初二数学等边三角形[人教版]
- 格式:pdf
- 大小:1.15 MB
- 文档页数:9
等边三角形的性质和判定知识总结:等边三角形的性质:等边三角形的判定:1、三边相等1、三边相等2、三个内角60°2、三个内角60°3、三线合一3、有一个内角为60°的等腰三角形定理:30°所对的直角边为斜边的一半逆定理:如果直角边为斜边的一半,则直角边所对的角为30°例1、如图,在△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数为()A、10°B、15°C、20°D、30°例2、若等腰三角形的腰长为6cm,腰上的高为3cm,则等腰三角形的顶角为()A、30°B、150°C、30°或150°D、以上都不对1、已知a、b、c是三角形的边长,且满足(a-b)2+|b-c|=0,那么这个三角形一定是()A、直角三角形B、等边三角形C、钝角三角形D、锐角三角形2、在△ABC中,∠A+∠B=120°,∠C=∠A,则△ABC是()A、钝角三角形B、等腰直角三角形C、直角三角形D、等边三角形3、如图,△ABC为等边三角形,BD是中线,延长BC到E,使CE=CD,若△ABC的周长为18,BD=a,则△BDE 的周长为()A、9+aB、12+2aC、12+aD、9+2a4、已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1、O、P2三点构成的三角形是()A、直角三角形B、钝角三角形C、等腰三角形D、等边三角形5、等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分,差为2cm,则腰长为()A、4cmB、8cmC、4cm或8cmD、以上都不对例4、如图,△ABC是等边三角形。
D、E是△ABC外两点,连结BE交AC于M,连结AD交CE于N,AD交BE 于F,DA=EB。
等边三角形(提高)【学习目标】1. 掌握等边三角形的性质和判定.2. 掌握含30°角的直角三角形的一个主要性质.3. 熟练运用等边三角形的判定定理与性质定理进行推理和计算. 【要点梳理】【高清课堂:389303 等边三角形,知识要点】 要点一、等边三角形 等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.要点二、等边三角形的性质 等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°. 要点三、等边三角形的判定 等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形. 要点四、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半. 要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系. 【典型例题】类型一、等边三角形1、(2015秋·黄冈期中)如图,已知点B 、C 、D 在同一条直线上,ABC ∆和DCE ∆都是等边三角形,BE 交AC 于F ,AD 交CE 于H. (1)求证:△BCE ≌△ACD ; (2)求证:FH ∥BD.【答案与解析】(1)证明: ABC ∆和DCE ∆都是等边三角形 ∴BC =AC ,CE =CD ,∠BCA =∠ECD =60°∴∠BCA+∠ACE=∠ECD+∠ACE ,即∠BCE=∠ACD在△BCE 和△ACD 中BCE ACD CE B A D C C C ∠=∠==⎧⎪⎨⎪⎩∴△BCE ≌△ACD (SAS )(2)由(1)知△BCE ≌△ACD 则∠CBF=∠CAH ,BC=AC又∵ABC ∆和DCE ∆都是等边三角形,且点B 、C 、D 在同一条直线上, ∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF , 在△BCF 和△ACH 中CBE CAH BC ACBCF ACH ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△BCF ≌△ACH (ASA ) ∴CF=CH ,又∵∠FCH =60°∴△CHF 是等边三角形 ∴∠FHC =∠HCD=60°, ∴FH ∥BD【总结升华】本题考查等边三角形的判定与性质及全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键。
13.3.2等边三角形(1)一.选择题(共8小题)1.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180°B. 220°C. 240°D. 300°2.下列说法正确的是()A.等腰三角形的两条高相等C.有一个角是60°的锐角三角形是等边三角形B.等腰三角形一定是锐角三角形D.三角形三条角平分线的交点到三边的距离相等3.在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有()A. 1个B. 2个C. 3个D. 4个4.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A. 25° B. 30°C.45°D. 60°5.如图,已知D、E、F分别是等边△ABC的边AB、BC、AC上的点,且DE⊥BC、EF⊥AC、FD⊥AB,则下列结论不成立的是()A.△DEF是等边三角形B.△ADF≌△BED≌△CFEC.DE=AB D.S△ABC=3S△DEF6.