诱导效应和共轭效应汇总
- 格式:ppt
- 大小:261.51 KB
- 文档页数:26
有机化学中的电子效应电子效应是影响有机化合物反应活性和反应规律的重要因素之一,深入理解有机化学中的电子效应,可以对有机化学的认识由感性向理性方向发展。
电子效应包括诱导效应、共轭效应和超共轭效应;有时三种效应同时存在,表现共同作用的综合结果。
一、诱导效应(Inductive effect)诱导效应是电子效应的一种,是由路易斯(Lewis)首先提出。
路易斯认为,对于有机化合物,诱导效应是由一个电负性较强的原子 X 取代了碳原子上的氢原子后,在 C-X 键上产生一个极性分布,这个极性分布通过电性诱导作用,在分子中其它键上引起一系列的极性变化,结果在整个分子中产生一个向着 X 原子方向的较大范围的电子运动,这种电子运动称为诱导效应:δ+ C C X δC C 电负性比碳弱的元素原子也可以在分子中引起一系列的极性变化,只是所产生的诱导效应的方向刚好相反。
诱导效应是指在有机化合物分子中引入一个基团或原子后,由于原子的电负性差异,导致σ 键电子的移动,使分子中的电子云密度分布发生变化,而这种变化不但发生在直接相连的部分,也可以影响到不直接相连的部分。
这种因某一原子或基团的极性而引起电子沿碳链向某一方向移动的效应,称为诱导效应。
如氯丙烷分子中,取代在碳上的氯原子的电负性较强, C-Cl 键产生偶极,使与氯原子连接的第一个碳原子(α-碳原子)产生部分正电荷(δ+),也使第二个碳原子带有部分正电荷,第三个碳原子带有更少的正电荷,依次影响下去。
这种影响的特征是沿着碳链传递,并随着碳链的增长而迅速减弱或消失,一般传递到第三个碳原子就可忽略不计。
诱导效应是一种静电作用,共用电子并不能完全转移到另一原子,只是电子云密度分布发生变化,亦即键的极性发生变化。
δ+ δ+ δ+ δCH3—CH2—CH2→Cl 1.静态诱导效应(Is)诱导效应分为静态诱导效应和动态诱导效应。
静态诱导效应是由分子本身结构决定的,是分子本身所固有的极化效应,与由极性溶剂或反应试剂等产生的外电场无关。
共轭效应化合物分子中当所有的原子处于一个平面时,垂直与平面的π(p)轨道与π轨道的侧面可以互相交盖,使整个体系能量降低,键长发生平均化,即C=C键长变长,C-C键长变短,这种原子间的相互影响叫共轭效应。
共轭效应可分为两种,一种是π-π共轭,如1,3-丁二烯这种两个π键通过一个σ键形成。
在1,3-丁二烯分子中C1与C2间就爱那个长为1.34,标准1.33;C2和C3σ键长1.49,标准1.54.另一种叫P-π共轭,即与π键碳原子连接的原子若有一个非π键的P轨道和它平行,则也可以相互侧面重叠,使整个体系能量降低,也发生键的平均化过程,如氯乙烯分子中就有氯原子的一对孤对P电子与C=C平行,发生P-π共轭。
共轭效应的共同特点是使分子体系能量降低。
能否产生共轭效应决定条件有两个。
一是分子中各原子在同一平面上,二是π(P)轨道与π轨道必须小虎平行。
P轨道可以是一个对电子形成多电子P-π共轭,也可以是空轨道,形成缺电子P-π共轭。
P-π和π-π的区别P-π共轭,是指π键与一个原子的P轨道重叠,和π-π共轭,是指两个π键匹配重叠,产生离域。
简单的分辨方法。
π键是两个原子之间的,P是单个原子的。
有奇数个原子共轭就是P-π共轭,偶数个原子共轭就是π-π共轭诱导效应X是一个电负性大于H的基团,当X取代H后C-X键的电子云偏向X,X称为吸电子基团。
Y 是一个电负性小于H的基团,称为斥电子基团。
无论是X还是Y取代了H以后,都将使键的极性发生变化,整个分子的电子云密度分布也将随之而发生一定程度的改变,这种改变在靠近X或Y的地方表现最强烈,通过静电诱导作用沿着分子链由近及远地传递下去,并逐渐减弱,一般在三个碳原子以后基本消失。
这种原子间的相互影响叫做诱导效应。
吸电子基团引起的诱导效应叫做吸电子诱导效应(-I效应);斥电子基团引起的诱导效应叫做斥电子诱导效应(+I效应)。
