实验14 牛顿环和劈尖的等厚干涉.
- 格式:ppt
- 大小:3.78 MB
- 文档页数:20
等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法(4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与Rer (a ) (b)图9-1 牛顿环装置和干涉图样平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a )所示。
当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
牛顿环和劈尖干涉【实验目的】1. 学习用牛顿环测量透镜的曲率半径和劈尖的厚度。
2. 熟练使用读数显微镜。
【实验仪器】移测显微镜,钠光灯,牛顿环仪和劈尖装置。
【实验原理】测量透镜曲率半径的公式为:224()m nd dRm nλ-=-【实验内容】一、用牛顿环测量透镜的曲率半径1.调节牛顿环仪,使牛顿环的中心处于牛顿环仪的中心。
(为什么?)2. 将牛顿环仪置于显微镜平台上,调节半反射镜使钠黄光充满整个视场。
此时显微镜中的视场由暗变亮。
(一定能调出条纹吗?)3. 调节显微镜,直至看清十字叉丝和清晰的干涉条纹。
(注意:调节显微镜物镜镜筒时,只能由下向上调节。
为什么?)4. 观察条纹的分布特征。
察看各级条纹的粗细是否一致,条纹间隔是否一样,并做出解释。
观察牛顿环中心是亮斑还是暗斑,若为亮斑,如何解释?5. 测量暗环的直径。
转动移测显微镜读数鼓轮,同时在目镜中观察,使十字刻线由牛顿环中央缓慢向一侧移动然后退回第30环,自30环开始单方向移动十字刻线,每移动一环即记下相应的读数直到第25环,然后再从同侧第15环开始记数直到第10环;穿过中心暗斑,从另一侧第10环开始依次记数到第15环,然后从第25环记数直至第30环。
并将所测数据记入数据表格中。
(为什么测量暗环的直径,而不是测量亮环的直径?)6. 观察透射光束形成的牛顿环。
7. 观察白光产生的牛顿环(选做)二、利用劈尖测量薄片厚度(表格自拟)利用牛顿环测透镜的曲率半径【思考与讨论】1、用移测显微镜测量牛顿环直径时,若测量的不是干涉环直径,而是干涉环的同一直线上的弦长,对实验是否有影响?为什么?2、透射光能否形成牛顿环?它和反射光形成的牛顿环有什么区别?。
等厚干涉实验—牛顿环和劈尖干涉
等厚干涉实验,是由洪堡用他的牛顿环提出来的,它是细节最精确的光学实验中的一种,从1832年到今天依然使用着这种工具,用于测量光的波长。
与常见的牛顿环相比,劈尖干涉实验对更精确的波长测量更加具有优势,因此得到了广泛的应用。
等厚干涉实验由牛顿环和劈尖干涉组成。
牛顿环是带有镶边的圆形玻璃,其边缘处有两个凹痕,它们被锯齿状分割或尖锐的割边填充,形成镶边,这种特殊的凹痕可以将光线形成一个尖锐而密集的条状图案。
光线由镶边穿过时,产生干涉。
劈尖干涉则不依靠物理凹痕来实现,而是依靠使用两个平行的光纤,其中一根分成两端,由一个非激光的光源为源入射在第一根光纤上,然后从两端发出,分别穿过另外一端光纤,最后从E型探头出发,形成劈尖边缘,从而产生干涉。
等厚干涉实验的基本原理是,入射光有一定的空间图案,其条纹会与凹痕或劈尖边缘相互叠加,形成干涉。
在实际操作中,将该干涉实验用于波长测量时,只要将数据拟合到模型公式,便可以准确测量出光的波长。
等厚干涉实验的优势在于,操作简便,测量准确,同时具有较高的精度。
而缺点是,由于采用凹痕或劈尖边缘,光线会产生不可预测的多普勒效应,而且各种环境因素会对结果造成影响,所以并不能完全准确测量光的波长。
牛顿环与劈尖干涉实验报告《牛顿环与劈尖干涉实验报告》牛顿环与劈尖干涉实验是光学实验中常见的一种实验方法,通过这两种实验可以观察到光的干涉现象。
在这篇报告中,我们将介绍这两种实验的原理和实验结果,并对实验数据进行分析和讨论。
首先我们来介绍一下牛顿环实验。
在牛顿环实验中,我们使用一块平面玻璃片和一个凸透镜,将它们放在一起形成一定的空气层。
当透镜上方有一束平行光照射到玻璃片上时,由于光的波动性质,光波在玻璃片和凸透镜之间发生干涉现象,从而形成一系列明暗相间的圆环,这就是牛顿环。
通过观察牛顿环的形态和颜色,我们可以测量出不同位置处的空气层厚度,并利用这些数据来计算光的波长和折射率等物理量。
接下来我们来介绍劈尖干涉实验。
劈尖干涉实验是利用劈尖装置产生的干涉条纹来观察光的干涉现象。
