n n ++ , ,[2,3,4,5,,,(1)]n n n ++ ,()[2,3,4,5,,,(1)]1n n n +++ (其中[2,3,4,5,,,(1)]n n + 表示2,3,4,,n ,1n +的最小公倍数)【例 1】 已知P 是质数,21P +也是质数,求51997P +是多少?【分析】 P 是质数,2P 必定是合数,而且大于1.又由于21P +是质数,2P 大于1,21P +一定是奇质数,则2P 一定是偶数.所以P 必定是偶质数,即2P =.55199721997P +=+321997=+2029=[巩固] (第五届“华杯赛”口试第15题)图中圆圈内依次写出了前25个质数;甲顺次计算相邻二质数之和填在上行方格中;乙顺次计算相邻二质数之积填在下行方格中.质数列乙填“积数”甲填“和数”978913117532351561285.................................问:甲填的数中有多少个与乙填的数相同?为什么?[分析] 质数中只有一个偶数2,其余的质数均为奇数.所以甲填的“和数”中除第一个是奇数5外,其余的均为不小于8的偶数.乙填的“积数”中除第一个是偶数6外,其余所填的全是不小于15的奇数.所以甲填的数与乙填的数都不相同.【例 2】 (2008年南京市青少年“科学小博士”思维训练)炎黄骄子 菲尔兹奖被誉为“数学界的诺贝尔奖”,只奖励40岁以下的数学家.华人数学家丘成桐、陶哲轩分别于1982年、2006年荣获此奖.我们知道正整数中有无穷多个质数(素数),陶哲轩等证明了这样一个关于质数分布的奇妙定理:对任何正整数k ,存在无穷多组含有k 个等间隔质数(素数)的数组.例如,3k =时,3,5,7是间隔为2的3个质数;5,11,17是间隔为6的3个质数:而 , , 是间隔为12的3个质数(由小到大排列,只写一组3个质数即可).【分析】 最小的质数从2开始,现要求每两个质数间隔12,所以2不能在所要求的数组中.而且由于个位是5的质数只有一个5,所以个位是3的质数不能作为第一个质数和第二个质数,可参照下表:利用质数、合数性质解题[巩固] (全国小学数学奥林匹克)从1~9中选出8个数排成一个圆圈,使得相邻的两数之和都是质数.排好后可以从任意两个数字之间切开,按顺时针方向读这些八位数,其中可以读到的最大的数是 . [分析] 由于质数除了2以外都是奇数,所以数字在顺时针排列时应是奇偶相间排列.切开后的数仍然具有“相邻两数之和是质数”,并且最高位与最低位之和也是质数,考虑到“最大”的限制条件,最高位选9,第二位选8,第三位最大可以选7,但7与8之和不是质数,再改选5,8与5之和是质数,符合要求.第四位可选剩余的最大数字6,如此类推……十位可选3,个位选2.所以,可以读到的最大数是98567432.数字排列如图.【例 3】 三个质数的乘积恰好等于它们和的11倍,求这三个质数.【分析】 设这三个质数分别是a 、b 、c ,满足11()abc a b c =++,则可知a 、b 、c 中必有一个为11,不妨记为a ,那么11bc b c =++,整理得(1)(1)12b c --=,又121122634=⨯=⨯=⨯,对应的b =2、c =13或b =3、c =7或b =4、c =5(舍去),所以这三个质数可能是2,11,13或3,7,11.[拓展] (俄罗斯数学奥林匹克)万尼亚想了一个三位质数,各位数字都不相同.如果个位数字等于前两个数字的和,那么这个数是几?[分析] 因为是质数所以个位数不可能为偶数0,2,4,6,8也不可能是奇数5.如果末位数字是3或9,那么数字和就将是3或9的两倍,因而能被它们整除,这就不是质数了.所以个位数只能是7.这个三位质数可以是167,257,347,527或617中间的任一个.【例 4】 (我爱数学少年数学夏令营)用0,1,2,…,9这10个数字组成6个质数,每个数字至多用1次,每个质数都不大于500,那么共有 种不同的组成6个质数的方法.请将所有方法都列出来.【分析】 除了2以外,质数都是奇数,因为0~9中只有5个奇数,所以如果想组成6个质数,则其中一定有2.又尾数为5的数中只有5是质数,所以5只能单独作为6个质数中的一个数.另4个质数分别以1,3,7,9为个位数,从而列举如下:{2,3,5,7,41,89},{2,3,5,7,61,89},{2,3,5,7,89,401},{2,3,5,7,89,461},{2,3,5,7,61,409},{2,3,5,47,61,89},{2,3,5,41,67,89},{2,3,5,67,89,401},{2,5,7,43,61,89},{2,5,7,61,83,409}.即共有10种不同的方法.