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A. 30°B. 45°C. 120°D. 15°7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A. 4cm B. 3cm C. 2cm D. 1cm第1 题第4题第5题第7题8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形二.填空题(共10小题)9.已知等腰△ABC中,AB=AC,∠B=60°,则∠A=_________度.10.△ABC中,∠A=∠B=60°,且AB=10cm,则BC=_________cm.11.在△ABC中,∠A=∠B=∠C,则△ABC是_________三角形.12.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是_________.13.如图,M、N是△ABC的边BC上的两点,且BM=MN=NC=AM=AN.则∠BAN=_________.第13题第14题第15题14.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则∠AOC等于_________.15.如图,将边长为6cm的等边三角形△ABC沿BC方向向右平移后得△DEF,DE、AC 相交于点G,若线段CF=4cm,则△GEC的周长是_________cm.16.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE= _________度.第16 题第17题第18题17.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=_______°.18.如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是_________.①BE=CD;②∠BOD=60°;③∠BDO=∠CEO.三.解答题(共5小题)19.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.20.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.21.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.22.已知:如图,在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于点D,且DE=DB,试判断△CEB的形状,并说明理由.23.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC 于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).13.3.2等边三角形三、CDDBDCCD四、9、60;10、10;11、等边;12、等边三角形;13、90度;14、60度;15、6;16、60;17、130;18、①②三、19、(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS).(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.20、解答:解:△BDC≌△AEC.理由如下:∵△ABC、△EDC均为等边三角形,∴BC=AC,DC=EC,∠BCA=∠ECD=60°.从而∠BCD=∠ACE.在△BDC和△AEC中,,∴△BDC≌△AEC(SAS).21、解答:证明:(1)∵BF=AC,AB=AE(已知)∴FA=EC(等量加等量和相等).(1分)∵△DEF是等边三角形(已知),∴EF=DE(等边三角形的性质).(2分)又∵AE=CD(已知),∴△AEF≌△CDE(SSS).(4分)(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),∴∠DEF=60°(等边三角形的性质),∴∠BCA=60°(等量代换),由△AEF≌△CDE,得∠EFA=∠DEC,∵∠DEC+∠FEC=60°,∴∠EFA+∠FEC=60°,又∠BAC是△AEF的外角,∴∠BAC=∠EFA+∠FEC=60°,∴△ABC中,AB=BC(等角对等边).(6分)∴△ABC是等边三角形(等边三角形的判定).(7分)22、解答:解:△CEB是等边三角形.(1分)证明:∵AB=BC,∠ABC=120°,BE⊥AC,∴∠CBE=∠ABE=60°.(3分)又DE=DB,BE⊥AC,∴CB=CE.(5分)∴△CEB是等边三角形.(7分)23、(1)证明:∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即:∠ACN=∠MCB,在△ACN和△MCB中,AC=MC,∠ACN=∠MCB,NC=BC,∴△ACN≌△MCB(SAS).∴AN=BM.(2)证明:∵△AC N≌△MCB,∴∠CAN=∠CMB.又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE.在△CAE和△CMF中∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,∴△CAE≌△CMF(ASA).∴CE=CF.∴△CEF为等腰三角形.又∵∠ECF=60°,∴△CEF为等边三角形.(3)解:如右图,∵△CMA和△NCB都为等边三角形,∴MC=CA,CN=CB,∠MCA=∠BCN=60°,∴∠MCA+∠ACB=∠BCN+∠ACB,即∠MCB=∠ACN,∴△CMB≌△CAN,∴AN=MB,结论1成立,结论2不成立.。