2011电磁场数值计算(本)-08
- 格式:ppt
- 大小:1.21 MB
- 文档页数:71
电磁场的数值计算方法物理系0702班学生杜星星指导老师任丽英摘要:数值计算方法是一种研究并解决数学问题数值近似解的方法,广泛运用于电气、军事、经济、生态、医疗、天文、地质等众多领域。
本文综述了电磁场数值计算方法的发展历史、分类,详细介绍了三种典型的数值计算方法—有限差分法、有限元法、矩量法, 对每种方法的解题思路、原理、步骤、特点、应用进行了详细阐述, 并就不同方法的区别进行了深入分析, 最后对电磁场数值计算方法的应用前景作了初步探讨。
关键词:电磁场;数值计算;有限差分法;有限元法;矩量法引言自从1864年Maxwell建立了统一的电磁场理论,并得出著名的Maxwell方程以来,经典的数学分析方法是一百多年来电磁学学科发展中一个极为重要的手段, 围绕电磁分布边值问题的求解国内外专家学者做了大量的工作。
在数值计算方法之前, 电磁分布的边值问题的研究方法主要是解析法,但其推导过程相当繁琐和困难,缺乏通用性,可求解的问题非常有限。
上个世纪六十年代以来,伴随着电子计算机技术的飞速发展,多种电磁场数值计算方法不断涌现,并得到广泛地应用,相对于解析法而言,数值计算方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。
但各种数值计算方法都有一定的局限性,一个复杂的问题往往难以依靠一种单一方法解决,因此如何充分发挥各种方法的优势,取长补短,将多种方法结合起来解决实际问题,即混合法的研究和应用已日益受到人们的关注。
本文综述电磁场的数值计算方法,对三种常用的电磁场数值计算方法进行分类和比较。
1电磁场数值计算方法的发展历史在上世纪四十年代,就有人试探用数值计算的方法来求解具有简单边界的电磁场问题,如采用Ritz法[1],以多项式在整个求解场域范围内整体逼近二阶偏微分方程在求解域中的解。
五十年代,采用差分方程近似二阶偏微分方程,诞生了有限差分数值计算方法,开始是人工计算,后来采用机械式的手摇计算机计算,使简单、直观的有限差分法得到应用和发展,该方法曾在欧、美风行一时。
电磁场数值计算与分析技术研究1. 研究背景电磁场是物理学中重要的研究领域,涉及到电磁波传播、电磁辐射、电磁场对物质的影响等多个方面。
在现代科学技术中,电磁场的应用十分广泛,如无线通信、电子设备、雷达测量等。
而电磁场数值计算与分析技术则是电磁场研究中的基础工具,它能够通过计算机模拟的方式帮助我们快速地了解电磁场的特性,分析电磁场对物体的影响。
2. 电磁场数值计算的方法电磁场数值计算的方法主要分为两类,即有限元法和有限差分法。
这两种方法在具体应用中各有优缺点。
有限元法是一种适用于复杂结构的数值计算方法,它将电磁场模型划分为有限个小的单元,然后在每个单元内进行计算,最后整合得到整个模型的计算结果。
有限元法的优点在于它能够处理各种复杂结构,如非线性材料、异形结构等,并且具有精度高、计算速度快等特点。
但是,有限元法的计算成本比较高,需要大量的计算资源,并且需要较高的计算技术水平。
有限差分法是一种比较简单的数值计算方法,它将空间分为一个个离散的网格,然后通过在不同的网格点上进行计算,得到整个空间内的电磁场分布。
有限差分法的优点在于它很容易实现且计算速度快,但是对于复杂的结构和材料效应处理能力较弱,并且需要网格的密度比较高才能够得到比较精确的结果。
3. 电磁场数值计算技术的应用电磁场数值计算技术的应用非常广泛,其中包括电磁波传播、电磁场对物体的影响、电磁设备设计等。
在电磁波传播方面,电磁场数值计算技术可以通过计算电磁波在空间中的传播路径、干扰区域等,来帮助无线通信等领域的设计和优化。
在电磁场对物体的影响方面,电磁场数值计算技术可以帮助我们计算电磁场对物体的激发情况,例如电磁波照射在人体上的吸收情况等,这对于电磁辐射防护等领域非常重要。
在电磁设备设计方面,电磁场数值计算技术可以帮助我们了解电磁场在设备内的分布情况,优化电磁场对设备的影响,提高设备的性能和可靠性。
4. 电磁场数值计算技术的未来发展随着计算机技术的不断进步,电磁场数值计算技术也在不断发展。
电磁场数值分析电和磁现象在自然界普遍存在,两者相互依存形成一个不看分割的整体。
电能产生磁,磁能生电。
很早以前人们就注意到电现象和磁现象,但是两者之间的这种相互联系在很长的一段时间内都没有被人们认识。