[拓展] (2003年“祖冲之杯”邀请赛)大约1500年前,我国伟大的数学家祖冲之,计算出π的值在3.1415926和3.1415927之间,成为世界上第一个把π的值精确到7位小数的人.现代人利用计算机已经将π的值计算到了小数点后515亿位以上.这些数排列既无序又无规律.但是细心的同学发现:由左起的第一位3是质数,31也是质数,但314不是质数,那么在3141,31415,314159,3141592,31415926,31415927中,质数是 .[分析] 注意到3141,31415,3141592,31415926,31415927依次能被3,5,2,2,31整除,所以,质34765892数是314159.【例 5】 (保良局亚洲区城市小学数学邀请赛)用L 表示所有被3除余1的全体正整数.如果L 中的数(1不算)除1及它本身以外,不能被L 的任何数整除,称此数为“L —质数”.问:第8个“L —质数”是什么?【分析】 “L 数”为1,4,7,10,13,16,19,22,25,28,31,34,….“L —质数”应为上列数中去掉1,16,28,…,即为4,7,10,13,19,22,25,31,34,….所以,第8个“L —质数”是31.【例 6】 有一个四位数,它的个位数字与千位数字之和为10,且个位数既是偶数又是质数,去掉首位和末位得到一个两位数是质数,又知这个四位数是72的倍数,求这个四位数.【分析】 设这个四位数为abcd ,由题目可知,10a d +=,2d =,所以8a =,四位数是82bc根据:“去掉首位和末位得到一个两位数是质数”,“这个四位数是72的倍数”可得72|82bc ,9|82bc ,即9|(82)b c +++.可以得到9|(1)b c ++.所以b c +的结果有两种可能:8b c +=,17b c +=.bc 可能是80,71,17,62,26,53,35,44,98,89.其中80,62,26,35,44,98为合数.只有71,17,53,89是质数. 又因8|2,2100102(968)(422)bc bc b c b c b c =++=++++所以8|422b c ++(968b c +是8的倍数).把17,53,89代入上式:不能满足8|422b c ++,只有71可以满足上式:8|47212⨯+⨯+【例 7】 如果一个数,将它的数字倒排后所得的数仍是这个数,我们称这个数为回文数.如年份数1991,具有如下两个性质:①1991是一个回文数.②1991可以分解成一个两位质数回文数和一个三位质数回文数的积.在1000年到2000年之间的一千年中,除了1991外,具有性质①和②的年份数,还有 .【分析】 这一千年间回文数年份共有10个,除去1991外,还有1001,1111,1221,1331,1441,1551,1661,1771,1881.符合条件②的两位质数只能是11,所以符合条件②的只有三个,即11⨯101=1111, 11⨯131=1441,11⨯15l =1661.[铺垫] (2005年武汉“明星奥数挑战赛”)小晶最近迁居了,小晶惊奇地发现他们新居的门牌号码是四位数.同时,她感到这个号码很容易记住,因为它的形式为abba ,其中a b ≠,而且ab 和ba 都是质数(a 和b 是两个数字).具有这种形式的数共有 个.[分析] 若两位数ab 、ba 均为质数,则a 、b 均为奇数且不为5,故有1331,3113,1771,7117,7337,3773,9779,7997共8个数.[拓展] 如果某整数同时具备性质:⑴这个数与1的差是质数;⑵这个数除以2所得的商也是质数;⑶这个数除以9所得的余数是5.我们称这个整数为幸运数,那么在两位数中,最大的幸运数是 .[分析] 条件⑴也就是这个数与1的差是2或奇数,这个数只能是3或者是偶数,再根据条件⑶,除以9余5,在两位的偶数中只有 14,32,50,68,86这五个数满足条件.其中86与50不符合⑴,32与68不符合⑵,三个条件都符合的只有14.这个数是14.【例 8】 一个等差数列的连续5项都是质数,那么这个等差数列的公差最小是多少?【分析】 显然公差应该是一个偶数,如果是奇数的话,那任意相邻的两项就必然是一个奇数一个偶数了.同样的道理,公差如果不是3的倍数,那任意相邻的三项中必然有一个是3的倍数,如果第一项是3, 则第4项也是3的倍数,不能是质数了;综合分析得,公差应该是2和3的倍数,所以公差至少是6.如果公差是5的倍数,则公差至少是30;如果公差不是5的倍数,因为连续项中至少有一个是5的倍数,所以只能是第1个是5,取6为公差,那剩下的就分别是11、17、23、29,恰好满足要求,所以公差最小是6.[拓展] 有9个连续自然数,它们都大于80,那么其中质数最多有多少个?[分析] 首先除了2以外的质数都是奇数,在任意9个连续自然数中,至多有5个数是奇数,这5个奇数中必然有一个5的倍数,所以质数最多有5-1=4个.