诱导效应与共轭效应首先介绍诱导效应:诱导看相连原子的电负性,即该原子吸电子的能力,是最简单粗暴的处理方式。
可以理解为静电吸引,远了就吸引弱了,所以隔两根键或隔三个原子后基本可忽略诱导效应。
诱导效应为什么能这么简单粗暴的对待,主要我们研究的对象是连接两原子成键的sigma键,也就是头碰头重叠的键,电子在两原子间共享穿梭,受两原子束缚,所以电子怎么分配由两原子的吸电子能力决定。
而电负性大的原子,即吸电子能力强的原子犹如带更多正电荷的带电小球(想象做高中物理带电小球受力分析的情景),对电子的吸引力就是比电负性小的原子要强,所以两原子间的电子就偏向电负性大的原子,基团也一样。
从这一角度(sigma键电子偏移结果)来看,电子偏向某一方的原子或基团就称为诱导吸电子基,反之则称为诱导给电子基。
诱导吸电子能力只看原子电负性大小,电负性越大,电负性大的原子越多,吸电子能力越强。
所以那些电负性大的原子(氟 F.氧O.氮N等),或带有很多个这样原子的基团(硝基NO2,羧基COOH,三氟甲基CF3等),一般就是吸电子基。
有机化学中都是碳原子做骨架,因此一般原子电负性都跟碳比较,电负性比碳大的就是吸电子诱导,比碳小的就是给电子诱导,说起来诱导基团或原子不多,一般是含硅基团,高中学过,同一主族自上而下原子电负性减小,或者说氧化性降低,还原性升高,所以硅电负性比碳小,那诸如三甲基硅基等含硅的烷基取代的基团都是诱导给电子基。
当然硅这族下面的原子也是诱导给电子基,只是不常见。
其次介绍共轭效应:共轭效应看pai键中某原子的电子云密度。
注意!讨论的电子与诱导效应的电子不一样!我们都知道共轭体系稳定,这是由于共轭能分散电荷,使体系的电子分布趋于平均化(理想状态,苯环就是如此,但链状共轭体系达不到,我们只是借鉴思考方式),链状共轭体系的共轭范围越大越稳定。
环状共轭体系由于涉及芳香性,不能下此结论。
诱导效应就像资本主义,弱肉强食,电负性谁大电子归谁;共轭效应就像社会主义,电子共享且均匀化(相信学习离子键和共价键时老师打过这比方)。
电⼦效应电⼦效应:共轭效应、诱导效应、超共轭效应。
⼀、共轭效应共轭体系: π-π共轭:π键 + π键(双键/三键 + 单键 + 双键/三键)。
例: CH2=CH-CH=CH2(1,3-丁⼆烯):C=C(碳碳双键) + C=C(碳碳双键)π-π共轭。
CH2=CH-CHO(丙烯醛):C=C(碳碳双键) + C=O(碳氧双键)π-π共轭。
CH2=CH-CN(丙烯腈):C=C(碳碳双键) + C≡N(碳氮三键)π-π共轭。
p-π共轭:p轨道 + π键。
多电⼦p-π共轭: 例:CH2=CH-Cl(氯⼄烯):3原⼦4电⼦。
等电⼦p-π共轭: 例:CH2=CH-CH2·(烯丙基⾃由基):3原⼦3电⼦。
缺电⼦p-π共轭: 例:CH2=CH-CH2+(烯丙基碳正离⼦):3原⼦2电⼦。
p-p共轭:p轨道 + p轨道。
例:C=O(羰基)。
共轭效应: 正效应(推电⼦效应/+C效应): 例:C=C(碳碳双键)、-CH3(甲基)。
负效应(吸电⼦效应/-C效应): 例:C=O(碳氧双键)、-CN(氰基)、-NO2(硝基)。
性质: ①共平⾯(sp2)。
②体系能量降低(共轭能/离域能)。
③键长趋于平均化(单键变短,双键变长)。
④正负电荷交替出现。
⑤沿共轭链传递,⼤⼩不变。
⼆、诱导效应共价键:极性共价键(同种元素)、⾮极性共价键(不同种元素)。
元素电负性差越⼤,极性越⼤。
电负性:s > sp > sp2 > sp3。
偶极矩:键偶极矩(键矩)、分⼦偶极矩。
物理意义:描述共价键/分⼦极性⼤⼩的物理量。
定义:电荷中⼼的电荷量与电荷中⼼之间的距离之积。
标⽮性:⽮量。
⼤⼩:µ = qd。
µ:偶极矩。
q:电荷中⼼的电荷量。
d:电荷中⼼之间的距离。
分⼦偶极矩 = 键偶极矩(键矩)的⽮量和。
单位: 国际单位:库·⽶(C·m)。
常⽤单位:德拜(德,D)。
