晶体结构
- 格式:ppt
- 大小:13.00 MB
- 文档页数:80
常见的晶体结构晶体结构是材料科学中的基础概念之一,也是研究材料性质和应用的重要手段。
通过研究晶体结构,可以了解材料的晶格结构、晶体缺陷、晶体生长以及物理性质等信息。
在本文中,我们将主要介绍几种常见的晶体结构。
1.立方晶系。
立方晶系是最简单、最对称的晶体结构之一,其中所有三个晶轴都是等长且互相垂直。
立方晶系包括体心立方晶体(bcc)和面心立方晶体(fcc)。
在体心立方晶体中,每个原子位于一个正八面体的中心和另外八个顶点之一,而在面心立方晶体中,每个原子位于一个正方形面的中心和其四个相邻原子分别组成的正方形的四个角上。
2.六方晶系。
六方晶系包括一个长度为a和两个垂直于晶轴的长度为c的晶轴,其正交晶面呈六边形。
六方晶系中最常见的是六方密堆积结构,其中每个原子最近的邻居原子共有12个,六个在同一水平面上,另外六个分别位于上下两个平面上。
3.正交晶系。
正交晶系包括三个长度分别为a、b和c的互相垂直的晶轴,其六个面分别为长方形。
正交晶系中最常见的结构是析出相结构,例如钛钶合金中的钛纤维基板。
4.单斜晶系。
单斜晶系包括两个长度不等、互相成锐角的晶轴,以及垂直于这两个轴的垂轴。
单斜晶系中最常见的结构是某些金属、半导体和陶瓷材料中的基体结构。
5.斜方晶系。
斜方晶系包括两个长度不等但互相垂直的晶轴以及一个垂直于晶面的垂轴。
斜方晶系的晶体结构非常多样,但最常见的是钙钛矿结构,这是一种广泛存在于氧化物中的晶体结构。
总结。
以上介绍的几种晶体结构是最常见的晶体结构之一,它们共同构成了材料科学中的基础知识。
了解晶体结构对于研究材料性质和开发新型功能材料非常重要。
另外,随着实验技术和计算方法的不断优化,我们对于各种晶体结构的了解将会越来越深入。
14种晶体结构晶体是由原子、分子或福隔离子按照一定的空间规则排列而成的有序固体。
晶体结构是指晶体中原子、离子或分子排列的规则和顺序。
在固体物质中,晶体结构的种类有很多种,其中比较常见的有以下14种:1. 立方晶体结构:最简单的晶体结构之一,具有三个等长的边和六个等角,包括简单立方、体心立方和面心立方三种类型。
2. 六方晶体结构:其晶胞的基本结构是六方密堆,其中最典型的就是六方晶体和螺旋晶体。
3. 正交晶体结构:晶胞具有三个不相互垂直的晶轴,分别被称为a、b 和c 轴,是最常见的晶体结构之一。
4. 单斜晶体结构:晶胞具有两个不相互垂直的晶轴,是晶体结构中的一种。
5. 三方晶体结构:具有三个相等的轴,夹角为60度,最常见的晶体结构之一是石英。
6. 菱晶体结构:晶胞内部有四面体结构,是一种简单的晶体结构。
7. 钙钛矿晶体结构:一种具有钙钛矿结构的晶体,包括钙钛矿结构和螺旋钙钛矿结构。
8. 蜗牛晶体结构:晶胞的形状像一只蜗牛的壳,是晶体结构中的一种。
9. 立方密排晶体结构:晶胞的结构是立方密排,是晶体结构中的一种。
10. 体心立方晶体结构:晶体结构的晶胞中有一个原子位于晶体的中心,是晶体结构中的一种。
11. 面心立方晶体结构:晶体结构的晶胞的各个面的中心有一个原子,是晶体结构中的一种。
12. 钻石晶体结构:晶体结构的晶胞构成了一种钻石结构,是晶体结构中的一种。
13. 银晶体结构:晶体结构的晶胞构成了一种银结构,是晶体结构中的一种。
14. 锶钛矿晶体结构:晶体结构的晶胞构成了一种锶钛矿结构,是晶体结构中的一种。
晶体结构的种类繁多,每种晶体结构都有其独特的结构特点和性质,对晶体的物理和化学性质有着重要的影响。
研究晶体结构不仅可以帮助我们更好地了解晶体的构成和性质,还有助于我们在材料科学、物理化学等领域的应用和研究。
因此,对晶体结构的研究具有重要的科学意义和应用价值。
晶体的结构与晶格常数晶体是由具有规则的、无序的、周期性重复的排列方式组成的固体材料。