构造过程如下:首先有4个偶数,所以这9个数中最大的和最小的都是奇数,中间的一个自然也是奇数;而且9个连续自然数有3个3的倍数,只能有1个奇数,有2个偶数,那么第2个数和第8个数是3的倍数的偶数,这样的话第5个数也就是中间的数必然是3的倍数,为了节省“合数”,所以我们应该让中间的一个数既是3的倍数,又是5的倍数,经试验105可以做中间数, 发现这9个数是101、102、103、104、105、106、107、108、109, 刚好有4个质数101、103、107、109.【例 9】 把1988分成几个自然数的和,再求出这些数的乘积,要使得到的乘积尽可能大,则这时乘积的所有不同质因数的和是 .【分析】 如果拆成的数中有1,则将1加入其它的数中将会使乘积更大,所以拆成的数中不能有1;如果拆成的数中有不小于5的数a ,由于3(3)290a a a --=->,即3(3)a a ->,所以将a 再拆成3与3a -会使乘积更大,所以拆成的数中不能有不小于5的数;如果拆成的数中有4,由于42222=+=⨯,所以可以将4再拆成两个2,这样乘积不变所以;拆成的数应全为2和3.又因为22233++=+,22233⨯⨯<⨯,所以,如果出现3个以上的2,将3个2换成2个3会使乘积更大;所以,拆成的数中最多只能有2个2,其余的全为3.而198836622=⨯+,所以应将1988拆分成662个3和1个2,这时其乘积最大.而此时乘积只有3和2这两个不同的质因数,所以答案是325+=.总结拆分原则:多拆3,做多拆两个2,不拆1――拆分后乘积最大[巩固] 若干个整数的和是2005,求这些整数的积最大是多少?[分析] 2005÷3=6681 ,则拆成:667232⨯.【例11】 将30拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,应怎样拆?【分析】 拆成2,3,4,6,7,8.1不应出现在拆成的数中.把从2开始的若干个连续自然数相加.如果234(1)n a ++++-< ,而234(1)n n a ++++-+≥ ,则234(1)n n ++++-+ 与a 的差只可能为0,1,2,…,1n -.①当差为0时,将a 拆成234(1)a n n =++++-+②当差为1时,将a 拆成34(1)a n n =+++-+③当差为2,3,…,n -1中的数时,就将该数从2,3,…,n -1,n 中删除,其余数即为所拆之数.本题中234567835++++++=,比30大5,故将5去掉,30被拆成234678+++++质数、合数的灵活拆分[巩固](2008年湖北“创新杯”)电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播.A.7天B.8天C.9天D.10天[分析]由于希望播出的天数要尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少.又123456728++++++=,如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出.由于已有过一天播出2集的情况,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子里播出.例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9等均可.所以最多可以播7天.【例11】写出10个连续自然数,它们个个都是合数.【分析】在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96.我们把筛选法继续运用下去,把考查的范围扩大一些就行了.用筛选法可以求得在113与127之间共有13个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126.同学们可以在这里随意截取10个即为答案.可见本题的答案不唯一.老师可以把本题拓展为找更多个连续的合数:找200个连续的自然数它们个个都是合数.【分析】如果10个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数 第10个是11的倍数,那么这10个数就都是合数.又2m+,m+3, ,m+11是11个连续整数,故只要m是2,3, ,11的公倍数,这10个连续整数就一定都是合数.设m为2,3,4, ,11这10个数的最小公倍数.m+2,m+3,m+4, ,m+11分别是2的倍数,3的倍数,4的倍数 11的倍数,因此10个数都是合数.