整数的整除性1
- 格式:doc
- 大小:116.00 KB
- 文档页数:7
数的整除特征(一)新课引入:数的整除问题是整数的内容中最基本的问题。
常见数的整除特征如下:(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4)若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!如121,1375。
(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
如312。
新课讲授:例1.在能被2,3,5整除。
能被2,3,5和5整除的数的特征是个位上的数字必须是0,里填能被3+9+0的和能被3整除,那有几种呢?填1,4,7.符合条件的有2190,2490,2790。
《数论》第一章补充例题整除性理论是初等数论的基础.本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用.1整数的整除性例1设A={d1,d2,···,dk}是n的所有约数的集合,则}{nnn,,···,B=d1d2dk也是n的所有约数的集合.解由以下三点理由可以证得结论:(i)A和B的元素个数相同;(ii)若di∈A,即di|n,则(iii)若di=dj,则问:d(1)+d(2)+···+d(1997)是否为偶数?n解对于n的每个约数d,有n=d·n,因此,n的正约数d与是成对地出现的.只有n2当d=n,即d=n时,d和才是同一个数.故当且仅当n是完全平方数时,d(n)是奇数.nini|n,反之亦然;=nj.例2以d(n)表示n的正约数的个数,例如:d(1)=1,d(2)=2,d(3)=2,d(4)=3,···.因为442<1997<452,所以在d(1),d(2),···,d(1997)中恰有44个奇数,故d(1)+d(2)+···+d(1997)是偶数.问题d2(1)+d2(2)+···+d2(1997)被4除的余数是多少?例3证明:存在无穷多个正整数a,使得n4+a(n=1,2,3,···)都是合数.??例题中引用的定理或推论可以在教材相应处找到.1解取a=4k4,对任意的n∈N,有n4+4k4=(n2+2k2)2?4n2k2=(n2+2k2+2nk)(n2+2k2?2nk).由n2+2k2?2nk=(n?k)2+k2??k2,所以,对于任意的k=2,3,···以及任意的n∈N,n4+a是合数.例4设a1,a2,···,an是整数,且n∑k=1ak=0,n∏k=1ak=n,则4|n.解如果2??n,则n,a1,a2,···,an都是奇数.于是a1+a2+···+an是奇数个奇数之和,不可能等于零,这与题设矛盾,所以2|n,即在a1,a2,···,an中至少有一个偶数.如果只有一个偶数,不妨设为a1,那么2??ai(2??k??n).此时有等式a2+···+an=?a1,在上式中,左端是(n?1)个奇数之和,右端是偶数,这是不可能的,因此,在a1,a2,···,an 中至少有两个偶数,即4|n.例5若n是奇数,则8|n2?1.解设n=2k+1,则n2?1=(2k+1)2?1=4k(k+1),在k与k+1中有一个偶数,所以8|n2?1.2带余数除法例1设a,b,x,y是整数,k和m是正整数,并且a=a1m+r1,0??r1<m,b=b1m+r2,0??r2<m,则ax+by和ab被m除的余数分别与r1x+r2y和r1r2被m除的余数相同.特别地,ak与k被m 除的余数相同.r1解由ax+by=(a1m+r1)x+(b1m+r2)y=(a1x+b1y)m+r1x+r2y可知,若r1x+r2y被m除的余数是r,即r1x+r2y=qm+r,0??r<m,2则ax+by=(a1x+b1y+q)m+r,0??r<m,即ax+by被m除的余数也是r.例2设a1,a2,···,an为不全为零的整数,以y0表示集合A={y|y=a1x1+···+anxn,xi∈Z,1??i??n}中的最小正数,则对任何的y∈A,y0|y;特别地,y0|ai,1??i??n.′解设y0=a1x′1+···+anxn,?y∈A,由带余除法,?q,r0∈Z,使得y=qy0+r0,0??r0<y0.因此′r0=y?qy0=a1(x1?qx′1)+···+an(xn?qxn)∈A.如果r0=0,那么,因为0<r0<y0,所以r0是A中比y0还小的正数,这与y0的定义矛盾.所以r0=0,即y0|y.显然ai∈A(1??i??n),所以y0整除每个ai(1??i??n).例3任意给出的五个整数中,必有三个数之和被3整除.