它的结构是由晶格和晶体结构单元组成的。
晶格是指晶体中的原子、离子或分子按照规则、有序的方式排列成的一个平行于晶体表面、经过晶体内部的无限重复网格。
晶格常数是指晶体中晶胞平衡状态下,晶胞沿各个晶胞轴的最小长度,用a、b和c表示。
不同的晶体具有不同的结构和晶格常数。
下面将介绍几种常见的晶体结构及其对应的晶格常数。
1. 立方晶系立方晶系是最简单的晶体结构之一,其晶格常数在三个晶胞轴上相等。
具体包括以下几种类型:- 体心立方结构(BCC):其晶格常数a=4R/√3,其中R为原子半径。
- 面心立方结构 (FCC):其晶格常数a=2R/√2。
- 简单立方结构 (SC):其晶格常数a=2R。
2. 正交晶系正交晶系的晶体结构具有与立方晶系类似的特点,但其晶胞轴长度不相等。
其晶格常数表达为:- a轴:a=2R。
- b轴:b=2R。
- c轴:c=2R。
3. 单斜晶系单斜晶系的晶格常数也具有不同的长度。
其中a轴、b轴和c轴的长度分别为:- a轴:a=2R。
- b轴:b=2R。
- c轴:c=2R。
4. 菱面晶系菱面晶系的晶胞具有菱形形状,晶胞轴长度如下:- a轴:a=2R。
- b轴:b=2R。
- c轴:c=2R。
5. 六方晶系六方晶系的晶胞具有六角形形状,a轴和c轴的长度为:- a轴:a=2R。
- c轴:c=2R。
以上仅是几种常见的晶体结构及其晶格常数的示例,实际晶体的结构和晶格常数还可能受到其他因素的影响,如晶体的成分、原子尺寸等。
总结起来,晶体的结构与晶格常数密切相关,不同的晶体结构及其晶格常数决定了晶体的物理性质和化学性质。
通过深入研究晶体的结构与晶格常数,可以更好地理解晶体的性质,并为材料科学和应用提供基础。
第五章 晶体结构安徽师范大学化学与材料科学学院§51晶体的点阵理论晶体具有按一定几何规律排列的内部结构,即晶 体由原子(离子、原子团或离子团)近似无限地、在三 维空间周期性地呈重复排列而成。
这种结构上的长 程有序,是晶体与气体、液体以及非晶态固体的本 质区别。
晶体的内部结构称为晶体结构。
1. 晶体的结构特征(1)均匀性(2) 各向异性(3) 自发形成多面体外形(4) 具有确定的熔点(5) 对称性(6) X射线衍射2.周期性下面两个图形均表现出周期性:沿直线方向,每 隔相同的距离,就会出现相同的图案。
如果在图形 中划出一个最小的重复单位(阴影部分所示),通 过平移,将该单位沿直线向两端周期性重复排列, 就构成了上面的图形。
最小重复单位的选择不是唯一的,例如,在图(a) 中,下面任何一个图案都可以作为最小的重复单位。
点的位置可以任意指定,可以在单位中或边缘的任 何位置,但一旦指定后,每个单位中的点的位置必须 相同。
如,不论点的位置如何选取,最后得到的一组点在空间 的取向以及相邻点的间距不会发生变化。
3.结构基元在晶体中,原子(离子、原子团或离子团)周期性地重 复排列。
上面我们在图形找出了最小的重复单位,类似 的,可以在晶体中划出结构基元。
结构基元是指晶体中 能够通过平移在空间重复排列的基本结构单位。
【例1】一维实例:在直线上等间距排列的原子。
一个原子组成一个结构基元,它同时也是基本的化学组成单位。
结构基元必须满足如下四个条件:化学组成相同;空间结构相 同;排列取向相同;周围环境相同。
【例2】一维实例:在伸展的聚乙烯链中,CH2CH2组成一个 结构基元,而不是CH2。
【例3】二维实例:层状石墨分子,其结构基元由两个C原子组 成(相邻的2个C原子的周围环境不同)。
结构基元可以有不同的选法,但其中的原子种类和数目应保 持不变。
描述晶体结构的三种方法晶体结构是指晶体中原子、分子或离子的排列方式。
了解晶体结构对于研究物质的性质和应用具有重要意义。
在研究晶体结构时,有三种常用的方法:X射线衍射、电子显微镜和扫描隧道显微镜。
