当前位置:文档之家› 电网谐波测量

电网谐波测量

电网谐波测量
电网谐波测量

1 绪论

随着国民经济的发展和人们生活水平的提高,电力电子产品广泛地应用于工业控制领域,用户对电能质量的要求也越来越高,其中最为突出的是电压质量和谐波的问题,因此,如何提高电压质量、治理谐波就成为输配电技术中最为迫切的问题之一。所以,面对我国目前电网结构薄弱和输配电技术普遍存在的技术手段的落后、自动化水平低的现状,针对电压质量和谐波问题,研究电网谐波治理问题和无功补偿新技术及新装备,具有十分重要的理论和现实意义[3]。

1.1 谐波的定义

“谐波”这一名词起源于声学,在声学中谐波表示一根弦或一个空气柱以基波频率的倍数频率振动。电气学中所谓电网谐波,就是电网正弦电压波形畸变后,其波形可以按傅立叶级数进行分解,除了基波(50HZ)之外,还有一系列频率为基波频率整数倍的正(余)弦波,这些正(余)弦波称之为谐波。正是由于这些谐波注入了电网,就使得电网电压波形畸变[14]。

1.2 谐波的危害

电网谐波的危害主要有以下几点:

1、相同频率的谐波电压余谐波电流要产生同此谐波的有功功率与无功功率,从而降低电网电压,浪费电网容量。

2、高次谐波能使电容器出现过电流与过负荷,温度增高,寿命减少,甚至出现发热、鼓肚、击穿或爆炸事故。同时在电压已经畸变的电网中,电容器的投入,还可能使电网的谐波加剧(谐波放大现象)。

3、谐波往往引起继电保护不工作或误动作,从而造成设备与系统的事故,尤其是半导体继电保护与整流型继电保护更为严重。

4、谐波能增大仪表的计量误差,干扰通讯网络的正常工作。

5、电机中有谐波电流,且频率接近某个零件的固有频率时,使电机产生机械振动并发出很大的噪声。

6、谐波对人体有影响。从人体生理学来看,人体细胞在受到刺激兴奋时,会在

细胞膜静息电位基础上发生快速电波动或可逆翻转。其频率如果与谐波频率相接近,电网谐波的磁辐射就会直接影响人的脑磁场和心磁场。

1.3 谐波的产生

电网谐波来源于三个方面:其一是发电源质量不高产生谐波;其二是输电网产生谐波;其三是用电设备产生的谐波。其中以电气设备产生的谐波最多,具体情况如下:

1、整流设备。由于晶闸管整流的广泛应用(如电力机车的、路电解槽、电池充电器等),给电网造成大量的谐波。统计表明:由于整流装置产生的谐波占所有谐波的40%左右,这是最大的谐波源。

2、电弧炉、电石炉。由于加热原料时电炉的三项电极很难同时接触到高低不平的炉料,使得燃料不稳定,引起三项负荷不平衡,产生谐波电流,经变压器的△形连接线圈而注入电网。其中主要是2~7次的谐波,平均可达基波的8%~20%,最大可达45%。

3、电力变压器。由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济型,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波,其次谐波电流可达额定电流的%。另外变压器空载合闸时出现的涵流中也含有大量的谐波量。

4、家用电器。如电视机、录像机、电子调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波;在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能是波形改变。

1.4 谐波抑制的三种方法

为了产少谐波的危害,根据谐波的来源,抑制谐波的方法大致从三个方面考虑:

1、确保电源的质量从发电机本身来说,产生谐波是很少的,这主要就是要从管理上保证发配电的质量,尤其是对于自发电设备的企业,要制定相应的措施予以保证。

2、减少输电网谐波的产生与磁辐射如尽可能采用高压直流输电;低压供电尽可能采用地下电缆;高层建筑内部的供电线应用铁管来防止磁辐射,还应做好大楼建筑的接地系统的设计与实施安装。

3、限制用电负荷产生的谐波前已述及,用电负荷是电网谐波的最主要的来源。

首先要求用户对电网电压的畸变率与谐波电流的限制要做到负荷国家要求。根据国家水电部颁发的SD126-84规定,如果超过极限值,则应采取抑制措施。其次,就是要把维护电网不受谐波污染定成规章制度,用户与电气设备制造厂商都要配合发供电部门齐抓共管。具体来说应做到下面几点:

(1)对容量在100kVA以上的整流装置与非线性用电设备,必须就地增设滤波装置,吸收高次谐波。

(2)具有整流元件的设备,虽是小型用电器,也要增加整流相数与脉冲数,或把晶闸管移相触发改为过零触发,或者增设滤波装置,做到尽可能减少谐波。例如有些厂家生产的晶闸管调光台灯就增设了滤波原件。虽然成本有所增加,但能抑制谐波对电视机等设备的干扰,应受到推广。

(3)制造电磁感应式设备的厂家,要采用高质量的电磁材料,也可适当降低磁密。对于劣质元件的电磁设备要限制出售使用。

(4)对于电容器组等大容量的设备,应在回路内串电抗器或增设限流装置,抑制高次谐波。

(5)合理选择供电电压,尽量保持三相平衡。对能产生谐波的大容量设备还可采用较高电压供电,以减少系统的阻抗,从而减少谐波引起的网损。

(6)在产品的设计上还可采用干扰频率转嫁措施。如在变压器降压整流稳压的设备中,采用开关电源的逆变技术,就能大大降低低频段的污染,而转嫁到150kHz 以上频率的污染,而这种较高频率的谐波容易被抑制。

总之,面对日趋严重的电网谐波污染,必须引起高度重视,这就需要发供电部门、用户及电气设备的制造厂商都从大局出发,共同努力,清扫和维护电网的“公共卫生”。同时只有这样,才能有利于各行各业的生产发展,才能有利于人民生活水平的不断提高。

2 课题分析

2.1 课题来源

随着电力电子技术的迅速发展,各种变频器、变流器、开关电源和电抗器的应用日益增多,电网随之产生的谐波污染也日益严重,影响了电力系统的安全运行及线路

周围的电磁环境,因此电网谐波测量成为热门研究课题。

2.2 设计思路

将220V的交流电压通过电压采样环节,得到模拟量电压,将得到的模拟量电压接到USB2002采样卡模拟输入通道,接着由采样卡的采样环节变换成离散的数字量,然后运用傅立叶变换作谱分析,由于栅栏效应,谱线位置与分析点可能不重合,可采用具有实谱特性的窗函数对信号进行加窗处理,然后对信号及其时移连续作两次FFT分析(实为一次复时域信号分析),则在窗谱的主瓣内将含有若干个由窗泄漏造成的相位相同的谱分析值,据此可以判定这些分析值由同一条真实谱线引起。继而可精确求出诸分立谱线的频率、幅度,然后将计算获得的数据显示在计算机屏幕上。

本课题是从电网中采集数据然后运用DFT来分析电网中存在的谐波。根据课题的需要可分成两大块,一块是数据采集,一块是数据处理。在数据采集模块里包括数据的采集和保存,本设计采用北京阿尔泰科贸有限公司生产的USB2002型号的采集卡进行采集。在数据处理模块中将采用DFT来进行数据处理从而得到谱线的幅度和频率,进而求出纹波系数。由于要用到编程来解决数据的采集、存盘和处理,我们将采用做用户界面,通过调用MATLAB引擎的方法处理数据,以实现本课题的要求。