劈尖装置是由两块平行的玻璃片组成,它们之间有一个微小的夹角,当一束平行光照射到这两块玻璃片之间时,光波在两块玻璃片之间发生干涉,从而形成一系列明暗相间的条纹。
通过观察这些干涉条纹的形态和间距,我们可以测量出光的波长和折射率等物理量。
在实验过程中,我们使用了精密的光学仪器和精确的测量方法,得到了一系列的实验数据。
通过对这些数据进行分析和处理,我们得到了光的波长和折射率等物理量的测量结果,并与理论值进行了比较。
实验结果表明,我们得到的测量值与理论值吻合较好,证明了牛顿环与劈尖干涉实验的可靠性和准确性。
总之,牛顿环与劈尖干涉实验是一种重要的光学实验方法,通过这些实验可以直观地观察光的干涉现象,并且得到了较为准确的测量结果。
这些实验结果对于光学理论的研究和应用具有重要的意义,也为我们深入理解光的波动性质提供了重要的实验依据。
希望通过这篇报告的介绍,读者能够对牛顿环与劈尖干涉实验有一个更加深入的了解,并对光学实验方法和技术有所启发。
牛顿环和劈尖的等厚干涉光的干涉是指满足相干条件即频率相同、存在相互平行的振动分量、相位差恒定的两束光相互叠加时所出现的光强按空间周期性重新分布的一种重要的光学现象。
由于原子、分子的自发辐射具有随机性,一般来说,来自于不同光源或同一光源不同部分的两束光是不相干的。
在光的干涉实验中通常采用分波阵面法(将同一束光的波阵面分割为两部分,如杨氏双缝干涉)或分振幅法(将同一束光的振幅分解为若干部分,如薄膜干涉)来获取相干光。
本实验采用分振幅法来获取相干光。
利用两光学玻璃表面之间形成的厚度不均匀的空气层的上、下两个玻璃空气界面对入射光的反射将同一束光分解成几部分、经过不同的路径后再叠加。
由于相互叠加的反射子光束之间的光程差与反射处空气层的厚度有关,干涉条纹的分布与空气层厚度的分布相对应,所以这种干涉称为等厚干涉。
在实际生产中和科学研究中,人们不但利用等厚干涉来进行精密测量,而且还可以利用等厚干涉条纹的疏密和是否规则均匀来检验光学元件、精密机械表面加工光面的光洁度、平整度以及半导体器件上镀膜厚度的测量。
【实验目的】1、 掌握用牛顿环测透镜曲率半径的方法。
2、 掌握用劈尖干涉测劈角的方法。
3、 学习读数显微镜的使用。
【实验仪器】读数显微镜、牛顿环装置、钠光灯、劈尖装置。
【仪器介绍】1、仪器结构读数显微镜(如图1)是利用螺旋测微机构控制镜筒(或工作台)移动的一种测量长度的精密仪器,可分为测量架和底座两大部分。
在测量架上装有显微镜筒和移动镜筒的螺旋测微装置。
显微镜的目镜用锁紧圈和锁紧螺钉固紧于镜筒内。
物镜用螺纹与镜筒连接。
整体的显微镜筒可用调焦手轮调焦。
旋转测微鼓轮,显微镜镜筒能够沿导轨横向移动,初末两位置之差即所测长度。
测微鼓轮每旋转一周,显微镜筒移动1mm 。
测微鼓轮圆周均分100个刻度,所以测微鼓轮每转一格,显微镜筒移动0.01mm 。
测量架的横杆插入立柱的十字孔中,立柱可在底座内移动和升降,用旋手固紧。
2、使用方法使用前先调整目镜1,对分划板(叉丝)聚焦清晰后,再转动调焦手轮3,同时从目镜观察,使被观测物成像清晰,无视差。
等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法 (4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a )所示。
Rer(a ) (b)图9-1 牛顿环装置和干涉图样当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
实验名称:等厚干涉—牛顿环和劈尖姓名学号班级日期20 年月日时段一、实验目的1. 观察等厚干涉现象,了解其特点。
2. 学习用等厚干涉测量物理量的两种方法。
3. 学习使用显微镜测量微小长度。
二、实验仪器及器件牛顿环装置,平板光学玻璃片,读数显微镜,钠光灯,待测细丝(请自带计算器)。
三、实验原理1.等厚干涉(简述原理、特点和应用)2. 牛顿环产生原理3. 曲率半径测量(1) 推导曲率半径计算公式(2) 实际测量公式(P129,6-3-5式)的考虑和导出4. 劈尖干涉:如图,当用单色光垂直入射时,空气劈尖上下表面反射的两束光将发生干涉,从而形成干涉条纹,条纹为平行于两玻片交界棱边的等间距直线。
根据光的干涉原理,得细丝的直径(或薄片的厚度)DD 22L k nl λλ==牛顿环装置四、实验内容1. 用牛顿环测凸透镜的曲率半径。
实验装置如图所示,其中,M为读数显微镜镜头,P为显微镜上的小反射镜,L为牛顿环装置。
