5.5一次函数的简单应用(2)
- 格式:ppt
- 大小:2.12 MB
- 文档页数:18
一次函数的性质及应用一次函数,也称为线性函数,是数学中较为简单而重要的函数类型之一。
它的一般形式可以表示为 y = ax + b,其中 a 和 b 是常数,a 表示直线斜率,b 表示直线与 y 轴的截距。
一次函数在数学中有着广泛的应用,本文将介绍一次函数的性质及其在实际问题中的应用。
1. 一次函数的性质一次函数的性质主要包括直线斜率和截距的关系,直线的特殊情况以及函数图像的特点。
1.1 直线斜率和截距的关系在一次函数 y = ax + b 中,直线的斜率 a 决定了直线的倾斜程度,截距 b 决定了直线在 y 轴上的位置。
当 a > 0 时,直线向右上方倾斜;当 a < 0 时,直线向左上方倾斜;当 a = 0 时,直线平行于 x 轴。
截距 b 则表示直线与 y 轴的交点在 y 轴上的位置,当 b > 0 时,交点在 y 轴上方;当 b < 0 时,交点在 y 轴下方;当 b = 0 时,交点位于原点。
1.2 直线的特殊情况一次函数中存在两种特殊的情况,即水平和竖直线。
当直线平行于 x 轴时,斜率 a = 0,此时直线呈水平姿态。
水平直线的一般形式为 y = b,其中 b 为直线与 y 轴的交点在 y 轴上的位置。
当直线平行于 y 轴时,斜率不存在,此时直线呈竖直姿态。
竖直直线的一般形式为 x = c,其中 c 为直线与 x 轴的交点在 x 轴上的位置。
1.3 函数图像的特点一次函数的图像呈现直线的形式。
根据直线的性质,我们可以得出以下结论:a) 当a ≠ 0 时,直线是无限延伸的;b) 当 a = 0 时,直线是水平的,长度可能有限也可能无限;c) 当 b = 0 时,直线经过原点。
2. 一次函数的应用一次函数在实际问题中有着广泛的应用,其中包括数学、物理、经济等各个领域。
2.1 数学领域在数学中,一次函数常用于解决线性方程组的问题。
线性方程组可以通过一次函数的表示转化为直观易懂的图像,从而得出解的意义和解的性质。
1.暑假期间,小明和父母一起开车到距家250千米的某景点旅游、出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升(汽车行使过程中,每千米的耗油量不变)则油箱余油量y与行驶路程x之间的函数关系式为y=______(不要求写出自变量的取值范围)2.某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶,已知油箱中的余油量y(升)与行驶时间t(小时)的关系如下表:则y与t之间的函数关系式为y=______(不要求写出自变量的取值范围)3. 一辆机动车行驶在路途中.出发时,油箱内存油40L.行驶若干小时后司机停车吃饭,饭后继续行驶一段时间后到达某加油站准备加油,图中表示的是该过程中油箱里剩余油量Q(L)与行驶时间t(h)之间的函数关系.(1)司机行驶______小时停车吃饭;吃饭用了______小时;(2)则饭前行驶过程中的函数解析式为Q=______;(不要求写出自变量的取值范围)(3)6小时后,邮箱内还有______升油.4.货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的B处.下表记录的是货车一次加满油后油箱剩余油量y(升)与行驶时间x(时)之间的关系:则这个函数解析式y=______.(不要求写出自变量的取值范围)1. 一根长20cm的弹簧,一端固定,另一端悬挂物体.在弹簧伸长限度内,悬挂x(kg)质量的物体时,弹簧的长度为y(cm),且y是x的一次函数.根据实验所得数据回答下列问题:(1)在弹簧伸长限度内,每挂1kg质量的物体,弹簧伸长______cm;(2)y与x的函数关系式是______;(写成y=kx+b,k≠0形式,不要求写出自变量的取值范围)(3)若弹簧伸长长度不得超过30cm,则弹簧所挂物体的最大质量为___3___kg.2. 