解设这五个数是ai,i=1,2,3,4,5,记ai=3qi+ri,0??ri<3,i=1,2,3,4,5.分别考虑以下两种情形:(i)若r1,r2,···,r5中数0,1,2都出现,不妨设r1=0,r2=1,r3=2,此时a1+a2+a3=3(q1+q2+q3)+3可以被3整除;(ii)若r1,r2,···,r5中数0,1,2至少有一个不出现,这样至少有三个ri要取相同的值,不妨设r1,r2,r3=r(r=0,1或2),此时a1+a2+a3=3(q1+q2+q3)+3r可以被3整除.例4设a0,a1,···,an∈Z,f(x)=anxn+···+a1x+a0,已知f(0)与f(1)都不是3的倍数,证明:若方程f(x)=0有整数解,则3|f(?1)=a0?a1+a2?···+(?1)nan.证对任意整数x,都有x=3q+r,r=0,1或2,q∈Z.(i)若r=0,即x=3q,q∈Z,则f(x)=f(3q)=an(3q)n+···+a1(3q)+a0=3Q1+a0=3Q1+f(0),3其中Q1∈Z,由于f(0)不是3的倍数,所以f(x)=0;(ii)若r=1,即x=3q+1,q∈Z,则f(x)=f(3q+1)=an(3q+1)n+···+a1(3q+1)+a0=3Q2+an+···+a1+a0=3Q2+f(1),其中Q2∈Z.由于f(1)不是3的倍数,所以f(x)=0.因此若f(x)=0有整数解x,则必是x=3q+2=3q′?1,q′∈Z,于是0=f(x)=f(3q′?1)=an(3q′?1)n+···+a1(3q′?1)+a0=3Q3+a0?a1+a2?···+(?1)nan.其中Q3∈Z.所以3|f(?1)=a0?a1+a2?···+(?1)nan.例5设n是奇数,则16|n4+4n2+11.证我们有n4+4n2+11=(n2?1)(n2+5)+16.由上节例题知道,8|n2?1,由此及2|n2+5得到16|(n2?1)(n2+5).例6证明:若a被9除的余数是3,4,5或6,则方程x3+y3=a没有整数解.证?x,y∈Z,记x=3q1+r1,y=3q2+r2,0??r1,r2<3.则存在Q1,R1,Q2,R2∈Z,使得x3=9Q1+R1,y3=9Q2+R2,3和r3被9除的余数相同,即其中R1和R2被9除的余数分别与r12R1=0,1或8,R2=0,1或8.因此x3+y3=9(Q1+Q2)+R1+R2.(2.1)又由式(2.1)可知,R1+R2被9除的余数只可能是0,1,2,7或8,所以,x3+y3不可能等于a .例7证明:方程22a21+a2+a3=1999(2.2)无整数解.证若a1,a2,a3都是奇数,则存在整数A1,A2,A3,使得22a21=8A1+1,a2=8A2+1,a3=8A3+1,于是22a21+a2+a3=8(A1+A2+A3)+3.4由于1999被8除的余数是7,所以a1为奇数.由式(2.2),a1,a2,a3中只有一个奇数,设a1为奇数,a2,a3为偶数,则存在整数A1,A2,A3,使得22a21=8A1+1,a2=8A2+r,a3=8A3+s,于是22a21+a2+a3=8(A1+A2+A3)+1+r+s,22其中r和s是整数,而且只能取值0或4.这样a21+a2+a3被8除的余数只可能是1或5, 但1999被8除的余数是7,所以这样的a1,a2,a3也不能使式(2.2)成立.3最大公约数例1(105,140,350)=(105,(140,350))=(105,70)=35.21n+4例2证明:若n是正整数,则是既约分数.14n+3证由辗转相除法得到(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,1)=1.??4辗转相除法例1用辗转相除法求(125,17),以及x,y,使得125x+17y=(125,17).解作辗转相除法:125=7×17+6,17=2×6+5,6=1×5+1,5=5×1,q1=7,r1=6,q2=2,r2=5,q3=1,r3=1,q4=5.由推论1.1,(125,17)=r3=1.利用定理1计算(这里n=3)P0=1,P1=7,P2=2·7+1=15,P3=1·15+7=22,Q0=0,Q1=1,Q2=2·1+0=2,Q3=1·2+1=3,取x=(?1)3?1Q3=3,y=(?1)3P3=?22,则125·3+17·(?22)=(125,17)=1.例2在m个盒子中放若干个硬币,然后以下述方式往这些盒子里继续放硬币:每一次在n(n<m)个盒子中各放一个硬币.证明:若(m,n)=1,那么无论开始时每个盒子中有多少个硬币,经过若干次放硬币后,总可使所有盒子含有同样数量的硬币.5证由于(m,n)=1,所以存在整数x,y,使得mx+ny=1.