直到奥斯特首先发现了通电直导线周围存在磁场这一现象人们才开始把电和磁放在一起来研究。
然而这个时候人们依然没有办法揭示电和磁中间的秘密,只是停留在实验研究阶段,没有形成科学的理论。
1831年法拉第发现了电磁感应定律,从此电和磁的计算可以量化了,人类历史也开启了一个新的时代—电气时代。
由于法拉第的杰出工作,电和磁不再是不可触摸的了,人们已经掌握了运用它的钥匙。
在法拉第之后,另一位杰出的科学家麦克斯韦则更进一步,建立了麦克斯韦方程组,电和磁的理论已经到了相当完美的程度。
现代电机,不管结构多么复杂,都是基于法拉第电磁感应定律和麦克斯韦方程组的原理来运行的,其电和磁的相关量都可以利用这两个定律来进行精确地分析,在设计电机时,我们也是基于这两个定律对电机的电磁过程来进行精确的设计,从而设计出理想的电机。
学会电磁场分析,主要是基于麦克斯韦方程组的相关计算,对电机的学习非常重要。
它为我们今后的学习打下基础。
在学习过程中,主要要把握以下几个度之间的关系:梯度、旋度、散度,这三者的变换正体现了电和磁之间的转换。
一基本原理电磁场的内在规律由电磁场基本方程组—麦克斯韦(Maxwell )方程组表达。
这些方程是由麦克斯韦对大量实验结果及基本概念进行了数学加工和推广归纳而成的。
麦克斯韦方程组是分析和计算电磁场问题的出发点,它既可写成微分形式,又可写成积分形式。
微分形式的麦克斯韦方程组为 t DJ H ∂∂+=⨯∇(1) t BE ∂∂-=⨯∇(2) 0=⋅∇B(3) ρ=⋅∇D (4)式中,E 为电场强度(V/m );B 为磁感应强度(T );D 为电位移矢量(C/m 2);H 为磁场强度(A/m );J 为电流密度(A/m 2);ρ为电荷密度(C/m 2)。
电磁场数值方法姓名: 侯大有 学号: P1******* 专业: 电磁场与微波技术1. TM 极化平面波以00=ϕ入射到半径a=λ的无限长理想导体圆柱,应用MOM 编程计算目标上的电流分布和双站RCS 。
程序如下:clc;clear;ticlamda=0.01;a=lamda;k=2*pi/lamda;e=2.7183;sita=[pi/180:pi/180:2*pi];delta_sita=pi/180;N=length(sita); %计算x 和Cnsita=sita-delta_sita/2;% 取弧长中心x=a*cos(sita);y=a*sin(sita);Cn=sqrt((a*sin(sita)).^2+(a*cos(sita)).^2)*delta_sita; %小段弧长V=exp(-j*k*x);%入射波for m=1:NZ(m,:)=Cn.*k*120*pi/4.*besselh(0,2,k*sqrt((x-x(m)).^2+(y-y(m)).^2));Z(m,m)=k*120*pi/4*Cn(m)*(1-j*2/pi*log(1.78107*k*Cn(m)/(4*e)));endJ=inv(Z)*(V.');S=200*lamda;%远区场;K=exp(-j*(k*S+3*pi/4))/sqrt(8*pi*k*S);E_s=k*120*pi*K*exp(-j*k*(cos(sita.')*x+sin(sita.')*y))*(Cn.'.*J);%散射场RCS=2*pi*S*(abs(E_s).^2).';figure(1);plot(sita(1:360),abs(J(1:360).')*120*pi);xlim([0,2*pi]);xlabel('phi');ylabel('J')title('电流分布');figure(2);plot(sita(1:360),sqrt(RCS(1:360)));xlim([0,2*pi]);xlabel('phi');ylabel('RCS')title('雷达散射截面');toc运行结果如下图:2. 设一接地金属槽如图1-1所示,其上盖对地绝缘且具有电位 1002=ϕ(相对值) ,侧壁与底壁为地电位01=ϕ。