一、X射线衍射X射线衍射是一种非常重要且常用的研究晶体结构的方法。
它利用X射线通过晶体时的衍射现象,来获得关于晶体结构的信息。
X射线衍射的原理是,X射线波长与晶体晶格的间距相当,当X射线通过晶体时,会发生衍射现象,形成一系列衍射点。
通过测量和分析这些衍射点的位置和强度,可以确定晶体中原子的排列方式和晶格常数等信息。
二、电子显微镜电子显微镜是一种利用电子束来观察物质的显微镜。
在研究晶体结构时,常用的电子显微镜有传统的透射电子显微镜(TEM)和扫描电子显微镜(SEM)。
透射电子显微镜通过对透射电子的探测来观察晶体的结构,可以获得高分辨率的晶体图像。
扫描电子显微镜则通过对从样品表面反射的电子的探测,可以获得样品表面的形貌和结构信息。
电子显微镜可以直接观察到晶体的形貌和晶格结构,对于研究晶体的微观结构非常有用。
三、扫描隧道显微镜扫描隧道显微镜是一种通过测量电子隧道电流来观察物质表面的显微镜。
在研究晶体结构时,扫描隧道显微镜可以提供非常高分辨率的表面形貌和原子结构信息。
其原理是通过将探测器的探针与样品表面保持极小的距离,使电子隧道电流通过探针和样品之间的隧道效应来测量。
通过扫描样品表面并记录隧道电流的变化,可以得到非常精细的表面形貌和原子结构图像。
总结:对于研究晶体结构,X射线衍射、电子显微镜和扫描隧道显微镜是三种常用的方法。
X射线衍射通过测量X射线的衍射现象来获得晶体结构的信息;电子显微镜通过观察电子束与晶体的相互作用来获得晶体的形貌和微观结构信息;扫描隧道显微镜利用电子隧道效应来观察物质表面的原子结构。
这些方法在研究晶体的结构和性质方面起着重要作用,对于材料科学和化学等领域的研究具有重要意义。
通过这些方法的应用,可以揭示晶体的微观结构,进而研究其性质和应用,为科学研究和工程应用提供有力支持。
晶体结构的分类晶体是由原子、离子或分子有序排列而形成的固体物质。
它们的结构可以根据晶体中原子的排列方式进行分类。
下面将介绍晶体结构的几种常见分类。
1. 共价晶体共价晶体由共价键连接的原子或分子构成。
共价键的形成依赖于原子间电子的共享。
这种晶体通常具有高熔点和硬度,如金刚石和石英。
在共价晶体中,原子或分子沿着晶胞内构成三维排列。
2. 离子晶体离子晶体是由正离子和负离子通过离子键结合而形成的固体。
正负离子之间的电荷吸引力使晶体保持稳定。
离子晶体通常具有高熔点和脆性。
最常见的离子晶体是盐,例如氯化钠。
在离子晶体中,正负离子按照比例均匀地排列在晶胞中。
3. 金属晶体金属晶体是由金属元素的原子组成。
金属晶体具有可变的导电性和可形变性。
金属晶体的特点是原子间的金属键,通过电子云形成。
这些电子云是自由移动的电子,使得金属晶体具有良好的导电性和热导性。
金属晶体通常以球形或立方形排列。
4. 分子晶体分子晶体是由分子之间的弱范德华力相互作用而形成的晶体。
这种晶体通常具有较低的熔点和易溶性。
分子晶体的结构取决于分子的形状和大小。
分子通常在晶体中排列成规则的网格,如冰。
5. 复合晶体复合晶体是由不同类型的原子、离子或分子组成的晶体。
它们通常具有混合晶体结构,也就是说,晶胞中的原子或离子具有不同的组合方式。
复合晶体可以是金属与非金属的混合物,例如铜铁合金。
在实际应用中,晶体的分类可以更加复杂,并且还有其他种类的晶体,如有机晶体、半导体晶体等等。
晶体结构的分类有助于我们理解和研究不同材料的性质和行为。
总结:晶体结构的分类包括共价晶体、离子晶体、金属晶体、分子晶体和复合晶体。
这些分类基于晶体中原子、离子或分子的排列方式。
了解晶体的结构分类有助于我们深入了解材料的性质和特点,从而实现更好的应用和研究。
1第3章晶体结构固体可分为晶体(crystal)和非晶体(noncrystal)两大类。
无定形态物质(amorphous solids)。