因此对于任意的自然数k,有1+m(?x+kn)=n(km+y),这样,当k充分大时,总可找出正整数x0,y0,使得1+mx0=ny0.上式说明,如果放y0次(每次放n个),那么在使m个盒子中各放x0个后,还多出一个硬币.把这个硬币放入含硬币最少的盒子中(这是可以做到的),就使它与含有最多硬币的盒子所含硬币数量之差减少1.因此经过若干次放硬币后,必可使所有盒子中的硬币数量相同.5素数与算术基本定理例1写出51480的标准分解式.解我们有51480=2·25740=22·12870=23·6435=23·5·1287=23·5·3·429=23·5·32·143=23·32·5·11·13.例2设a,b,c是整数,证明:(i)(a,b)[a,b]=ab;(ii)(a,[b,c])=[(a,b),(a,c)].证为了叙述方便,不妨假定a,b,c是正整数.(i)设a=pααβ11pα22···p1β2βkk,b=p1p2···pkk,其中p1,p2,···,pk是互不相同的素数,αi,βi(1??i??k)都是非负整数.由推论3.3,有(a,b)=pλ11pλ22···pλkk,λi=min{αi,βi},1??i??k,[a,b]=pμ11pμ22···pμkk,μi=max{αi,βi},1??i??k.由此知∏k(a,b)[a,b]=pλi+μi∏kαi=pmin{αi,βi}+max{αi,βi}∏ki=pii+βi=ab;i=1i=1i=1(ii)设a=∏kpα∏kii,b=∏kpβii,c=pγii,i=1i=1i=1其中p1,p2,···,pk是互不相同的素数,αi,βi,γi(1??i??k)都是非负整数.由推论3.3,有(a,[b,c])=∏kpλii,[(a,b),(a,c)]=∏kpμii,i=1i=16其中,对于1??i??k,有λi=min{αi,max{βi,γi}},μi=max{min{αi,βi},min{αi,γi}},不妨设βi??γi,则min{αi,βi}??min{αi,γi},所以μi=min{αi,γi}=λi,即(a,[b,c])=[(a,b),(a,c)].7。
整除整除是指整数a除以自然数b除得的商正好是整数而余数是零.我们就说a能被b整除(或说b能整除a),记作b|a,读作“b整除a”或“a能被b整除”.它与除尽既有区别又有联系.除尽是指数a除以数b(b≠0)所得的商是整数或有限小数而余数是零时,我们就说a能被b除尽(或说b能除尽a).因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而余数是零.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要余数是零就可以了.它们之间的联系就是整除是除尽的特殊情况.整除的一些性质为:(1)如果a与b都能被c整除,那么a+b与a-b也能被c整除.(2)如果a能被b整除,c是任意整数,那么积ac也能被b整除.(3)如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除.反过来也成立.下面我们讨论能被2,5,3,9,4,25,8,125,11,7,13等数整除的数的特征.1.能被2或5整除的数的特征是:如果这个数的个位数能被2或5整除,那么这个数就能被2或5整除.也就是说:一个数的个位数字是0、2、4、6、8时,这个数一定能被2整除.一个数的个位数字是0、5时,这个数一定能被5整除.例如要判断18762,9685,8760这三个数能否被2或5整除,根据这三个数的个位数字的特点,很快可以判断出,2|18762,2不能整除9685,2|8760;5不能整除18762,5|9685,5|8760.2.能被3或9整除的数的特征是:如果这个数的各个数位上的数字和能被3或9整除,这个数就能被3或9整除.例如要判断47322能否被9整除,由于47322=40000+7000+300+20+2=4×(9999+1)+7×(999+1)+3×(99+1)+2×(9+1)+2=4×9999+7×999+3×99+2×9+4+7+3+2+2=9×(4×1111+7×111+3×11+2×1)+(4+7+3+2+2)9一定能整除9×(4×1111+7×111+2×11+2×1),所以要判断9能否整除47322,只要看9能否整除4+7+3+2+2=18,因为9|18,所以9|47322.可以看到4+7+3+2+2恰好是这个数的各个数位上的数字和.