所以我们可以找出2,3,4 11的最小公倍数27720,分别加上2,3,4 11,得出十个连续自然数27722,27723,27724 27731,他们分别是2,3,4 11的倍数,均为合数.说明:我们还可以写出11!2,11!3,11!411!11++++(其中n!=1⨯2⨯3⨯ ⨯n)这10个连续合数来.同样,(m+1)!+2,(m+1)!+3,,(m+1)!+m+1是m个连续的合数.那么200个连续的自然数可以是:201!2,201!3,,201!201+++说明:构造法的应用可以很快得出符合条件的10个连续自然数,而且可以拓展到更多连续自然数的情况.【例12】有些自然数能够写成一个质数与一个合数之和的形式,并且在不计加数顺序的情况下,这样的表示方法至少有13种,那么所有这样的自然数中最小的一个是多少?【分析】在所有的质数中,从小到大第13个质数是41,因此在13种分解方法中,质数最大的那一组至少是41445=+=+=+=+=+ +=.按题目要求分拆45有如下12种方法:4534254073811341332 =+=+=+=+=+=+=+17281926232229163114378414按题目要求分拆46有如下7种方法:=+=+=+=+=+=+=+462447391135133319273115379按题目要求分拆47有如下14种方法:=+=+=+=+=+=+=+472453444435426417401037=+=+=+=+=+=+=+因47.1136133417301631182919282324[拓展]求1-100中不能表示成两个合数的乘积再加一个合数的最大数是多少?[分析]考虑最小的合数是4,先把表示方法简化为4⨯合数+合数而合数最简单的表现形式就是大于等于4的偶数因此该表示方法进一步表示为4⨯(2⨯n)+合数即8n+合数(其中n>1即可)当该数被8整除时,该数可表示为4⨯(2n)+8,n>1,所以大于等于24的8的倍数都可表示当该数被8除余1时,该数可表示为4⨯(2n)+9,n>1,所以大于等于25的被8除余1的都可表示当该数被8除余2时,该数可表示为4⨯(2n)+10,n>1,所以大于等于26的被8除余2的都可表示当该数被8除余3时,该数可表示为4⨯(2n )+27,n >1,所以大于等于43的被8除余3的都可表示当该数被8除余4时,该数可表示为4⨯(2n )+4,所以大于等于20的被8除余4的都可表示当该数被8除余5时,该数可表示为4⨯(2n )+21,所以大于等于37的被8除余5的都可表示当该数被8除余6时,该数可表示为4⨯(2n )+6,所以大于等于22的被8除余6的都可表示当该数被8除余7时,该数可表示为4⨯(2n )+15,所以大于等于31的被8除余7的都可表示综上所述,不能表示的最大的数是43835-=经检验,35的确无论如何也不能表示成合数×合数+合数的形式,因此我们所求的最大的数就是351. P 是质数,10P +,14P +,210P +都是质数.求P 是多少?【分析】 由题意知P 是一个奇数,因为10331÷= ,14342÷= ,所以P 是3的倍数,所以3P =2. 三个质数的乘积恰好等于它们的和的7倍,求这三个质数.【分析】 设这三个质数分别是a 、b 、c ,满足7()abc a b c =++,则可知a 、b 、c 中必有一个为7,不妨记为a ,那么7bc b c =++,整理得(1)(1)8b c --=,又81824=⨯=⨯,对应的b =2、c =9(舍去)或b =3、c =5,所以这三个质数可能是3,5,73. 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?(并写出所组成的质数)【分析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,除了2以外,质数都是奇数,因为0~9中只有5个奇数,所以如果想组成6个质数,则其中一定有2.又尾数为5的数中只有5是质数,所以5只能单独作为6个质数中的一个数.另4个质数分别以1,3,7,9为个位数,从而列举如下:{2,3,5,7,89,461}、{2,3,5,7,89,641}(6252525=⨯.而且641都不能被2、3、5、7、11、13、17、19、23整除,所以641是质数){2,3,5,47,61,89},{2,3,5,41,67,89},{2,5,7,43,61,89}4. 有人说:“任何7个连续整数中一定有质数.”请你举一个例子,说明这句话是错的.【分析】 例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,它们都不是质数.【评注】我们注意到(1)!2n ++,(1)!3n ++,(1)!4n ++,…,(1)!(1)n n +++这n 个数分别能被2、3、4、…、(n +1)整除,它们是连续的n 个合数.