有一根弹簧原长度为10cm,挂重物后(不超过50g)它的长度会发生改变,请根据下面表格中的一些数据回答下列问题(1)在弹簧伸长限度内,每挂1g质量的物体,弹簧伸长______cm;(2)y与x的函数关系式是______;(写成y=kx+b,k≠0形式,不要求写出自变量的取值范围)(3)弹簧的伸长量最大为______cm3. 在弹性限度内,弹簧伸长的长度与所挂物体的质量呈正比,某弹簧不挂物体时长15cm,当所挂物体质量为3kg时,弹簧长16.8cm.写出弹簧长度L(cm)与所挂物体质量x(kg)之间的函数表达式______.(写成L=kx+b,k≠0形式,不要求写出自变量的取值范围)4. 弹簧挂上物体后会伸长,已知一个弹簧的长度y(cm)与所挂物体质量x(kg)之间的关系如下图所示:(1)在弹簧伸长限度内,每挂1kg质量的物体,弹簧伸长______cm;(2)y与x的函数关系式是______;(写成y=kx+b,k≠0形式,不要求写出自变量的取值范围)(3)若物体的质量最大为15kg,则弹簧最长会伸长______cm一次函数的应用-生长问题1. 如图为小明在11岁之后身高y岁年龄x的变化情况,且CD ∥x轴,根据图像,回答下列问题:(1)小明的身高最高达到______cm(2)小明的身高从15岁到30岁共长了______cm2. 如图为实验中学的学生对某植物的生长情况观察后所绘制的图像(BD ∥x轴),得到植物高度y(单位:cm与观察时间x(单位:天)的关系,(1)该植物生长______天后,停止生长(2)该植物从第4天到第8天共生长了______cm3. 如图,一颗豆芽生长x天后的高度为ycm,l反应了y与x之间的函数关系,根据图像回答下列问题:(1)这根豆芽的原始长度为______cm(2)5天后这根豆芽的高度为______cm4. 如图,头发生长x周之后的长度y, l反应了y与x之间的函数关系,根据图像回答下列问题:(1)4周之后头发生长了______cm(2)______周后,头发的长度为8cm一次函数的应用-方案问题1. 碑林书法社小组用的书法练习纸(毛边纸)可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每刀20元(每刀100张),但甲商店的优惠条件是:若购买不超过10刀,则按标价卖,购买10刀以上,从第11刀开始按标价的七折卖;乙商店的优惠条件是:购买一只9元的毛笔,从第一刀开始按标价的八五折卖,设购买刀数为x(刀),在甲商店购买所需费用为y1元,在乙商店购买所需费用为y2元。
一次函数在生活中的具体应用一次函数是一种简单且广泛应用于生活实践的数学函数。
它描述了两个变量之间的线性关系,其中一个变量(因变量)随着另一个变量(自变量)的变化而变化。
下面是一些一次函数在生活中的具体应用:1. 财务分析:在财务领域,一次函数被广泛应用于分析销售,收入和成本的关系。
例如,一个公司可以使用一次函数来预测其收入如何随着广告支出的增加而增加。
一次函数也可以用来计算产品的成本与其销量的关系等。
2. 物理学:一次函数也可以被用来描述许多物理量之间的关系。
例如,物体的速度随着时间的变化可以用一次函数来解释。
通过测量物体在一定时间内移动的距离,可以计算出其速度。
另外,一次函数还可以用来分析物体的加速度与时间或距离的关系。
3. 建筑工程:在建筑领域,一次函数可以被用来计算结构件的导线长度,尺寸以及重量之间的关系。
例如,钢梁的重量可以用一次函数来计算,该函数可以用支持的长度和横截面积作为变量。
4. 统计学:在统计学中,一次函数可以被用来分析两个数值变量之间的关系。
例如,一个调查可能会问参与者他们每周在社交媒体上花费的时间以及他们对自己幸福感的评分。
使用一次函数,研究人员可以分析时间和幸福感之间的线性关系。
5. 经济学:在经济学领域,一次函数可以被用来描述市场供给和需求之间的关系。
例如,在一个市场中,商品的价格可以用一次函数来描述,该函数可以使用销售量作为自变量,而价格作为因变量。
综上所述,一次函数是生活实践中非常广泛的一种数学工具,它可以被应用于财务、物理、建筑、统计和经济等领域。