3 数据采集

数据采集卡的介绍

USB又称之为通用串行总线,它将计算机和外设连接在一起,能进行数字图象处理,同时为数字化设计提供了许多创造空间。

课题中我们所用的采集卡型号是USB2002。它是USB总线兼容的数据采集板,可经过USB电缆接入计算机,构成实验室、产品质量检验中心、野外测控、医疗设备等领域的数据采集、波形分析和处理系统,也可构成工业生产过程控制的系统。而且它具有体积小,即插即用等特点,因此是便捷式系统用户的最佳选择。现在我们使用的是的版本,它的传输速度最高达到480MBit。同时本卡的使用是由软硬件共同完成的。

数据采集卡的技术指标及应用

1、模拟信号输入部分

模拟通道输入数:32路单端/16路双端模拟信号输入,支持通道扫描及伪同时采集(同步采集)扫描模式(注:伪同步模式:即模拟同步采集模式,采样被定时器或外部时钟启动后,USB2002以400KHZ的最大速度对用户设置的一组通道采样,结束后等待下一次启动,如此循环采样)。

(1)模拟电压输入范围:±5V,±10V(AD7899-1)

(2)模拟输入阻抗:100MΩ

(3)模拟输入共模电压范围:>±2V

(4)放大器建立时间:2μS

2、A/D转换电路部分

(1)A/D分辨率:14Bit(16384)

(2)非线性误差:±1LSB(最大)

(3)转换时间:μS

(4)系统测量精度(满量程):%

(5)采样速度:400KHZ

3、应用

数据采集卡的主要应用在以下几个方面:野外采集、信号采集和医疗设备

程序调试

现在由于在实验室操作,为了安全问题,我们先将电网220V的电压通过变压器降压,然后再用电阻分压(当然使用了变压器会对我们要处理的电网谐波有一定的影响)。将电压采样电路和数据采集卡连好后,我们便将电源打开,接着打开我们要运行的程序。点击程序运行按钮,系统自动弹出一个框,在这个框中,我们进行一些参数的设置,参数设置完后我们便开始数据采集,采集的数据将在左半边出现,而图形以正弦波的形式在右半边出现。采集结束后点击存盘按钮,数据将存入相应的盘中。在操作中我们发现如果使用单通道输入会有一些干扰,而使用双通道输入则可以抑制一些干扰。

4 数据处理

4.1 综述

数据处理就是对采集到的信号进行分析,分析的步骤有以下几方面:首先取两组相差为一个采样周期的两组数据,然后对数据加布莱克曼-哈里斯窗,接着对数据作DFT变换,最后用查询方法寻找真实谱线,流程图如图所示:

4.2 VC++调用MATLAB

4.2.1 VC调用MATLAB的三种方法

Visual C++是基于Windows平台下的一种应用程序开发环境,现在已升级到了版本。应用可以方便地开发各种用户需要的界面和工具,并且能够直接与系统的底层硬件交换数据。在环境下开发的软件,具有容易维护、界面友好及运行速度快等许多优点。但是, 在下进行编程是比较烦琐的,不易掌握。因此, 将

图数据处理部分流程图

环境与MATLAB进行有效连接将会使得VC程序的开发大大简化[13]。

以下是三种VC调用MATLAB的方法,它们各具特色,在应用中要结合具体需求进行选择。第一种:MCC 编译器法可以直接对MATLAB 产生的.m文件进行编译,在MATLAB 提供的C/C++函数库、图形库的支持下,能将绘制各种复杂图形的MATLAB程序高效的转化为C/C++代码,与单纯用VC编程实现相比大大减轻编程人员的工作量和编程难度;第二种:采用Matcom 编译法进行转换更加方便,且生成的C/C++代码的可读性较好,是解决图形、图像处理问题的一种理想方法;第三种:使用MATLAB计算引擎法时,由于其工作时MATLAB后台工作,只有小部分引擎通信函数库与程序相连,因此节省了资源,提高了应用程序的整体性能和处理效率。

4.2.2 调用MATLAB引擎

MATLAB允许用户通过MATLAB引擎调用MATLAB的函数,即将MATLAB当作应用程序进行数据计算的引擎。MATLAB提供了一系列操作MATLAB引擎的API函数,通过这些API函数,用户可以充分发挥MATLAB进行矩阵计算的优势,将应用程序的计算功能交给MATLAB引擎完成,而界面部分则可以通过采用VC++来实现。这些为应用程序的实现提供了很大的灵活性。

1、API函数介绍

1)int engClose(Engine *ep);

退出MATLAB引擎。

2)int engEvalString(Engine *ep,const char *string);

使MATLAB引擎执行字符串string中的表达式。

3)mxArray *engGetVariable(Engine *ep, const char *name);

从MATLAB引擎工作空间中复制名字为name的变量。

4)int engGetVisible(Engine *ep,bool *value);

判断MATLAB引擎工作窗口是否可见。

5)Engine *engOpen(const char *startcmd);

启动一个MATLAB引擎,在Windows操作环境下startcmd参数必须为NULL。

6)Engine *eng OpenSingleUse(const char *startcmd,void *dcom,int *retstatus);

启动一个只允许用户使用的MATLAB引擎,在Windows系统中startcmd和dcom 参数始终为NULL,retstatus为返回engOpenSingleUse函数的执行状态。

7)int engOutputBuffer(Engine *ep,char *p,int n);

设置MATLAB引擎的输出内存,存储engEvalString函数执行字符串后的输出结果。其中n表示设置的输出内存可以存放的字符个数,如果输出结果的字符串大于n,则只存储前n个字符。

8)int engPutVariable(Engine *ep,const char *name,const mxArray *mp);

向MATLAB引擎工作空间中写入一个MATLAB阵列变量,其中name为写入变量

在MATLAB引擎工作空间中的名字。

9)int engSetVisible(Engine *ep,bool value);

设置MATLAB引擎工作窗口是否可见的属性,如果value=true,则MATLAB引擎窗口可见;如果value=false,则MATLAB引擎窗口不可见。

2、Visual C++ MFC工程中调用MATLAB引擎

首先创建一个单文档的Visual C++ 工程matlabenginetest,其中view类的基类选为CFormView。

添加到CMatlabenginetestView中的界面元素及其ID如下表所列。

表matlabenginetest CmatlabenginetestView 控件列表

Matlabenginetest通过engEvalString函数调用MATLAB引擎执行相应的命令并计算显示sinc函数曲线,通过函数engOutputBuffer将m_outbuff设为MATLAB引擎输出的结果存储的缓冲区。另外需要注意的是,由于本工程调用MATLAB引擎的API函数,因此需要在工程设置中加入静态链接库。[7]

程序代码

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

#if !defined(AFX_MATLABENGINETESTVIEW_H__2BA448E9_DCB7_4CAB_8DE3_46FED317 C086__INCLUDED_)

#define

AFX_MATLABENGINETESTVIEW_H__2BA448E9_DCB7_4CAB_8DE3_46FED317C086__INCL UDED_

#if _MSC_VER > 1000 #pragma once #endif #endif x1"); engEvalString(m_ep,"y2=sin(x2)./x2"); engEvalString(m_ep,"plot([x2 x1],[y2 y1])");

etEventMask()

1a 2a 4098a 1a 4097a 2a 4098

a

()()N w n R n =()()12N j j R R W e W e

αωω-??- ???