类似的方法我们还可以判断出3|47322.3.能被4或25整除的数的特征是:如果这个数的末两位数能被4或25整除,这个数就能被4或25整除.例如要判断63950能否被4或25整除,由于63950=639×100+50,100=4×25,所以100能被4或25整除,根据整除的性质,639×100能被4或25整除,要判断63950能否被4或25整除,只要看50能否被4或25整除,因为4不能整除50,25|50,所以4不能整除63950,25|63950.可以看出50恰好是63950的末两位数.4.能被8或125整除的数的数的特征是:如果这个数的末三位数能被8或125整除,这个数就能被8或125整除.例如要判断4986576能否被8整除,由于4986576=4986×1000+576,1000=8×125,所以8|1000,根据整除的性质,8|4986000,要判断8能否整除4986576,只要看8能否整除576,因为8|576,所以8|4986576.可以看出576恰好是4986576的末三位数.同理可以判断这个数不能被125整除.5.能被11整除的数的特征是:如果这个数的奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,这个数就能被11整除.奇数位是指从个位起的第1、3、5…位,其余数位是偶数位.例如要判断64251能否被11整除,由于64251=6×104+4×103+2×102+5×10+1=6×(9999+1)+4×(1000+1-1)+2×(99+1)+5×(10+1-1)+1=6×(11×909+1)+4×(11×91-1)+2×(11×9+1)+5×(11-1)+1=[11×(6×909+4×91+2×9+5)]+[(6+2+1)-(4+5)]上式第一个中括号内的数能被11整除,要判断64251能否被11整除,只要(6+2+1)-(4+5)=0能被11整除,因为11|0,所以11|64251,而(6+2+1)-(4+5)恰好是64251的奇数位上的三个数减去偶数位上的两个数字.6.能被7、11、13整除的数的特征是:如果这个数的末三位数所组成的数与末三位以前的数所组成的数的差(大减小)能被7、11、13整除,这个数就能被7、11、13整除.例如要判断1096823能否被7、11、13整除,由于7×11×13=1001,所以7|1001,11|1001,13|10011096823=1096×1000+823=1096×(1001-1)+823=1096×1001-(1096-823)因为1096×1001能被7、11、13整除,要判断1096823能否被7、11、13整除,只要判断1096-823=273能否被7、11、13整除,由于7|273,13|273,11不能整除273,所以7|1096823,13|1096823,11不能整除1096823,而1096-823恰好是1096823的末三位以前的数所组成的四位数减去1096823的末三位数所组成的数.下面举例说明整除的性质及数的整除特征的应用.例1 在□内填上适当的数字,使(1)34□□能同时被2、3、4、5、9整除;(2)7□36□能被24整除;(3)□1996□□能同时被8、9、25整除.分析:(1)题目要求34□□能同时被2、3、4、5、9整除,因为能被4整除的数一定能被2整除,能被9整除的数一定能被3整除,所以34□□只要能被4、9、5整除,就一定能被2、3、4、5、9整除.先考虑能被5整除的条件.个位是0或5,再考虑能被4整除的条件,由于4不能整除34□5,所以个位必须是0,最后考虑能被9整除的条件,34□0的各个数位上的数字和是9的倍数,3+4+□+0=7+□,这时十位数字只能是2,问题得以解决.(2)题目要求7□36□能被24整除,24=3×8,而3与8互质,根据整除的性质,考虑被24整除,只要分别考虑被3、8整除就行了.先考虑被8整除的条件,7□36□的末三位数所组成的数36□能被8整除,所以个位数字只能是0或8,当个位数字为0时,由于要求7□360能被3整除,所以7+□+3+6+0=16+□能被3整除,这样千位数字只能是2或5或8;当个位数字为8时,由于要求7□368能被3整除,所以7+□+3+6+8=24+□能被3整除,这样千位数字只能是0或3或6或9.(3)题目要求□1996□□能同时被8、9、25整除,首先考虑能被25整除的条件,□1996□□的末两位数能被25整除,末两位数只能是00,25,50,75.其次考虑能被8整除的条件,□1996□□的末三位数字组成的数能被8整除,但600,625,650,675这四个数中,只有600这个数能被8整除.