时变场中的差分法&21&2.1波动方程的差分法222u u ⎧∂∂−=220,0,0a x l t T t x <<<<⎪∂∂⎪0:(),(),0u t u x x x l t ϕψ∂⎪===≤≤⎨∂120,();,()0(0)()(0)x u u t x l u u t t T ⎪====≤<⎪12(0)(0),u l u ϕϕ⎪==⎩¾差分方程的形成和求解N第(n+1)层t τ+第n层时刻t xj-1τhJj+1jj 11[,(1)](,)n n j j u u u jh n u jh n ττ+−=+−4232341234(,)111()()(),()2!3!4!j nn n j j j n n u x t u u u t t t tt t t ττττ+∂∂∂∂=+++≤≤∂∂∂∂%%1(1)]()n nu −423234[,(,(,)111j j j n n n u u jh n u jh n u x t u u u t t t ττττττ−−=−−∂∂∂∂=−+−+≤≤%%%%1234()()(),()2!3!4!j j j n n t t t t∂∂∂∂4421124(,)(,)1n n n n u x t u x t u +−∂∂∂++%%%2442()[]4!j j j j j j u u u t t tττ−+=∂∂∂11n n n +−∂22222()()jj jn j uu uu O tττ−+=+∂21122n n n j j j n uu u u +−−+∂22()()j O h hx=+∂n n 1()()jjnj uuu O tττ+−∂=+∂⎧1111222220,(1,1;1,1)n n n n n n jjjj jj U U U U U U a j J n N h τ+−+−−+−+−==−=−⎪L L 10(),(),(1,1)j j j U U U jh jh j J ϕψ⎪⎪−⎪===−⎨L 012(),(),(0,1,,)n n J U u n U u n n N τττ⎪⎪===L ⎪⎪⎩aτλ=h122212(1,(1,1;1,1n n n n n U U U U U J n N λλλ+−−⎧=+−+−=−=−L L 1110()()),(),(1,1)jj jj jj j j U U U jh jh j J +⎪−⎪===−L 012())(),(),(0,1,,)j n nJ j j U u n U u n n N ϕψτττ⎨⎪⎪===L (*)⎩显式差分¾类似(*),直接从下面两层的值解出上面一层的值¾τ收敛性¾稳定性n n j jU u −−>1a τλ=≤hτ在缩小步长时,要按同一比率缩小。
电磁场数值计算及模拟技术研究随着电磁场在现代科技领域中的广泛应用,如电子技术、通信技术、能源技术、医学技术等,在电磁场理论研究与工程应用方面已成为研究的热点,其中,电磁场数值计算及模拟技术是电磁场研究与应用领域中的一项关键技术。
本文将从电磁场数值计算及模拟技术的基本原理,发展历程及应用前景等方面进行论述,旨在对该领域的研究提供一定的参考价值。
一、电磁场数值计算及模拟技术的基本原理电磁场是空间中存在着电场和磁场并可以相互影响的一种物理现象,其数学表示是通过麦克斯韦方程组进行的。
电磁场数值计算及模拟技术的基本原理即是利用数值方法和计算机模拟技术对电磁场的性质及分布进行研究和计算。
该技术主要基于两大数学分支:有限元法和有限差分法。
有限元法是一种数值分析方法,主要用于解决物理场的问题,因其能计算任意复杂场物的优点而被广泛应用于电磁场数值计算及模拟中。
它是通过对物理问题离散化,将任意形状的系统分离成有限数量的区域,并在每个单元内建立网格,运用有限元的基本原理,将微分方程转化为代数方程,最终得到电磁场的数值解。
有限差分法则是将微分方程中的导数用差分表示,然后利用离散化的方法对差分方程进行求解,最终得到电磁场的数值计算结果。
二、电磁场数值计算及模拟技术的发展历程电磁场数值计算及模拟技术的发展历程可以追溯至上世纪五六十年代,当时该技术主要应用于磁力学、电动力学等领域内,随着计算机技术的大力发展,特别是计算机硬件性能的大幅提升,该技术得以快速发展,为现代应用领域的研究与工程应用提供了强有力的支持。
目前,电磁场数值计算及模拟技术已广泛应用于各种领域,如通信领域的时域反演电磁场计算、光波导、雷达反射问题等;物理领域的磁场和粒子运动问题、电磁波的传播和反射等;医学领域的磁力共振成像等。
同时它也成为了电磁场工程发展研究的重要手段之一,如微波器件、电路板、天线等的设计;电磁辐射、防雷防护等的配套测量和认证等都离不开其数值计算及模拟技术的支持。
