第十讲频谱的线性搬移
- 格式:ppt
- 大小:944.00 KB
- 文档页数:37
第5章 频谱的线性搬移电路分为频谱的线性搬移电路和非线性搬移电路。
线性搬移电路:频谱结构不发生变化,如振幅调制与解调、混频。
非线性搬移电路:频谱结构也发生了变化。
频率调制与解调、相位调制与解调等电路5.1 非线性电路的分析方法有两种分析方法:1、级数展开分析2、线性时变分析5.1.1 非线性函数的级数展开分析法//////////////////////////////////////////////////////////////////////////////////////////补充:泰勒级数1、定理 (泰勒定理) 正次幂设函数在区域D 内解析,为D 内的一点,)(z f 0z R 为到D 的边界上各点的最短距离,则当时,可展开为幂级数0z R z z <−||0)(z f n n n R z z z f n C z z C z f n n )()(00||)(!100)(−========∑∞=<−=其中 n=0,1,2,… )(z f 在处的泰勒展开式是唯一的。
0z //////////////////////////////////////////////////////////////////////////////////////////非线性器件的伏安特性,可用下面的非线性函数来表示: i =f (u ) (5-1)式中, u 为加在非线性器件上的电压。
一般情况下, u =E Q +u 1+u 2,其中E Q 为静态工作点,u 1和u 2为两个输入电压。
展开成E Q 处的泰勒级数,可得∑∞=+=++++++++=02212122122110)( )()()(n n n n u u a u u a u u a u u a a i LL式中,a n(n =0,1,2,…)为各次方项的系数,由下式确定: )(!1)(!1Q )(QE f n du u f d n a n E u n n n === (5-3) 由于∑=−=+nm m m n m n nu u C u u 02121)( (5-4)式中,为二项式系数,故)!(!/!m n m n C m n −=∑∑=−∞==n m m m n m n n n u u C a i 0210 (5-5)以下分析, u 2=0情况,见p144作用在非线性器件上的两个电压均为余弦信号,即u 1=U 1cos ω1t ,u 2=U 2cos ω2t ,利若用式(5-7)和三角函数的积化和差公式)cos(21)cos(1cos cos x y x y x ++−=2y (5-9) 由式(5-5)不难看出,i 中将包含由下列通式表示的无限多个频率组合分量5.1.2 线性时变电路分析法对式(5-1)在 E Q +u 2上对i 用泰勒级数展开,有ωp,q =|±p ω1±q ω2|++=u u E f i 1Q )(L L +++++′′++′++=n n u u E f n u u E f u u E f u E f 12Q )(212Q 12Q 2Q 2)(!1 )(!21)()( 5-11 ―――――――――――――――――――――――――――由于5-5和5-11是等价的。