掌握一次函数的应用场景可以使我们更好地理解和分析各种现象,为生活提供更高级的工具和技能。
一次函数简单应用在数学中,一次函数是指具有以下形式的函数:y = ax + b其中a和b是实数,x是自变量,y是因变量。
在一次函数中,x的最高整数次幂为1。
请注意,a不等于0。
一次函数在日常生活中有很多应用,例如计算机工程、物理学、商业和金融等。
本文将介绍一次函数的简单应用,包括函数图像、求根和变化率。
一、函数图像一次函数的函数图像是一条直线。
直线的斜率等于a,截距等于b。
斜率的正负决定了直线的方向。
例如,当a为正时,直线向上斜;当a为负时,直线向下斜。
当截距b为正时,直线与y轴正半轴相交;当截距b为负时,直线与y轴负半轴相交。
二、求根对于一次函数y = ax + b,求根意味着找到x的值,使得y等于0。
为了求根,我们可以使用以下公式:x = -b/a请注意,当a等于0时,一次函数将变成一个常数函数,因此它没有根。
三、变化率一次函数的变化率等于斜率a。
变化率是指函数输出值随着自变量变化而变化的速率。
当斜率为正时,函数值增加;当斜率为负时,函数值减少;当斜率为零时,函数值保持不变。
变化率还可以表示为函数图像上某一点的切线的斜率。
四、简单应用一次函数可以用来表示许多现实世界中的问题。
例如,在一个电子产品制造公司工作的小明根据历史销售数据和市场趋势,建立了以下一次函数模型:y = 500x + 1000其中y是销售额,x是月销售量(以千台为单位)。
小明可以使用这个模型来预测未来销售额。
例如,如果月销售量增加了2千台,销售额将增加:y = 500 * 2 + 1000 = 2000 + 1000 = 3000因此,下个月的销售额预计为3000元。
在物理学中,一次函数可以用来描述一个物体的运动状态。
例如,一个滑板运动员的速度可以表示为:v = 5t + 10其中v是速度(以米/秒为单位),t是时间(以秒为单位)。
这个函数模型告诉我们,在时间t=0时,运动员的速度为10米/秒;在每秒钟,运动员的速度增加5米/秒。
5.5一次函数的简单应用(1)的教学设计备课人:钱冯良时间:2019.11.28教学设想:从学生的需要出发,从学生的已有经验和生活实际出发,去构建知识。
注重使学生经历从实际问题中“建立一次函数模型”的一般过程,去体会、感受、掌握用“画出图像、取得函数表达式的基本方法和步骤”;去领悟数学在生活中的普遍应用。
通过拓展练习,进一步扩大学生的数学视野;提高数学知识解决实际问题的能力。
教学目标:1.在现实情境中了解函数模型的概念,会从客观现象中建立一次函数模型。
2.会用待定系数法求一次函数解析式。
3.学会合作、交流、自主探究的学习方式,体验学习数学的乐趣。
4.在解决问题的过程中发展学生的探索与创新精神。
教学重点:利用数据画出的图像,取得函数表达式的基本方法和步骤。
教学难点:例题由图像获得函数表达式的过程比较复杂。
教学方法:启发性教学、讨论、交流学习、使用多媒体等等工具辅助教学。
教学过程:一.创设情境,引入新课。
1.教师讲叙生活事例:小强同学从来没有到过海宁,昨天他跟老师到海宁来找丁桥中学,老师虽然到过海宁,但也不熟悉丁桥中学的位置,可他们还是很顺利地找到了目的地。
晚上小强躺在床上回忆自己和老师一起找丁桥中学的过程:(1)买地图,定位置。
(2)找交通线路,确定上下公交车的位置。
(3)按线路地点付诸行动。
他突然发现:到一陌生的地方寻找一处所并不难,于是他决定用找丁桥中学的方法在海宁去找自己今天要来的宏达学校。
2.学生感受事例并讨论问题。
问题一:在这个生活事例中有哪些过程?①跟着老师找丁桥中学;②自己回忆寻找过程;③自己独自找另一处所。
问题二:对小明来说,每一过程有什么作用?①获得经验;②总结经验;③运用经验。
(设计意图:从小强真实经历入手,引导学生从实际生活中发现学习方法,并为下面学生的自学做好学法指导。
)二.探究发现,获得新知。
1.看图及视频《蓝鲸》(设计意图:吸引学生,提高学生的兴趣)2教师引导,解决三个问题。