=()sin 2sin 2

R N W ωωω?? ?

??=

?? ???

()21

01

2

21

2112

n N n N w n n N n N N -?≤≤

??-=?

-?-<≤-?-?

()2

122

121sin 421sin 2sin 42sin 2N j j B N j N W e e N N e

N ωωωωωωω-??- ???-??- ?????

?-??? ???????????=??-??

???????

??

???? ???????????≈??

?? ??????

?()2

sin 42sin 2B N W N ωωω??

????

???????????=??

?? ??????

?()()121cos 21N n w n R n N π????=- ???-????

()()12N j j H H W e W e

ωωω-??

- ??

?

=()()220.50.2511H R R R W W W W N N ππωωωω???????

?=+-++?? ? ???--???????

?8N

π()()20.540.46cos 1N n w n R n N π????=- ???-???

?()()12N j j HM HM W e

W e

ωω

ω-??

- ???

=()()220.540.23HM R R R W W W W N N π

πωωωω?????

?=+-

++ ?

?????????

n α

?

s α

π

π

π

π

π

()

cos

h

h

w n a

N N

=

=∑()()()

c

2h R R

h

w a W h W h

λλλ

=

=-++

??

??

()

()()

00

2

sin

sin

2

sin sin

H H

j h

h

h h

a N

w e j a

h h

N

N N

πλ

πλ

λπλ

πλπλ

-

==

??

??

=?+

??

-+

??

??

??

∑∑()

0,1

H

h

h

a H

=

=≥

()1

2

cos

K

m

m

w n a mn

N

π

-

=

??

= ?

??

∑,,1,0,1

22

N N

n=-???-???()()

1

2

1cos

K

m

m

m

w n a mn

N

π

-

=

??

=- ?

??

0,1,21

n N

=???-()()

1

22

1

2

m

K

m

R R

m

a

W W m W m

N N

ππ

ωωω

-

=

??

????

=--++

? ?

??

????

??

∑1

1.0

K

m

m

a

-

=

=

∑m a

m

a

()t x ()t w T f T ()f W ()f W ())(t w F s T ()t g ()t g ∑

-∞

=n ()nTs t -δ()f G s

f ∑

-∞

=m )

(s mf f -δs f s T 1()s nT w G

W ()f )(f W G ())()(t g t w F ()f W ()f G ∑

=2

1

N N n )

(nTs w e

fnTs

j π2-s

f ∑

-∞

=m ()s mf f W -()t x ()t x )(t x wg ()t x ()t w ()t g f k f )(k X ))

((t x F wg f k f ?=)

(f X WG f

k f ?=()

t x )

(f X )

(i

j i

i

f f e A i

-∑δ?)

(f X WG )

(f X )

(f W G )

(i G

j

i

i f f W

e A i

-∑?)

(k X

)(i G

j i

i

f f k W

e A i

-?∑?)(k X )(f W G )(f W G ()B j

i f f -B )(j i ≠f k ?i f )(k X f k ?i f 2

B )

(k X ≈)

(i G j i f f k W e A i

-??)

(n w ))2cos((1

mn N a

k m m

π∑-=n

2

N 2N )

(f W G )]()([2

1

0f m f W f m f W a R R k m m

?++?-∑-=)(f W R )

(n w r 其它

12201-<≤-???N

n N )

(f W R S

fT j S S e

fT fT N πππ)

sin()sin()(n w r 2

2205.01N n N n

N n >

=

?

??)

(f W R )()sin(S S fT tg fT N ππk dB 14TW π≥

1

4TW π

≥()2

1221

02

n N N w n e

n α??-????

-=≤≤

(

)(

)

2

2

1212* 2.5,R W n W a ωαωαωω??

-????

??-????

=

>当很小时

()()()1

N kn

N n X k DFT x n x n W -===????

∑k 1

-N kn

N W 2M

()()1

n 0()0,1,,1

N N kn

N

X k DFT x n x n W

k N =????==???-∑点

-=()()()()()()222120

=221kn kn

N

N

n n N

N l

l

k l k l N

N

l l X k x n W

x n W

x l W

x l W

==--+===

++

+∑∑∑∑偶数

奇数()()

12x l x l =()()

221x l x l =+22

kl kl N N W W =()()()2121

1

2

2

0,1,,1

N N kl k

kl N N

N l l X k x l W

W

x l W

k N --===

+=???-∑∑()1x l ()2x l ()

1X k ()2X k ()1x l ()

2x l ()()()21111

2

/20

0,1,,

12

N kl

N N l N X k DFT x l x l W

k -===

=???-????∑点()()()21222

2

/20

0,1,,12

N kl

N N l N

X k DFT x l x l W

k -====???-????∑点2N k k

N N W W +=-()

1X k ()

2X k ()()()

()()12120,1,,

12

2k

N k

N X k X k W X k N

k N X k X k W X k ?

=+?=???-???+=+?

????

()1X k ()

2X k

3

2

2

N 2

2N ?? ???122

N N ??- ???()2

21212222N N N N N N >>??

?+=+≈

???

212222

22N N

N N ??-??+?=

???A+CB

A-CB

C

B

A

)(n x N

M

2

)(n x )(k X )

(n x ∑-=10)(N n kn N

W

n x ∑-=120

)(N n kn N

W

n x ∑-=12

)(N N n kn N

W

n x ∑-=10

)(N n kn N

W

n x ∑

-=++1

20

)

()2

(N n N n k N

W N n x ∑-=??

???

?

+

+10

2)2()(N n kN N

N n x W n x kn N W N k N W k )1(-k k )(k X k k r 2r 12-N )

2(r X ∑

-=??

????++1

20

)2()(N n N n x n x rn

N W 2∑

-=?????

?++1

20

)2()(N n N n x n x rn

N W 2k k 12-r r 12-N )

12(+r X ∑

-=??

????

+-1

20

)2()(N n N n x n x )

12(+r n N

W

-=??

????

+-1

20

)2()(N n N n x n x nr

N n N W W 2

????

???

??????

+-=++=n N

W N n x n x n g N n x n x n f )2()()()2()()(n 12-N )(n f )

(n g ???

????=+=∑∑-=-=1

202

1

20

2)()12()()2(N n rn N N n rn N W n g r X W n f r X )(k X k )

(n f 2

N )(n g 2N )(k X 2N )

(k X )(k X ∑-=-1

2)()(N n nk N

j

e

n w n x π

∑--=-1

22

2)()(N N n nk N

j

e

n w n x π)(k X )('k X )(k X k )1(-)(f W G ?)