(1)借助室内灯光,用肉眼直接观察牛顿环,调节牛顿环装置上的三个螺丝钮,使牛顿环圆心位于透镜中心。
调节时,螺丝旋钮松紧要适合,即要保持稳定,又勿过紧使透镜变形。
(2)将显微镜镜筒调到读数标尺中央,并使入射光方向与显微镜移动方向垂直。
放入牛顿环装置,移动显微镜整体方位和P的角度,使视场尽可能明亮。
(3)调节显微镜目镜,使十字叉丝清晰。
显微镜物镜调焦,直到看清楚牛顿环并使叉丝与环纹间无视差(注意:物镜调焦时,镜筒应由下向上调以免碰伤物镜或被测物)。
移动牛顿环装置使叉丝对准牛顿环中心。
能在显微镜中看到清晰的牛顿环关键有三点:a.确保目测到的牛顿环在物镜的正下方;b.P反射镜角度合适,使S发出的钠黄光尽可能多地反射入物镜;c.物镜调焦合适。
(4)定性观察待测圆环是否均在显微镜读数范围之内并且清晰。
(5)定量测量:由于环中心有变形,应选择10级以上的条纹进行测量。
如取m-n=8,则分别测出第25级到第10级各级的直径,然后用逐差法处理数据,求出曲率半径R。
等厚干涉牛顿环劈尖实验报告
一、实验目的
本次实验旨在运用激光厚干涉仪和牛顿环劈尖,了解光波在牛顿环劈尖中的折射作用,从而证明劈尖的存在。
二、实验原理
1、牛顿环劈尖的概念
牛顿环劈尖(Newton's ring)是由牛顿发现的一种光电现象,也叫牛顿环。
它是由光
的入射口、出射口以及中间的物体所形成的闭环光路,由此形成的环形状的干涉图形叫牛
顿环。
一般当光通过闭环光路,通过重叠的方式产生干涉现象,形成牛顿环。
2、厚干涉
厚干涉又称原来层干涉,是使用衍射光斑阵列照射在去表面上形成的干涉图形,它反
映出物体厚度的信息。
据此,可以分析出该物体表面的厚度,它也可以用来研究表面形状
的变化。
三、实验仪器
激光厚干涉仪、牛顿环劈尖、活塞式调准器、激光源。
四、实验步骤
1、安装实验仪器:
将激光厚干涉仪、激光源和活塞式调准器置于室内,保持激光垂直实验台,并将牛顿
环劈尖调整成柱形玻璃以后,放置在实验台上。
2、调整激光和牛顿环劈尖:
使用活塞式调准器,调节激光的垂直方向,使其正好照射到牛顿环劈尖上,并用手调
节牛顿环劈尖,将劈尖调节至聚焦位置。
3、实验观察:
调节激光后,观察实验台上的屏幕,可以观察到环的清晰程度,清晰的环表明劈尖的
存在,从而证明牛顿环劈尖的存在。
五、实验结果
实验结束后,可以观察到清晰的牛顿环,证明了劈尖的存在。
实验09 用牛顿环测曲率半径光的干涉现象证实了光在传播过程中具有波动性。
光的干涉现象在工程技术和科学研究方面有着广泛的应用。
获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。
本实验主要研究光的等厚干涉中的两个典型干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。
在实际工作中,通常利用牛顿环来测量光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度和固体的热膨胀系数等。
【实验目的】设距离中心触点O 半径为K r 的圆周上某处,对应的空气薄层厚度为K d ,则由空气薄层上、下表面反射的两束相干光的光程差为22λδ+=K K d (8-1)式中2λ是因为光线由光疏媒质(空气)进入光密媒质(玻璃)在交界面反射时有一位相π的突变而引起的附加光程差(半波损失)。
由图8-1所示的几何关系,有: 2222222)(KK K KK rd Rd R r d R R ++-=+-=因为K d R >>,故可略去2K d 项而得:Rr d KK 22= (8-2)根据干涉条件,两束相干光当光程差为波长的整数倍时互相加强,光程差为半波长的奇数倍时互相抵消,因此,第K 级明环和暗环的形成条件是:λδK = 为明环 (8-3)2)12(λδ+=K 为暗环 (8-4)由公式(8-1)、(8-2)、(8-3)、(8-4)可求得第K 级明环和暗环的半径为:明环: 2)12(λR K r K -= ,3,2,1=K (8-5)暗环: λKR r K = ,2,1,0=K (8-6) 从公式(8-5)、(8-6)可知,在平凸透镜凸面与平面玻璃的接触点(即0=K r )处,干涉圆环为暗环,实际观察到的是一个暗圆斑。
2. 透镜曲率半径R 的测量方法及系统误差的处理方法如果已知入射光波长λ,则只要设法测得明环或是暗环的半径K r ,就可以由(8-5)、(8-6)式求得平凸透镜的曲率半径R 值,反之,当曲率半径R 已知时,则可求得波长λ值。