其中!n 表示从1一直乘到n 的积,即1⨯2⨯3⨯…⨯n .5. 若将17拆成若干个的质数之和,使得这些质数的乘积尽可能大,那么这个最大的乘积是多少?【分析】 根据整数拆分原则:多拆3,少拆2,不拆1――拆分后乘积最大.若要使17拆成的不同质数的乘积尽可能大,应该将17分解为5个3和1个2,所以最大乘积是3⨯3⨯3⨯3⨯3⨯2=486.6. (第五届“华杯赛”复赛第8题)把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?【分析】 3735292572331123231319513197111925111925131771317271117=++=+++=++=+++=++=++=+++=+++=++=+++ 共10种不同拆法.其中3⨯5⨯29=435最小拒子入门子发是战国时期楚国的一位将军。
六年级趣味数学第一讲:有趣的找规律班级姓名例1:(1)1, 8, 27, 64, 125,( );(2)3, 4, 9, 23, 60,( ) ;(3)9,5,4,9,3,2,( );练习:(1)2,5,11,23,47,( );(2)6,7,3,0,3,3,6,9,5,( );(3)63,69,78,85,90,( );:(1) (2) 例24 5 1 7 8 92 , 5 4 6 84 2 4 1 , 7练习:下面两张数表中的数的排列存在某种规律,你能找出这个规律,并根据这个规律把括号里的数填上吗,(1) (2) 3 7 4 2 6 7 11 4 9 5 4 4 , 1 5 , 6 3 5 5 6例3(1)(2),187****1062250 26 25 21 9 58 122 ,练习:(1) (2)41 36 16 13 37 17 18 20, 31 19 1 19 33 , 23综合练习:1、找规律填数。
(1)2, 5, 10, 17, 28, ( ),( )(2)94,46,22,10,( ),( )(3)142857、428571、285714、857142、( ) 2、下图所示的图形中的数字都有各自的规律,先把规律找出来,再把空缺的数字填上:3. 下图所示的图形中的数字都有各自的规律,先把规律找出来,再把空缺的数字填上:7 2 68 6 7 2 2 11 , 123 894 14 215 3 124、下图中,每个圆代表一个数码,每横行的三个圆从左到右看做一个三位数,四行表示的四个三位数是890, 784,361,256。
那么,5(下图的数之间存在着某种关系,请按照这一关系求出数a和b。
六年级趣味数学第二讲:有趣的数字谜班级姓名例1(从1,7中选出六个数字填入下式的?中,能得到的最大结果是多少,?×(?-?)??-?×?。
练习:1、从1,9这九个数字中选出八个填入下式的八个?内,使得算式的结果尽可能大:[×(?+?)]-[?×?+?-?]。
(完整)六年级数学找规律练习(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)六年级数学找规律练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)六年级数学找规律练习(word版可编辑修改)的全部内容。
六年级找规律练习题班级姓名等级1、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=_ ___。
2、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102 ;…… ……由此规律知,第⑤个等式是。
3、如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n根火柴棍时,若摆出的正方形所用的火柴棍的根数为S,则S=(用含n的代数式表示,n为正整数).4、如图是五角星灯连续旋转闪烁所成的三个图形。
照此规律闪烁,下一个呈现出来的图形是5、如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼"需要火柴 根.……6、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
7、小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子( )枚(用含有n 的代数式表示)A B C D1条2条3条三层二杈树二层二杈树一层二杈树8、在计算机程序中,二杈树是一种表示数据结构的方法。
精心整理
第一讲找规律
给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.