(k X )

(k X i f )(t x )(t y )(S T t x +)(f Y s

fT j e

f X π2)(≈s i fT j i j i e f f e A π?δ2)(-)

(k Y )()2(i G T f j i f f k W e A s i i -?+π?)(k Y )(k X i f i ??)(k Y )(k X s i T f π2i

f s i T 12π??π

?2i

?s f i

f f l i ?i

l N i

π?2?f l i ?)(i U )

)(()(f l k W k X i G ?-2;

for i=1:N

y1(i)=a(i+1);

end

y1(1)=(a(2)+a(N+2))./2;

%加窗

for n=1:N

w(n)=+*cos(2*pi*n./N)+*cos(2*pi*2*n./N)+*cos(2*pi*3*n./N) end

for n=1:N

x1(n)=x1(n).*w(n);

y1(n)=y1(n).*w(n);

end

%做DFT变换

x2=fft(x1,N);

y2=fft(y1,N);

%改造

for k=1:N

x2(k)=x2(k).*(-1)^(k+1);

y2(k)=y2(k).*(-1)^(k+1);

end

%相位

x3=angle(x2);

y3=angle(y2);

%查询方式寻找真实谱线

%基频

fs=5000;

j=int16(50*N/fs+; %取整,四舍五入

k(1)=0;

for i=j-3:j+2

if norm(x2(i))>=norm(x2(i-1)) & abs(angle(x2(i))-angle(x2(i-1)))<=1e-3 %找出幅值最大,相位差误差小于(则认为相位相同)的谱线,else

k(1)=i;

end

end

if k(1)==0

A(1)=0;

else

ts=1./fs;

xwc=y3-x3; %相位差

fo=xwc./(2*pi)*fs; %频率

fd=fs./N;

l=fo./fd;

fu=k.*fd;

%计算相应的窗谱

fu11=fu-fd;

fu12=fu+fd;

fu21=fu-2*fd;

fu22=fu+2*fd;

fu32=fu+3*fd;

WR0=sin(N*pi*fu*ts)./tan(pi*fu*ts);

WR11=sin(N*pi*fu11*ts)./tan(pi*fu11*ts);

WR12=sin(N*pi*fu12*ts)./tan(pi*fu12*ts);

WR21=sin(N*pi*fu21*ts)./tan(pi*fu21*ts);

WR22=sin(N*pi*fu22*ts)./tan(pi*fu22*ts);

WR31=sin(N*pi*fu31*ts)./tan(pi*fu31*ts);

WR32=sin(N*pi*fu32*ts)./tan(pi*fu32*ts);

%布莱客曼-哈里斯窗窗谱

WG=*WR0+*(WR11+WR12)+*(WR21+WR22)+*(WR31+WR32);

A(1)=norm(x2)./WG; %幅度

end

for i=2:10

j=int16(l(1)*i+;

k(i)=0;

for m=j-3:j+2

if norm(x2(m))>=norm(x2(m-1)) & abs(angle(x2(m))-angle(x2(m-1)))<=1e-3 k(i)=m;

end

if k(i)==0

A(i)=0;

else

fo(i)=xwc./(2*pi)*fs;

fd=fs./N;

l(i)=fo./fd;

fu=k.*fd;

fu12=fu+fd;

fu21=fu-2*fd;

fu22=fu+2*fd;

fu31=fu-3*fd;

fu32=fu+3*fd;

WR0=sin(m*pi*fu*ts)./tan(pi*fu*ts);

WR11=sin(m*pi*fu11*ts)./tan(pi*fu11*ts);

WR12=sin(m*pi*fu12*ts)./tan(pi*fu12*ts);

WR21=sin(m*pi*fu21*ts)./tan(pi*fu21*ts);

WR22=sin(m*pi*fu22*ts)./tan(pi*fu22*ts);

WR31=sin(m*pi*fu31*ts)./tan(pi*fu31*ts);

WR32=sin(m*pi*fu32*ts)./tan(pi*fu32*ts);

WG=*WR0+*(WR11+WR12)+*(WR21+WR22)+*(WR31+WR32);

A(i)=norm(x2)./WG

end

end

end

结论

经过这次毕业设计,我对电网谐波有了一定的认识。现在电力系统中谐波的危害极大,已经引起人们的高度重视。所以供电部门、电力用户和设备制造商应合理规划电网。

本文是基于快速傅立叶的方法分析电网谐波。通过数据采集卡从电网中取得数据后,对信号及其时移连续两次FFT分析,从而可以得到谱线精确的幅度、频率值,进而可以求出电网的纹波系数。

谐波对电网危害

谐波污染对电网有哪些具体影响? 谐波污染对电网的影响主要表现在: (1)造成电网的功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、线路和设备过热灯,特别是三次谐波会产生非常打的中性线电流,使得配电变压器的零线电流甚至超过相线电流值,造成设备的不安全运行。谐波对电网的安全性、稳定性、可靠性的影响还表现在可能引起电网发生谐振、使正常的供电中断、事故扩大、电网解裂灯。 (2)引起变电站局部的并联或串联谐振,造成电压互感器灯设备损坏;造成变电站系统中的设备和元件产生附加的谐波损耗,引起电力变压器、电力电缆、电动机等设备发热,电容器损坏,并加速绝缘材料的老化;造成断路器电弧熄灭时间的延长,影响断路器的开断容器;造成电子元器件的继电保护或自动装置误动作;影响电子仪表和通信系统的正常工作,降低通信质量;增大附加磁场的干扰等。 谐波对电力电容器有哪些影响? 当配电系统非线性用电负荷比重较大,并联电容器组投入时,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流打,使电容器过负荷而严重影响其使用寿命,另一方面当电容器组的谐波容抗与系统等效谐波感相等而发生谐振时,引起电容器谐波电流严重放大使电容器过热而导致损坏。因此,电压谐波和电流谐波超标,都会使电容器的工作电流增大和出现异常,例如,对于常用自愈式并联电容器,其允许过电流倍数是1.3倍额定电流,当电容器的电流超过这一限制时,将会造成电容器的损坏增加、发热异常、绝缘加速老化而导致使用寿命降低,甚至造成损坏事故。同时,谐波使工频正弦波形发生畸变,产生锯齿状尖顶波,易在绝缘介质中引发局部放电,长时间的局部放电也会加速绝缘介质的老化、自愈性能下降,而容易导致电容器损坏。 按照电力系统谐波管理规定,电网中任何一点电压正弦波的畸变率(歌词谐波电压有效值的均方根与基波电压有效值的百分比),均不得超过表2-5规定。 表2-5 电网电压正弦波形畸变极限值 用户供电电压(kV)总电压正弦波形畸变率极限值各奇、偶次谐波电压正弦波形畸变率极限之(%) 0.38 5 4 2 6或10 4 3 1.75 35或63 3 2 1 110 1.5 1 0.5 谐波对电力变压器有哪些影响? (1)谐波电流使变压器的铜耗增加,引起局部过热,振动,噪声增大,绕组附加发热等。(2)谐波电压引起的附加损耗使变压器的磁滞及涡流损耗增加,当系统运行电压偏高或三相不对称时,励磁电流中的谐波分量增加,绝缘材料承受的电气应力

