一次函数的应用2教案
- 格式:doc
- 大小:214.50 KB
- 文档页数:11
一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。
孙疃中心学校”st”互助学习“三步九环节”学案
年级八学科数学主备教师曹磊审核人年级组长签名班级姓名时间
孙疃中心学校”st”互助学习“三步九环节”学案之研学案
孙疃中心学校”st ”互助学习“三步九环节”学案之测学案
班级 姓名
1、已知两个一次函数y=x+3k 和y=2x -6的图象交点在y 轴上,则k 值为 。
2、如图,l 1表示某机床公司一天的销售收入与机床销售量的关系,l 2表示该公司一天的销售成本与机床销售量的关系。
(1)当x=1时,销售收入= 万元,销售成本= 万
元。
利润(收入-成本)= 万元。
(2)一天销售 件时,销售收入等于销售成本。
(3)l 1对应的函数表达式是 。
(4)你能写出利润与销售量间的函数表达式吗?
3. 某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.
(1)分别写出甲、乙两厂的收费y 甲(元)、y 乙(元)与印制数量x (本)之间的关系式;
(2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.
4.A 、B 两家旅行社推出家庭旅游优惠活动,两家旅行社的票价均为一人90元,但优惠办法不同。
A 旅行社的优惠办法是:全家有一个购全票,其余的半价优惠;B 旅行社的优惠办法是:每人均按3
2
票价优惠。
你将选择哪家旅行社?
x/件。
5.4一次函数的应用(2)教案主备:徐红石 审核:席美丽 时间:2009年12月24日教学目标:1、能利用一次函数及其图象解决简单的实际问题。
2、通过解决实际问题,进一步发展学生的数学应用能力。
教学重点:一次函数的应用。
教学难点: 一次函数的应用。
学习过程:一、自学质疑:1.气温随高度的升高而下降.下降的一般规律是从地面到高空11km 高处,每升高1km ,气温下降6℃;高于11km 时,气温几乎不再变化.设某处地面气温20℃,该处高空x km 处气温为y ℃. (1)当0≤x ≤11时,求y 关于x 的函数关系式;(206y x =-)(2)画出该处气温随高度(包括高于11km )而变化的图象;(略)(3)试分别求出该处在离地面4.5km 及13km 的高空处的气温. (-7℃;-46℃) 2. 预习课本第158~159页内容。
思考:(1)158页图像中的交点的含义是什么?交点的左侧y 1和y 2的大小关系怎样?右侧呢? (当路程为2000km ,时,两家费用一样。
)(2)159页交流的表格中有哪些信息?运输方式较好的标准是什么? (费用较低) 二、交流展示: 1.158页例题,(重在分类思想的渗透) (1)这两条直线有联系吗? (不能只看到1y 和2y ,其实横轴和纵轴的含义一样)(2)哪一条直线上升得更快一些? “上升得更快一些”的实际意义是什么? (3) 交点的含义是什么?交点的左侧y 1和y 2的大小关系怎样?右侧呢? (4)你觉得选择哪家租赁公司的费用较少?2.课本159页交流。
你能在同一直角坐标系中,分别画出两个函数的图象,进而解决问题吗? (求出解析式,画出图形,两题一样) 三、互动探究:你还有其他方法解决吗?(方程或不等式) 四、精讲点拨:(1)某电信公司推出甲乙两种消费方式供手机用户选择使用:甲种方式每月收月租费25元,每分钟收通话费0.2元;乙种方式不收月租费,每分钟收通话费0.45元,请依据通话时间多少选择一种合适的方式。
第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。
本节课为第2课时。
其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。
使学生体会到数学学习过程中“数形结合”思想的重要性。
在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。
(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。
(2)初步体会方程与函数的关系,体会数形结合思想。
情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。
(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
难点:体会函数与方程的关系,发展“数形结合”的思想”。
三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。
在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。
但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。
四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。
鲁教版数学七年级上册6.5《一次函数的应用》教学设计2一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第6.5节的内容。
本节课主要让学生掌握一次函数的应用,学会解决实际问题。
教材通过简单的实例,引导学生理解一次函数在实际生活中的应用,培养学生的数学应用能力。
二. 学情分析七年级的学生已经学习了初中数学的一些基本概念和运算,但对一次函数的应用还不够熟练。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解一次函数的概念,掌握一次函数的性质。
2.学会将实际问题转化为一次函数问题,能运用一次函数解决实际问题。
3.提高学生的数学应用能力,培养学生的逻辑思维能力。
四. 教学重难点1.一次函数的概念和性质。
2.如何将实际问题转化为一次函数问题。
3.运用一次函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究一次函数的应用。
2.利用实例分析,让学生直观地理解一次函数在实际生活中的应用。
3.采用小组合作学习,培养学生的团队协作能力。
4.利用多媒体辅助教学,提高教学效果。
六. 教学准备1.准备相关的一次函数实例,用于讲解和练习。
2.准备一次函数的图片或实物模型,帮助学生直观地理解一次函数。
3.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
”引导学生思考如何用数学知识解决实际问题。
2.呈现(10分钟)呈现一次函数的定义和性质,让学生了解一次函数的基本概念。
通过示例,讲解一次函数在实际生活中的应用,让学生直观地理解一次函数。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数解决。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)选取几组学生的作品,进行展示和讲解。
让学生分享自己的解题过程和心得,加深对一次函数应用的理解。