电磁场数值计算方法引论计算电磁学:现代数学方法、现代电磁场理论与现代计算机相结核的一门新兴学科。
目的:求解电磁场分布以及计算电磁场与复杂目标的相互作用。
电磁场计算方法分类分类方法按数学模型:微分方程、积分方程、变分方程。
按求解域:频域、时域法。
按近似性:解析法、半解析法、渐进法和数值法。
1、解析法求出电磁分布的数学表达式。
其优点:(1)、精确(2)、参数改变时不要重新推导(3)、解中包含了对某些参数的依赖关系,容易发现规律性主要方法有:分离变量法、级数展开法、格林函数法、保角变换法和积分变换法。
缺点:只有个别情况才能用解析法解决,一般情况较难应用。
2、渐进法由求解物体的线度l与波长λ的关系可以划分为(1)、低频区。
lλ≈(2)、谐振区。
lλ(3)、高频区。
lλ低频区:静态场近似,电路近似(等效电路)高频区:光学近似。
GO 几何光学法 GTD 几何绕射光学UTD 一般几何绕射 UAT 一致渐进理论PTD 衍射的物理理论 STD 衍射谱理论缺点:求解复杂系统的电磁场问题时可能引起大的误差,只能应用于简单的电大系统。
3、数值法把数学方程离散化,把连续问题化为离散问题,把解析方程化为代数方程。
把连续连续的场分布转换为计算离散点的场值或者表达场的级数表达式的数值化系数。
(1)、有限差分法——求解电磁场满足的微分方程。
(麦氏方程、泊松方程以及波动方程)△、用差商近似代替导数,用查分近似代替微分。
△、把微分方程转化为差分方程(代数方程)。
特点:简单,物理概念明确。
(2)、矩量法——求解电磁场积分方程。
△、把未知函数展开为选定基函数表示的级数,存在未知函数。
△、把求解未知函数问题转变为求解系数问题。
△、再选择合适权函数,计算加权平均意义下的误差。
△、令误差为零,积分方程变为关于系数的代数方程。
△、矩量法在应用时若直接采用分解法和迭代法求解则计算量非常大,例如计算电大目标散射问题的计算,为解决这个问题,产生了一系列的快速算法。
电磁场的数值计算方法:数值计算方法是一种研究并解决数学问题数值近似解的方法,广泛运用于电气、军事、经济、生态、医疗、天文、地质等众多领域。
本文综述了电磁场数值计算方法的发展历史、分类,详细介绍了三种典型的数值计算方法—有限差分法、有限元法、矩量法, 对每种方法的解题思路、原理、步骤、特点、应用进行了详细阐述, 并就不同方法的区别进行了深入分析, 最后对电磁场数值计算方法的应用前景作了初步探讨。
关键词:电磁场;数值计算;有限差分法;有限元法;矩量法引言自从1864 年Maxwell 建立了统一的电磁场理论,并得出著名的Maxwell 围绕电磁分布边值问题的求解国内外专家学者做了大量的工作。
在数值计算方法之前, 电磁分布的边值问题的研究方法主要是解析法,但其推导过程相当繁琐和困难,缺乏通用性,可求解的问题非常有限。
上个世纪六十年代以来,伴随着电子计算机技术的飞速发展,多种电磁场数值计算方法不断涌现,并得到广泛地应用,相对于解析法而言,数值计算方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。
但各种数值计算方法都有一定的局限性,一个复杂的问题往往难以依靠一种单一方法解决,因此如何充分发挥各种方法的优势,取长补短, 将多种方法结合起来解决实际问题,即混合法的研究和应用已日益受到人们的关注。
本文综述电磁场的数值计算方法,对三种常用的电磁场数值计算方法进行分类和比较。
电磁场数值计算方法的发展历史在上世纪四十年代,就有人试探用数值计算的方法来求解具有简单边界的电磁场问题,如采用Ritz ,以多项式在整个求解场域范围内整体逼近二阶偏微分方程在求解域中的解。
五十年代,采用差分方程近似二阶偏微分方程,诞生了有限差分数值计算方法,开始是人工计算,后来采用机械式的手摇计算机计算,使简单、直观的有限差分法得到应用和发展,该方法曾在欧、美风行一时。
1964 年美国加州大学学者Winslow 以矢量位为求解变量,用有限差分法在计算机上成忻州师范学院物理系本科毕业论文(设计)1965年,Winslow 首先将有限元法从力学界引入电气工程中,1969 年加拿大MeGill 大学P. Silvester运用有限元法成功地进行了波导的计算Chari合作将有限元法应用于二维非线性磁场的计算,成功地计算了直流电机、同步电机的恒定磁场。