电力系统谐波及其检测方法研究

第23卷 第5期 电子测量与仪器学报 Vol. 23 No. 5 2009年5月 JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT · 29 · 本文于2008年1月收到。 *基金项目: 国家自然科学基金(编号: 60775047)资助项目; 国家863计划(编号: 2007AA042244)资助项目。 电力系统谐波及其检测方法研究* 唐 求 王耀南 郭斯羽 (湖南大学电气与信息工程学院, 长沙 410082) 摘 要: 谐波测量在电力系统中占有重要的作用和地位。本文概述了谐波测量的主要方法, 对基于加窗插值FFT 的谐波测量方法进行了分析和研究。在此基础上, 设计并实现了一种多功能虚拟谐波测量系统, 采用加窗插值FFT 算法, 以图形化编程语言LabVIEW 为开发平台, 实现了电力系统电压、电流谐波参数的测量。与传统的谐波测量系统相比, 该系统硬件简单、编程灵活、可自定义、数据分析与处理能力强、使用方便, 测量结果证明了系统的可行性和准确性。 关键词: 谐波测量;加窗插值FFT ;虚拟仪器;LabVIEW 中图分类号: TM714 文献标识码: A 国家标准学科分类代码: 470.4054 Research on harmonics and its measurement method in power system Tang Qiu Wang Yaonan Guo Siyu (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China) Abstract: The harmonic measurement plays an important role in power system. In this paper, some main harmon-ics measurement methods are generally described, and a harmonic measurement method based on interpolating win-dowed FFT is discussed. According to the interpolating windowed FFT method, a multifunctional virtual instrument system for harmonic measurement of voltage and current signals is designed and implemented with LabVIEW envi-ronment. Compared with traditional harmonic measurement system, this system is flexible, self-defined, capable of data processing and analysis, with simple hardware and so on. The measurement results show the feasibility and the validity of the system. Keywords: Harmonic measurement;interpolating windowed FFT;virtual instrument;LabVIEW 1 引 言 近年来, 随着工业和民用用电负荷的迅速增加以及各种电力电子设备的广泛应用, 非线性负载的数量和容量日益增加, 电力系统谐波污染日趋严重。电网谐波使得电压、电流的波形发生畸变, 使电力系统的发、供、用电设备出现许多异常现象和故障, 对电力系统的安全、经济运行造成极大的危害。谐波问题已成为电力部门普遍重视和关心的问题[1] 。谐波测量是处理谐波问题的基础, 是分析和控制电网谐波含量的依据。 传统的电力谐波测量方法多采用电力谐波分析仪或MATLAB 软件包, 但是它们不具有图形化编程 和远程测控能力, 因此具有局限性。 本文在研究谐波测量的主要方法的基础上, 设计了基于加窗插值FFT 的虚拟谐波测量系统。实现了三相电压、三相电流的总谐波畸变率(THD)以及各次(1~13次)谐波畸变率的测量。系统集信息采集、处理和传输于一体, 具有数据采集、谐波分析处理和显示等功能, 试验结果表明了其性能良好, 测量稳定。 2 谐波测量方法 谐波测量是解决谐波问题的基础和主要依据, 通过对谐波的检测, 可以实时监测电网中谐波的含量及其潮流方向, 计量各次谐波含量、 谐波电压电流幅值、相位等参数, 从而提高测量和计量仪表的准确

基于MATLAB的电力谐波分析

目录 摘要 (2) Abstract (2) 1:绪论 (2) 1.1课题背景 (2) 1.2谐波的产生 (3) 1.3电网中谐波的危害 (5) 1.4研究谐波的重要性 (5) 2:谐波的限制标准和常用措施 (7) 2.1国外谐波的标准和规定 (8) 2.1.1谐波电压标准 (8) 2.1.2谐波电流的限制 (9) 2.2我国谐波的标准和规定 (9) 2.2.1谐波电压标准 (10) 2.2.2谐波电流的限制 (11) 2.3谐波的限制措施 (12) 3:谐波的检测与分析 (15) 3.1电力系统谐波检测的基本要求 (15) 3.2国内外电力谐波检测与分析方法研究现状 (15) 3.3谐波的分析 (18) 3.3.1电力系统电压(或电流)的傅立叶分析 (19) 3.3.2基于连续信号傅立叶级数的谐波分析 (19) 4:电力谐波基于FFT的访真 (21) 4.1快速傅立叶变换的简要和计算方法 (21) 4.1.1快速傅立叶变换的简要 (21) 4.1.2快速傅立叶变换的计算方法 (21) 4.2 FFT应用举例 (22) 5:结论 (28) 附录: (28) 参考文献: (30) 致谢: (30)

基于MATLAB的电力谐波分析 学生: 指导老师: 电气信息工程学院 摘要:电力系统的谐波问题早在20世纪20年代就引起人们的注意,到了50年代和60年代,由于高压直流输电技术的发展,发表了有关换流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分的关注。 本文首先对目前国内外电力谐波检测与分析方法进行了综述与展望,并对电力谐波的基本概念、性质和特征参数进行了详细的分析,给出了谐波抑制的措施。并得出基于连续信号傅立叶级数的各次谐波系数的计算公式,推导了该计算公式与MATLAB函数FFT计算出的谐波系数的关系。实例证明:准确测量各次谐波参数,对电力系统谐波分析和抑制具有很大意义,可确保系统安全、可靠、经济地运行。同时实验结果表明,该法对设备要求不高,易于实现。 关键字:MA TLAB电力谐波分析 Harmonic Analysis of Electric Power System Based On Matlab Student: Teacher: Electrical and Information Engineering Abstract:The harmonic problem of electric power system has caused the attention of people in1920s and 1930s.Until 1950s,owing to the development of high voltage direct current transportation electricity technology,people published a large number of theses about the electricity power system harmonic problem,which caused by the current transform device.Since 1970s,because of the speedly development of eletricity power electronics technology,the various electric power electronics devices were applied extensively in the electric power system,industry,traffic and family,but the harm which the harmonic creates was serious more and more.Many country of the world all pay attention to the harmonic problem. Summary and Prospects of the first domestic and international power harmonics detection and analysis methods, and power harmonics of the basic concepts of the nature and characteristic parameters of a detailed analysis, given a harmonic suppression measures. Obtained based on the

基于DSP的电力系统谐波检测装置的设计毕业设计

基于DSP的电力系统谐波检测装置的设计 摘要 随着现代电力电子设备和非线性负载的大量使用,谐波污染日趋严重,谐波己成为电力部门及其用户日益关注的问题,因此对谐波进行检测与分析具有重要的意义。本文首先介绍了国内外电力系统谐波测量装置的现状,分析了数字信号处理芯片在电力系统中的应用情况,对谐波分析的相关理论与技术进行了研究,设计了以DSP为核心的硬件与软件系统。 硬件设计方面,根据电力系统中数据采集和处理的实际特点,设计了信号的多通道采样保持和时钟转换电路,实现了多路信号的同步采样和快速转换。充分发挥了微控制器的控制功能和DSP芯片的数字信号处理优势。 软件算法方面,系统采用传统的快速付立叶变换(FFT),对采集的电压和电流信号进行频谱分析。论文中还详细分析了信号的采样问题,以及信号的数字滤波问题。初步设计了对采集数据进行计算和处理的相关软件算法,实现了对谐波的测量功能。 本装置可以快速、准确地进行谐波的测量和分析。 关键词:DSP;谐波;同步采样;快速傅里叶变换

Abstract With the wide applications of modern power electronics equipment and nonlinear load,harmonic deterioration has increased rapidly, which has attracted great attentions by powerdepartment and users.By analyzing the situations of the electric harmonic monitoring equipments home and abroad,aiming at the demand of power department and practical application.The application of Digital Signal Processor in the electric power systems is introduced in this paper,it aims at the harmonic theories and technologies analysis and exploits a hardware floor and a software system with DSP core. The hardware design aspect, according to the electrical power system in the data acquisition and the processing actual characteristic, has designed the signal multichannel sampling maintains with the switching circuit, has realized the multi-channel signal synchronized sampling and the split-second-selection.Has displayed the micro controller's control function and the DSP chip digital signal processing superiority fully. The software algorithm aspect, the system uses the tradition to pay fast sets up the leaf to transform (FFT), carries on the spectral analysis to the gathering voltage and the electric current signal. In paper also multianalysis signal sampling question, as well as signal digital filtering question.The preliminary design has carried on the computation and the processing related software algorithm to the gathering data, has realized to the overtone survey function. This equipment may be fast, accurate carries on the overtone the survey and the analysis. Key Words:Digital Signal Processor;Harmonic;Synchronous sampling; Fast Fourier Transfer