开篇小练习:
1。
2个数是3、案是4
A.2n
5、第n 6
7、
8
……猜想:
3333 12310________ +++⋅⋅⋅+=
典型例题:
一、数字排列规律题
1、下面数列后两位应该填上什么数字呢?23581217____
2、请填出下面横线上的数字。
112358____21
3、有一串数,它的排列规律是1、2、3、2、3、
4、3、4、
5、4、5、
6、……聪明的你猜猜第100
个数是什么?
4、有一串数字36101521___第6个是什么数?
5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是(). A .1
B .2
C .3
D .4
6、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.
7、一组按规律排列的数:1,3,
7,13
,36
21,……请你推断第9个数是. 8、已知下列等式:①13=12;②13+23=32;③13+23+33=62; ④13+23+33+43=102;…………由此规律知,第⑤个等式是.
9、观察下列各式;①、12+1=1×2;②、22+2=2×3;③、32+3=3×4;………请把你猜想到的规律用自然数n 表示出来。
10、观察下面的几个算式:①、1+2+1=4;②、1+2+3+2+1=9;
③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子
11、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是() A .1
B .2
C .3
D .4
12、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
第1行1 第2行-2 3 第3行-4 5 -6 第4行7 -8 9 -10 第5行11-12 13 -14 15
13、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于. 14、观察下列各算式:
1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律
(1)试猜想:1+3+5+7+…+2005+2007的值?
(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少? 二、几何图形变化规律题
1、观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●………… 从第1个球起到第2005个球止,共有实心球个.
2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有个(用含n 的代数式表示)。
3、(
2005年宁夏回族自治区)“◆”代表甲种植物,“★”代表乙种植物,为美化环境,采用如图所示方案种植.按此规律第六个图案中应种植乙种植物_________株.
★★★★
★★★◆◆◆
★★◆◆★★★★ ◆★★★◆◆◆ ★★◆◆★★★★ 图1★★★◆◆◆
图2★★★★(第四题)
4、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示). (1)当n =5时,共向外作出了个小等边三角形
(2)当n =k 时,共向外作出了个小等边三角形(用含k 的式子表示).
5、用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子枚(用含有n 的代数式表示) ………
63个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。
7、下图是某同学在沙滩上用石于摆成的小房子.
观察图形的变化规律,写出第n 个小房子用了块石子.
n =3
n =4
n =5
…
8、
1
1-1
1-21
1-331
1-46-41
1-5-105-1
1
①13
②13
③13
④13
2
3、
①13
③1+2
由此规律可知,第⑤个等式是
4、观察下列等式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;……
用你发现的规律确定22007的个位数学数字是
分析:观察计算结果的末位数字,依次按2,4,8,6循环出现。
而2007÷4=501……3,故22007的个位数字与23的个位数字相同,所以2的个位数字是8
19.研究下列等式,你会发现什么规律?
1×3+1=4=22
d c b
a 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 …
设n 为正整数,请用n 表示出规律性的公式来. 5、探索规律 可写成
,可写成
可写成
,
可写成
(1)把这个规律用含有n 的式子写出来; (2)计算952.
6、
四、与数阵有关的问题
1、(下图所示是一个数表,现用一个矩形在数表中任意框出4个数则: (1)、a 、c 的关系是:__________________; (2)、当a +b +c +d =32时,a =__________.
2、上面给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是() A .69
B .54
C .27
D .40
3、将连续的自然数1至36按下图的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为a ,用含有a 的代数式表示这9个数的和为。
4、上图的数阵是由全体奇数排成
(1)图中平行四边形框内的九个数之和与中间的数有什么关系?
(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于2006吗?,1017呢?若能,请写出这九个数中最小的一个,若不能,请说出理由。
五、与视图、展开图有关的问题
1、如图是几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,
日一二三四五六
123456 78910111213
14151617181920 21222324252627 28293031
图中有规
则这个几何体的主视图为()
2
() A 、7B 、6C 、
5D 、4 3、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如上图,是一个正方体的平面展开图,若图中“锦”为前面,“似”为下面,“前”为后面,则“祝”表示正方体的面.
4、下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交(A 52P ,n P A
D
B C。