共轭效应是指两个以上双键(或三键)以单键相联结时所发生的电子的离位作用。
英戈尔德,C.K.称这种效应为仲介效应,并且认为,共轭体系中这种电子的位移是由有关各原子的电负性和p 轨道的大小(或主量子数)决定的。
据此若在简单的正常共轭体系中发生以下的电子离位作用:(例如:CH2 CH—CH CH2、CH2 CH—CH O)。
Y 原子的电负性和它的p 轨道半径愈大,则它吸引电子的能力也愈大,愈有利於基团—X Y从基准双键A B—吸引电子的共轭效应(如同右边的箭头所示)。
与此相反,如果A原子的电负性和它的p 轨道半径愈大,则它释放电子使其向Y 原子移动的能力愈小,愈不利於向—X Y基团方向给电子的共轭效应。
中间原子B 和X 的特性也与共轭效应直接相关。
诱导效应是指在有机分子中引入一原子或基团后,使分子中成键电子云密度分布发生变化,从而使化学键发生极化的现象,称为诱导效应。
诱导效应在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。
诱导效应的特征是电子云偏移沿着σ键传递,并随着碳链的增长而减弱或消失。
例如,醋酸是弱酸(pKi=4.76),醋酸分子中的α-碳原子上引入一个电负性比氢强的氯原子后,能使整个分子的电子云向氯原子偏移,结果增强了羟基中氢原子的质子化,使一氯醋酸成为强酸(pKi=2.86,酸性比醋酸强)。
比较各种原子或原子团的诱导效应时,常以氢原子为标准。
吸引电子能力(电负性较大)比氢原子强的原子或原子团(如—X、—OH、—NO2、—CN等)有吸电子的诱导效应(负的诱导效应),用-I表示,整个分子的电子云偏向取代基。
吸引电子的能力比氢原子弱的原子或原子团(如烷基)具有给电子的诱导效应(正的诱导效应),用I表示,整个分子的电子云偏离取代基。
在诱导效应中,一般用箭头“→”表示电子移动的方向,表示电子云的分布发生了变化。
诱导效应是电子共轭是原子间成键的一种的方式吧,具体:1单双键交替出现的体系称为共轭体系。
电子效应:诱导效应、共轭效应、场效应等一.诱导效应1.基础知识存在于不同的原子形成的极性共价键中如:X d- ←A d+在多原子分子中,这种极性还可以沿着分子链进行传递X d- ←A d+ ←B dd+ ←C ddd+Y d+→A d- →B dd- →C ddd-由于原子或原子团电负性的影响,引起分子中电子云沿σ键传递的效应称为诱导效应。
这种效应经过三个原子后其影响就很小诱导效应的方向,是以氢原子作为标准。
用-I表示Y d+ →d-CR3H—CR3 X d- ←d+CR3+I效应比较标准-I 效应+I诱导效应与-I诱导效应相反。
具有+I效应的原子或原子团与碳原子成键后,可使电子云偏向该碳原子。
正诱导效应用+I表示。
例:C H3C H3C CH H常见的具有+I 效应的基团有:―O―>(CH3)3C―>(CH3)2CH―>CH3CH2―>CH3―>D―常见的具有-I效应的基团有:―CN,―NO2>―F >―Cl >―Br >―I >RO―>C6H5―>CH2=CH―一般来说,诱导效应的强弱变化有以下规律:A.同一族的元素随着原子层的增加而吸电子诱导效应降低。
如:—F > —Cl > —Br > —I—OR > —SR—NR2 > —PR2B.同一周期的元素从左到右吸电子诱导效应增加。
如:—F > —OR > —NR2 > —CR3C.不同杂化状态的碳原子以s轨道成分多者吸电子能力强。
(sp>sp2>sp3)反映在基团方向时,如:D.带正电荷的基团具有吸电子诱导效应,带负电荷的基团具有给电子诱导效应。
与硫直接相连的原子,具有共价键,有强的吸电子诱导效应。
上面为静态分子中所表现出来的诱导效应,称静态诱导效应,它仅与键本身的极性有关。
另外,在化学反应中,由于分子受到许多外界条件的影响,例另一分子的影响,其它进攻试剂的影响,溶剂的影响等等。
在外界电场的作用下,分子会发生诱导极化,这种在外界电场影响下在化学反应时才表现出来的诱导效应称为动态诱导效应。