电网谐波测量

1 绪论 随着国民经济的发展和人们生活水平的提高,电力电子产品广泛地应用于工业控制领域,用户对电能质量的要求也越来越高,其中最为突出的是电压质量和谐波的问题,因此,如何提高电压质量、治理谐波就成为输配电技术中最为迫切的问题之一。所以,面对我国目前电网结构薄弱和输配电技术普遍存在的技术手段的落后、自动化水平低的现状,针对电压质量和谐波问题,研究电网谐波治理问题和无功补偿新技术及新装备,具有十分重要的理论和现实意义[3]。 1.1 谐波的定义 “谐波”这一名词起源于声学,在声学中谐波表示一根弦或一个空气柱以基波频率的倍数频率振动。电气学中所谓电网谐波,就是电网正弦电压波形畸变后,其波形可以按傅立叶级数进行分解,除了基波(50HZ)之外,还有一系列频率为基波频率整数倍的正(余)弦波,这些正(余)弦波称之为谐波。正是由于这些谐波注入了电网,就使得电网电压波形畸变[14]。 1.2 谐波的危害 电网谐波的危害主要有以下几点: 1、相同频率的谐波电压余谐波电流要产生同此谐波的有功功率与无功功率,从而降低电网电压,浪费电网容量。 2、高次谐波能使电容器出现过电流与过负荷,温度增高,寿命减少,甚至出现发热、鼓肚、击穿或爆炸事故。同时在电压已经畸变的电网中,电容器的投入,还可能使电网的谐波加剧(谐波放大现象)。 3、谐波往往引起继电保护不工作或误动作,从而造成设备与系统的事故,尤其是半导体继电保护与整流型继电保护更为严重。

4、谐波能增大仪表的计量误差,干扰通讯网络的正常工作。 5、电机中有谐波电流,且频率接近某个零件的固有频率时,使电机产生机械振动并发出很大的噪声。 6、谐波对人体有影响。从人体生理学来看,人体细胞在受到刺激兴奋时,会在细胞膜静息电位基础上发生快速电波动或可逆翻转。其频率如果与谐波频率相接近,电网谐波的磁辐射就会直接影响人的脑磁场和心磁场。 1.3 谐波的产生 电网谐波来源于三个方面:其一是发电源质量不高产生谐波;其二是输电网产生谐波;其三是用电设备产生的谐波。其中以电气设备产生的谐波最多,具体情况如下: 1、整流设备。由于晶闸管整流的广泛应用(如电力机车的、路电解槽、电池充电器等),给电网造成大量的谐波。统计表明:由于整流装置产生的谐波占所有谐波的40%左右,这是最大的谐波源。 2、电弧炉、电石炉。由于加热原料时电炉的三项电极很难同时接触到高低不平的炉料,使得燃料不稳定,引起三项负荷不平衡,产生谐波电流,经变压器的△形连接线圈而注入电网。其中主要是2~7次的谐波,平均可达基波的8%~20%,最大可达45%。 3、电力变压器。由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济型,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波,其次谐波电流可达额定电流的0.5%。另外变压器空载合闸时出现的涵流中也含有大量的谐波量。 4、家用电器。如电视机、录像机、电子调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波;在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能是波形改变。

基于有源滤波器和FFT的电力系统谐波检测方法研究本科毕业设计论文

毕业设计论文 题目:基于有源滤波器和FFT的电力系统谐波检测方法研究

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电网谐波及其抑制

电网谐波及其抑制

电网谐波及其抑制 ㈠电网谐波的有关概念 ⒈电网谐波的含义及其计算 谐波(harmonic),是指对周期性非正弦交流量进行傅里叶级数(Fourier series)分析所得到的大于基波频率整数倍的各次分量,通常称为高次谐波。而基波是指其频率与工频(50Hz)相同的分量。 向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备,称为谐波源(harmonic source)。 就电力系统中的三相交流发电机发出的电压来说,可认为其波形基本上是正弦量,即电压波形中基本上无直流和谐波分量。但是由于电力系统中存在着各种各样的“谐波源”,特别是随着大型变流设备和电弧炉等的广泛应用,使得高次谐波的干扰成了当前电力系统中影响电能质量的一大“公害”,亟待采取对策。 按GB/T14549-93《电能质量·公用电网谐波》规定,第h次谐波电压含有率

(HRU h)按下公式计算: HRU h=U h / U1× 100% 式中,U h为第h次谐波电压(方均根值);U1为基波电压(方均根值)。 第h次谐波电流含有率(HRI h)按下式计算: HRI h=I h / I1× 100% 式中,I h为第h次谐波电流(方均根值);I1为基波电流(方均根值)。 谐波电压总含量(U H)按下式计算: 谐波电流总含量(I H)按下式计算: 电压总谐波畸变率(THD u)按下式计算: THD u =U H / U1× 100% 电流总谐波畸变率(THD i)按下式计算:

THD i= I H / I1× 100% ⒉谐波的产生与危害 电网谐波的产生,主要在于电力系统中存在的各种非线性元件。因此,即使电力系统中电源的电压为正弦波,但由于非线性元件的存在,结果在电网中总有谐波电流或电压存在。产生谐波的元件很多。例如荧光灯和高压汞灯等气体放电灯、感应电动机、电焊机、变压器和感应电炉等,都要产生谐波电流或电压。最为严重的是大型的晶闸管变流设备和大型电弧炉,他们产生的谐波电流最为突出,是造成电网谐波的主要因素。 谐波对电气设备的危害很大。谐波电流通过变压器,可使变压器的铁心损耗明显增加,从而使变压器出现过热,缩短使用寿命。谐波电流通过交流电动机,不仅会使电动机的铁心损耗明显增加,而且还要使电动机转子发生振动现象,严重影响机械加工的产品质量。谐波对电容器的影响更为突出,谐波电压加在电容器两端时,由于电容器对谐波的阻抗很小,因此电容器很容易发生过负荷甚至造成

