高等数学第10章 线性规划
- 格式:ppt
- 大小:1.24 MB
- 文档页数:126
线性规划1.简介:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。
在优化模型中,如果目标函数f(x)和约束条件中的gi(x)都是线性函数,则该模型称为线性规划。
2.线性规划的3个基本要素(1)决策变量(2)目标函数f(x)(3)约束条件(gi(x)≤0称为约束条件)3.建立线性规划的模型(1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。
(2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。
(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。
以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。
生产计划问题某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表试拟订生产计划,使该厂获得利润最大解答:根据解题的三个基本步骤(1)找出未知变量,用符号表示:设甲乙两种产品的生产量分别为x1与x2吨,利润为z万元。
(2)确定约束条件:在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制钢材:9x 1+5 x 2≤360,电力:4x 1+5 x 2≤200,工作日:3x 1+10 x 2≤300,x 1 ≥0 ,x 2 ≥0,(3)确定目标函数:Z=7x 1+12 x 2所以综合上面这三步可知,这个生产组合问题的线性规划的数学模型为:max Z=7x 1+12 x 2s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+00300103200543605921212121x x x x x x x x4.使用MATLAB 解决线性规划问题依旧是以上题为例,将其用MATLAB 来表示出来1.将目标函数用矩阵的乘法来表示max Z=(7 12)⎪⎪⎭⎫ ⎝⎛21x x 2.将约束条件也用矩阵的乘法表示s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛2121003002003601035459x x x x 编写MATLAB 的程序如下:c=[-7 -12]; (由于是max 函数,因此将目标函数的系数全部变为负数)A=[9,5;4,5;3,10];b=[360;200;300];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)其运行结果显示如下:x =20.000024.0000fval =-428.00005.MATLAB 求解线性规划的语句(1)c=[ ] 表示目标函数的各个决策变量的系数(2)A=[ ] 表示约束条件中≥或≤的式子中的各个决策变量的系数。
线性规划知识点归纳总结一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。
2 可行域:约束条件表示的平面区域称为可行域。
3 整点:坐标为整数的点叫做整点。
4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。
只含有两个变量的简单线性规划问题可用图解法来解决。
5 整数线性规划:要求量整数的线性规划称为整数线性规划。
二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
1 对于不含边界的区域,要将边界画成虚线。
2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3 平移直线y=-kx+P时,直线必须经过可行域。
4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。
积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<0 3.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0 注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。
3.4.2 简单线性规划1. 相关定义:(1)线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
(2)可行解:满足线性约束条件的解叫做可行解。
(3)可行域:由所有可行解组成的集合叫做可行域。
(4)最优解:分别使目标函数取得最大值和最小值的可行解叫做最优解。
2. 线性规划问题的求解步骤:(1)先设出决策变量,找出约束条件和线性目标函数;(2)作出相应的图象(注意特殊点与边界)(3)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(小)值;在在求线性目标函数的最大(小)值时,直线往右(左)平移则值随之增大(小),这样就可以在可行域中确定最优解。
注:①对线性目标函数中的符号一定要注意:当时,当直线过可行域且在y 轴截距最大时,值最大,在y 轴截距最小时,值最小;当时,当直线过可行域且在y 轴截距最大时,值最小,在y 轴截距最小时,值最大。
②如果可行域是一个多边形,那么一般在其顶点处使目标函数取得最大或最小值,最优解一般就是多边形的某个顶点。
例1:设满足约束条件:,分别求下列目标函数的的最大值与最小值:(1); (2);(3)(是整数); (4); (5) 示中的区域,且【解析】先作可行域,如下图所求得、、),(y x ny mx z +=0=+ny mx By Ax z +=B 0>B z z 0<B z z y x ,⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x y x z 106+=y x z -=2y x z -=2y x ,22y x +=ω1+=x y ωABC ∆)2,5(A)1,1(B )522,1(C(1)作出直线,再将直线平移,当的平行线过点B 时,可使达到最小值;当的平行线过点A 时,可使达到最大值。
故,(2)同上,作出直线,再将直线平移,当的平行线过点C 时,可使达到最小值;当的平行线过点A 时,可使达到最大值。
线性规划知识点一、什么是线性规划线性规划是一种数学优化方法,用于解决在给定约束条件下的线性目标函数的最优化问题。
线性规划的目标函数和约束条件都是线性的,因此可以通过线性代数的方法进行求解。
线性规划在实际问题中有广泛的应用,如生产计划、资源分配、运输问题等。
二、线性规划的基本要素1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中 Z 为目标函数值,c₁, c₂, ..., cₙ 为系数,x₁,x₂, ..., xₙ 为决策变量。
2. 决策变量:决策变量是问题中需要决策的变量,通常表示为x₁, x₂, ..., xₙ。
决策变量的取值决定了目标函数的值。
3. 约束条件:约束条件限制了决策变量的取值范围。
约束条件可以是等式约束或不等式约束,通常表示为 a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ +a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ,其中 a₁₁, a₁₂, ..., aₙₙ 为系数,b₁, b₂, ..., bₙ 为常数。
4. 非负约束:线性规划中通常要求决策变量的取值非负,即 x₁ ≥ 0, x₂ ≥ 0, ...,xₙ ≥ 0。
三、线性规划的解法线性规划可以通过不同的方法进行求解,常见的方法包括图形法、单纯形法和内点法。
1. 图形法:图形法适用于二维或三维的线性规划问题。
首先将目标函数和约束条件转化为几何形式,然后在坐标系中绘制约束条件的图形,最后通过图形的分析找到最优解点。
2. 单纯形法:单纯形法是一种通过迭代寻找最优解的方法。
该方法从一个可行解开始,通过不断移动到相邻的可行解来逐步接近最优解。
单纯形法的核心是单纯形表,通过表格的变换和计算来确定下一个迭代点,直到找到最优解。
3. 内点法:内点法是一种通过迭代寻找最优解的方法。
线性规划是一种优化方法,Matlab优化工具箱中有现成函数linprog对如下式描述的LP问题求解:%min f'x%s.t .(约束条件):Ax<=b%(等式约束条件):Aeqx=beq%lb<=x<=ublinprog函数的调用格式如下:x=linprog(f,A,b)x=linprog(f,A,b,Aeq,beq)x=linprog(f,A,b,Aeq,beq,lb,ub)x=linprog(f,A,b,Aeq,beq,lb,ub,x0)x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval]=linprog(…)[x, fval, exitflag]=linprog(…)[x, fval, exitflag, output]=linprog(…)[x, fval, exitflag, output, lambda]=linprog(…)其中:x=linprog(f,A,b)返回值x为最优解向量。
x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。
若没有不等式约束,则令A=[ ]、b=[ ] 。
x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options为指定优化参数进行最小化。
Options的参数描述:Display显示水平。
选择’off’ 不显示输出;选择’Iter’显示每一步迭代过程的输出;选择’final’ 显示最终结果。
MaxFunEvals 函数评价的最大允许次数Maxiter 最大允许迭代次数TolXx处的终止容限[x,fval]=linprog(…) 左端fval 返回解x处的目标函数值。
[x,fval,exitflag,output,lambda]=linprog(f,A,b, Aeq,beq,lb,ub,x0) 的输出部分:exitflag描述函数计算的退出条件:若为正值,表示目标函数收敛于解x处;若为负值,表示目标函数不收敛;若为零值,表示已经达到函数评价或迭代的最大次数。
高中必修5线性规划最快的方法简单的线性规划问题 一、知识梳理1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务. 1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若 直 线 不 过 原点,通 常 选 择 原 点 代入检验.3. 平 移 直 线 y=-k x +P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=02. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<03. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>02.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。