晶体物质的质点(分子、原子、离子)做有规则的排列,而无定性物质的质点呈混乱分布。
3-1 晶体3-1-1 晶体的宏观特征1、晶体的自范性:晶体能够自发地呈现封闭的规则凸多面体的外形。
2依晶体的凸多面体的数目对晶体的分类:单晶、双晶、晶簇、多晶。
见书123页图3-1。
金刚石单晶34磷酸盐双晶5天然白水晶晶簇。
6因生长条件不同,同一晶体可能有不同的几何外形。
见书124页图3-2、3-3、3-4。
晶面夹角不变定律:同一晶体的相同晶面有相同的晶面夹角。
见书124页图3-2。
晶体的习性:一种晶体经常呈现的外形。
72、晶体的对称性:晶体具有宏观对称性。
3、晶体的均一性:晶体的质地均匀,具有确定的熔点。
4、晶体的各向异性:晶体的某些物理性质随晶体的取向不同而异。
见书124-125页例。
晶体的宏观特征是晶体的微观特征的表象。
83-1-2 晶体的微观特征——平移对称性晶体的平移对称性:构成晶体的质点呈现周期性的整齐排列。
见书125页图3-5。
晶体的宏观对称性是晶体的微观对称性的体现。
见书126页图3-6。
非晶态物质不具有平移对称性。
见书126页图3-7。
3-2 晶胞3-2-1 晶胞的基本特征9晶胞(unit cell):晶体结构中具有代表性的最小重复单位。
1、晶体是由完全等同的晶胞无隙并置地堆积而成的。
A 、完全等同:a 、化学上等同:晶胞里原子的数目和种类完全相同。
b 、几何上等同:晶胞的形状、取向、大小、质点的排列及其取向完全相同。
B 、无隙并置:见书127页。
晶胞具有平移性。
102、晶胞的种类:见书128页图3-9。
习惯选用的晶胞是三维的平行六面体,称为布拉维晶胞。
3-2-2 布拉维系1、晶胞参数:晶角:α、β、γ。
晶柱:a 、b 、c 。
2、布拉维系的种类:见书129页及图3-12。
常见的晶体结构高中化学晶体是由原子、分子或离子等按照一定的规则排列组成的固体物质。
晶体结构是指晶体中原子、分子或离子的排列方式和空间位置的有序性。
以下是一些常见的晶体结构:1.立方晶系:立方晶系是最简单的晶体结构类型,具有最高的对称性。
立方晶系包括以下几种晶体结构:-简单立方结构:最简单的晶体结构,如钠金属。
-面心立方结构:每个立方格点上除了原子所在的角点外,还有一个原子位于正方形面的中心,如铝、铜等。
-体心立方结构:每个立方格点上除了原子所在的角点外,还有一个原子位于立方体的中心,如铁、锂等。
-体心立方密堆结构:在体心立方结构的基础上,每个体心立方顶点上还有各自的三个原子,如铬、铤等。
2.六方晶系:六方晶系的晶体结构相对复杂,具有六重轴对称性。
六方晶系包括以下几种晶体结构:-六方最密堆积结构:最密堆积的晶体结构,如铝合金、硬质合金等。
3.正交晶系:正交晶系的晶体结构具有三个相互垂直的轴和互相垂直的面,没有对称轴。
正交晶系包括以下几种晶体结构:-基心正交结构:每个顶点上有原子以外,还有一个原子位于底面的中点,如锌等。
-面心正交结构:每个顶点上原子以外,还有一个原子位于两个邻接底面的中点和两个对称角上的原子,如镍。
4.单斜晶系:单斜晶系的晶体结构具有一个二重轴和一组不对称的轴,没有对称轴。
单斜晶系包括以下几种晶体结构:-单斜底心结构:每个顶点上有原子以外,还有一个原子位于两个底面的中点,如铅、镀镍等。
5.斜方晶系:斜方晶系的晶体结构没有对称轴,具有两个相等且垂直的轴。
-斜方单斜结构:具有一个反射面,如黄铁矿、菱铁矿等。
6.三斜晶系:三斜晶系的晶体结构没有对称轴,也没有垂直的轴。
三斜晶系包括以下几种晶体结构:-无底心三斜结构:没有底心原子,如铜酸亚锌等。
这些晶体结构是根据晶体的对称性进行分类的,每一种晶体结构都有其独特的排列方式和空间位置。
通过研究晶体结构,可以揭示物质的物理和化学性质以及材料的制备和应用方面的特点。