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 摘要:目前电力系统谐波危害已经引起了各个部门的关注,为了整个供电系统 的供电质量,必须对谐波进行有效的检测和治理。 关键字:电力谐波检测治理 前言随着我国工业化进程的迅猛发展,电网装机容量不断加大,电网中电力电子元件的 使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对 电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前,谐波与电磁 干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供 配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的 意义。 一、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。 ②谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严 重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接 的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰 和图像紊乱。 二、谐波检测方法 1.模拟电路 消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合 型的,目前较为先进的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造 价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控 制在10%以内,严重影响了有源滤波器的控制性能。近年来,人工神经网络的研究取得了较 大进展,由于神经元有自适应和自学习能力,且结构简单,输入输出关系明了,因此可用神 经元替代自适应滤波器,再用一对与基波频率相同,相位相差90度的正弦向量作为神经元 的输入。由神经元先得到基波电流,然后检测出应补偿的电流,从而完成谐波电流的检测。 但人工神经网络的硬件目前还是一个比较薄弱的环节,限制了其应用范围。 2.傅立叶变换 利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方 法实现的,离散傅立叶变换所需要处理的是经过采样和A/D转换得到的数字信号,设待测信 号为x(t),采样间隔为 t秒,采样频率 =1/ t满足采样定理,即大于信号最高频率分量的2倍,则采样信号为x(n t),并且采样信号总是有限长度的,即n=0,1……N-1。这相当于对无限长 的信号做了截断,因而造成了傅立叶变换的泄露现象,产生误差。此外,对于离散傅立叶变 换来说,如果不是整数周期采样,那么即使信号只含有单一频率,离散傅立叶变换也不可能 求出信号的准确参数,因而出现栅栏效应。通过加窗可以减小泄露现象的影响。 3.小波变换 小波变换已广泛应用于信号分析、语音识别与合成、自动控制、图象处理与分析等领域。电力谐波是由各种频率成分合成的、随机的、出现和消失都非常突然的信号,在应用离散傅 立叶变换进行处理受到局限的情况下,可充分发挥小波变换的优势。即对谐波采样离散后,

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 1、谐波的定义 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的力量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。 2、谐波的危害 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 2.1 对供配电线路的危害 2.1.1 影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下,不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 2.1.2影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用电配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较低,可达40%;三相配电线路中,相线上的3的整数倍谐波,在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2.2 对电力设备的危害 2.2.1对电力容器的危害 当电网存在谐波时,投入电容器后,其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜低复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器,允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压器呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。 2.2.2 对电力变压器的危害 谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时

电网谐波监测分析模块建设要求

建立统一的公司级谐波监测分析模块,集成全网电能质量监测数据并开展大数据分析,诊断、预测和评估电能质量干扰源对电网运行的影响,及时发现影响电网安全的隐患,支撑电能质量治理决策,增强电网系统运行可靠性和稳定性。

?谐波监测子模块数据交互方式 (1)总部和省公司谐波监测子模块数据交互应满足“电网谐波监测分析模块纵向接口要求”。 (2)省公司谐波监测子模块与省公司PMS数据交互:获取台帐、鉴权等信息,接口应满足“电网谐波监测分析模块与PMS接口要求”。?谐波分析子模块数据交互 谐波数据分析在总部谐波分析子模块开展,省公司可按权限直接访问总部相关数据。

?总部、省公司主站及其互联 总部谐波模块部署于总部信息内网二级系统域中,省公司谐波模块部署于省公司信息内网二级系统域中。总部谐波模块与省公司谐波模块通过信息内网纵向通道互联,应满足信息内网纵向边界安全防护要求。 ?监测终端接入省公司主站 监测终端通过现有通信通道接入信息内网谐波监测子模块,应满足信息内网终端接入安全防护要求。

1.变电站的重要供电母线及出线: ?跨省计量关口点(必须设置); ?纽变电站高低压母线(可选设置)等。 2. 直流受端落点换流站(必须)及受其影响的变电站高低 压母线(可选)。 3.向干扰源用户供电的母线及出线: ?电气化铁路(必须); ?电弧炉、中频炉、轧机、轨道交通、电动汽车充电站、电焊机、变频调速设备、起重设备、电加热和电解设 备、大型储能电站、大型电梯、变频空调、节能照明、逆变电源、开关试验站等(可选)。

4. 向敏感、重要、高危用户供电的母线及出线: 半导体制造、精密加工,党政机关、医院、交通枢纽、机场、金融、数据中心,危险化学品、易燃易爆品制造等(可选)。 5. 电源接入点: ?10kV及以上风电场、光伏电站等新能源发电专线接 入变电站相关母线及出线(必须), ?其他发电厂(场、站)接入点(可选)。 6. 其他监测点: ?装设FACTS设备(如SVC、STATCOM等)的系统变 电站(换流站)母线及出线(必须)、 ?现场测试中超标较严重或用户投诉较多的变电站母线 及出线等(可选)。

有源电力滤波器中的谐波检测电路设计

有源电力滤波器中的谐波检测电路设计 摘要:针对现在有源电力滤波器中谐波检测的缺陷,设计出一种基于DSP、AD756和MAX260等硬件相结合的谐波检测电路。分析了ip-iq谐波电流检测算法,并且在硬件上实现。介绍了硬件结构原理,给出硬件设计框图和谐波检测各部分的程序流程,并研制出谐波检测电路。实验结果验证了谐波检测的快速性和准确性,系统运行稳定可靠,有较好的应用前景。关键词:谐波检测;TMS320F2812;AD7656;PLL;MAX260;C8051F330 对于有源电力滤波器(APF)而言,实时准确地检测出谐波电流是非常关键的,它的快速性、准 确性、灵活性以及可靠性直接决定APF的补偿性能。设计的谐波检测电路检测出的多路模拟信号会有一定的延迟性,这会大大影响APF计算谐波的精确性和准确性。本文中谐波检测装置所用的AD7656具有6路同步采样特性,克服了测量结果之间延迟的缺点,使得测量精度高。以上优点弥补了目前APF中谐波电流检测技术的缺陷,而且抗混叠滤波器、隔离放大器、过零检测电路、锁相倍频电路的设计增强了检测的精确性。1 装置整体运行原理及相关算法1.1 装置运行原理图1为并联型有源电力滤波器的原理结构框图。图中,交流电网对非线性负载电,非线性负载为谐波源,产生谐波并且消耗无功功率。有源电力滤波器由4部分组成:谐波电流检测电路、电流跟踪控制电路、主开关器件驱动电路和主电路。谐波电流检测电路采用基于瞬时无功功率理论的ip-iq算法,根据有源电力滤波器的补偿目的检测出负载电流中的谐波分量,同时还要检测直流侧母线电容电压。然后将这些信号输入电流跟踪控制电路,通过控制算法生成一系列PWM信号,以此作为补偿电流的指令信号。这些信号经过电平转换后输入主开关器件驱动电路,驱动主电路中的主开关器件。此时,APF 产生并向电网注入补偿电流,该电流与非线性负载电流相位相反,幅值为负载

电能质量-公用电网谐波

中华人民共和国标准 电能质量公用电网谐波GB/T 14549—93 Quality of electric energy supply Harmonics in public supply network 1、主题内容与适用范围 本标准规定了公用电网谐波的允许值及其测试方法。 本标准适用于交流额定频率为50H Z,标称电压110kV及以下的公用电网。 标称电压为220kV的公用电网可参照110kV执行。 本标准不适用于暂态现象和短时间谐波。 2、引用标准 GB 156 额定电压 3、术语 3.1公共连接点point of common coupling 用户接入公用电网的连接处 3.2谐波测量点harmonic measurement points 对电网和用户的谐波进行测量之处。 3.3基波(分量)fundamental (component) 对周期性交流量进行傅立叶级数分解,得到的频率与工频相同的分量。 3.4谐波(分量)harmonic (component) 对周期性交流量进行傅立叶级数分解,得到频率为基波频率大于1整数倍的分量。 3.5谐波次数(h)harmonic order(h) 谐波频率与基波频率的整数比。 3.6谐波含量(电压或电流)harmonic content (for voltage or current) 从周期性交流量中减去基波分量后所得的量。 3.7谐波含有率harmonic retio (HR) 周期性交流量中含有第h次谐波分量的方均根值与基波分量的方均根值之比(用百分数表示) 第h次谐波电压含有率以HRU h表示,第h次谐波电流含有率以HRI h表示。 3.8总谐波畸变率total harmonic distortion (THD) 周期性交流量中谐波含量的方均根值与其基波分量的方均根值之比(用百分数表示) 电压总谐波畸变率以THD u表示,电流总谐波畸变率以THD i表示。 3.9谐波源harmonic source 向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备。 3.10短时间谐波short duration harmonics 国家技术监督局1993-07-31批准1994-03-01实施

电力系统中的谐波检测及谐波抑制-最新年文档

电力系统中的谐波检测及谐波抑制 刖言 随着我国工业化进程的迅猛发展,电网装机容量不断加大。 电网中电力电子原件的使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前, 谐波于电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,演技和清除供配电系统中的高次谐波, 对于改善供电质量、确保电力系统安全、经济运行都有着十分重要的意义。 、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了 发电、输电及用电设备的效率。 ②谐波会影响电气设备的正常工作, 使电机产生机械振动和 噪声等故障,变压器局部严重过热,电容器、电缆等设备过热, 绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十 倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪音,境地通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或

死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪音干扰和图像紊乱。 二、谐波检测 1. 模拟电路 消除谐波的方法很多,既有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为现金的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波复制误差很难控制在10%以内,严重影响了有源滤波器的控制 性能。 2. 傅立叶变换 利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方法实现的,离散傅立叶变换所需要处理的是经过采样和A/D 转换得到的数字信号,设待测信号为x(t), 采样间隔为t 秒,采样频率=1/t 满足采样定理,即大于信号最高频率分量的2 倍,则采样信号为x(n t) ,并且采样信号总是

电网谐波的产生及谐波干扰其检测方法分析

电网谐波的产生及谐波干扰其检测方法分析(1) 2009-08-26 14:03:28 作者:来源: 关键字: 0 引言 随着现代电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通等各种领域得到广泛应用,但由于电力电子装置是一种非线性时变拓扑负荷,其产生的谐波和无功注入电网,会使设备容量和线路损耗增加,造成发配电设备利用率的下降,影响供电质量,对电力系统的安全稳定运行构成潜在威胁。目前,谐波污染、电磁干扰和功率因子降低已成为电力系统的三大公害,因此,研究和分析谐波产生的原因,为抑制电力系统的谐波干扰提供好的检测方法,对提高电网运行质量满足用户需求具有重要的实际意义。 1 谐波产生的原因 在电力系统中,电压和电流波形理论上应是工频下的正弦波,但实际的波形总有不同的非正弦畸变。从数学的角度分析,任何周期波形都可以被展开为傅里叶级数,因此,对于周期T=2π/ω的非正弦电压μ(t)或电流i(t),在满足狄里赫利条件下可以展开成如下形式的傅里叶级数,即: 式中:c1sin(ωt+θ1)为基波分量;cnsin(nωt+θn)为第n次谐波分量。可以看出,所谓谐波就是一个周期电气量的正弦分量,其频率为基波频率的整数倍,这也是国际上公认的谐波定义。由于谐波的频率是基波频率的整数倍,因此通常又被称为高次谐波。虽然在实际的电网中还存在一些频率小于基波频率整数倍的正弦分量,但主要研究的还是电网中存在的整数次谐波。 公用电网中的谐波产生原因主要和以下两方面有关: (1)电源本身以及输配电系统产生的谐波。由于发电机三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致等制造和结构上的原因,使得电源在发出基波电势的同时也会产生谐波电势,但由于其值很小,一般在分析电力系统谐波问题时可以忽略。在输配电系统中则主要是变压器产生谐波,由于其铁芯饱和时,磁化曲线呈非线性,相当于非线性器件,饱和程度越深波形畸变也就越严重,

电力系统谐波检测方法综述

综述 2019年第9期 1电力系统谐波检测方法综述 陈和洋1,3 吴文宣2 郑文迪1 晁武杰3 唐志军3 (1. 福州大学电气工程与自动化学院,福州 350108; 2. 国网福建省电力有限公司,福州 350003; 3. 国网福建省电力有限公司电力科学研究院,福州 350007) 摘要 电力系统谐波检测为谐波治理提供了方向,同时也是谐波监测系统的核心。本文首先 阐述了电力系统谐波的诸多危害;其次对一些传统检测方法和近期新方法展开讨论和分析,比如瞬时无功功率法、快速傅里叶变换法、小波变换法、希尔伯特-黄变换法等;最后阐述了将来谐波检测领域的发展趋势。 关键词:谐波检测;瞬时无功功率;快速傅里叶变换;小波变换;希尔伯特-黄变换;人工神 经网络;复合检测 Reviews of power system harmonic measurement methods Chen Heyang 1,3 Wu Wenxuan 2 Zheng Wendi 1 Chao Wujie 3 Tang Zhijun 3 (1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. State Grid Fujian Electric Power Co., Ltd, Fuzhou 350003; 3. Electric Power Reserch Institute of State Grid Fujian Electric Power Co., Ltd, Fuzhou 350007) Abstract Power system harmonic detection provides the direction for harmonic control and is also the core of the harmonic monitoring system. This paper first expounds the many hazards of power system harmonics, and then discusses and analyzes some traditional detection methods and recent new methods, such as: instantaneous reactive power method, fast Fourier transform method, wavelet transform method, Hilbert-Hang transformation method, etc., finally pointed out the future development trend and personal outlook in the field of harmonic detection. Keywords :harmonic detection; instantaneous reactive power; fast Fourier transform (FFT); wavelet transform; Hilbert-Huang transform (HHT); artificial neural network (ANN); composite detection 100多年来,随着电力系统的不断发展,以非化石能源为主的新一代电力系统格局已经产生,将来清洁能源和可再生能源将占有很大的比重。在此背景下,电力电子元器件的大量使用导致电力系统不可避免地受到谐波的污染。电力系统中的谐波分量过大将造成诸多危害:①使电能利用率降低,电力系统设备产生附加能耗,同时增加了电气应力,影响设备安全稳定运行[1];②大量分布式电源在公共连接点(point of common coupling, PCC )集中被 接入,可能放大电网的谐波振荡;③在柔性直流输 电运行过程中,直流场持续的谐波扰动可能引发一 系列不稳定现象,从而影响系统的安全稳定运行; ④谐波还可能使得保护误动作,测量装置产生误差,甚至可能会对通信线路产生干扰,影响通信效果。 针对谐波产生的种种危害,我国在20世纪90年代就已经开展了谐波治理的相关研究,并制定了《电能质量:公用电网谐波》(GB/T 14549—93)国家标准对公共电网谐波允许值进行了限制。此后对电力系统进行谐波治理,改善电能质量成为一项持续而长久的工作。有源电力滤波器(active power filter, APF )是一种能够动态抑制谐波、全面改善电能质量的电力电子装置,谐波电流的精确、实时检测直接影响其动态抑制的效果。 对谐波信号进行高精度、实时地检测是谐波治 福建省自然基金项目(2017J01480) 国网福建省电力有限公司科技项目(52130416001P )

相关主题
文本预览
相关文档 最新文档