最后□199600这个数能被9整除,其各个数位上的数字和□+1+9+9+9+6+0=25+□能被9整除,所以第七位数字是2.解:(1)因为34□□能同时被2、3、4、5、9整除,因此只要34□□能同时被4、5、9整除.由于34□□能被5整除,所以个位数字只能是0或5,又因为4不能整除34□5,所以个位必须是0,又34□0能被9整除,3+4+□+0=7+□能被9整除,所以十位数字只能是2.3420能同时被2、3、4、5、9整除.(2)因为24=3×8,3与8互质,7□36□被8整除的条件是,7□36□的末三位数所组成的数36□能被8整除,所以个位数字只能是0或8;当个位数字是0时,7□360能被3整除,7+□+3+6+0=16+□能被3整除,所以千位数字只能是2或5或8;当个位数字是8时,7□368能被3整除,7+□+3+6+8=24+□能被3整除,所以千位数字只能是0或3或6或9.所以所求的数为72360,75360,78360,70368,73368,76368,79368.(3)因为□1996□□能被25整除,□1996□□的末两位数能被25整除,这样末两位数只能是00,25,50,75;又因为□1996□□能被8整除,但□1996□□的末三位数600,625,650,675这四个数中,只有600能被8整除;而□199600又能被9整除,□+1+9+9+6+0+0=25+□能被9整除,所在第七位数字只能是2.所以2199600能同时被8、9、25整除.例2 把915连续写多少次,所组成的数就能被9整除,并且这个数最小.分析:要求这个数能被9整除,而9+1+5=15显然不能被9整除,但3×15能被9整除,因此只要把915连续写3次,所组成的数就能被9整除,并且这个数最小.解:因为9+1+5=15,15不能被9整除,而3×15能被9整除,所以只要把915连续写3次,即915915915必能被9整除,且这个数最小.例3 希希买了九支铅笔,两支圆珠笔,三个练习本和五块橡皮.她看到圆珠笔每支3角9分,橡皮每块6分,其余她没注意.售货员要她付3元8角,希希马上说:“阿姨你算错了.”请问售货员的帐算错了没有?为什么?分析:根据圆珠笔与橡皮的单价,可以算出圆珠笔、橡皮共需39×2+6×5=108(分),而3元8角即380分减去108分等于272分,这272分是买九支铅笔、三个练习本的价格,这9与3正好是3的倍数,也就是说九支铅笔与三个练习本的总价钱应是3的倍数(无论它们各自的单价是多少),而272不是3的倍数,显然是售货员把账算错了.解:两支圆珠笔和五块橡皮的总钱数39×2+6×5=108(分)3元8角即380分,380-108=272(分)应是九支铅笔与三个练习本付的总价钱,因为九支铅笔与三个练习本的总价钱必是3的倍数,而272不是3的倍数,所以售货员把账给算错了.例4 三个数分别是346,734,983,请再写一个比996大的三位数,使这四个数的平均数是一个整数.分析:要使这四个数的平均数是一个整数,说明这四个数的和必是4的倍数.因为346+734+983=2063,被4除余3,比996大的三位数只有997被4除余1,这时2063+997=3060必能被4整除.解:因为346+734+983=2063,被4除余3,比996大的三位数只有997被4除余1,且2063+997必能被4整除,。
数论讲义一:整除整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题。
Ⅰ.整数的整除性初等数论的基本研究对象是自然数集合及整数集合。
我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如是整除,,则不一定是整数。
由此引出初等数论中第一个基本概念:整数的整除性。
定理一:(带余除法)对于任一整数和任一整数,必有惟一的一对整数,使得,,并且整数和由上述条件惟一确定,则称为除的不完全商,称为除的余数。
若,则称整除,或被整除,或称的倍数,或称的约数(又叫因子),记为。
否则,| 。
任何的非的约数,叫做的真约数。
0是任何整数的倍数,1是任何整数的约数。
任一非零的整数是其本身的约数,也是其本身的倍数。
由整除的定义,不难得出整除的如下性质:(1)若(2)若(3)若,则反之,亦成立。
(4)若。
因此,若。
(5)、互质,若(6)为质数,若则必能整除中的某一个。
特别地,若为质数,(7)如在等式中除开某一项外,其余各项都是的倍数,则这一项也是的倍数。
(8)n个连续整数中有且只有一个是n的倍数。
(9)任何n个连续整数之积一定是n的倍数。
(10)二项式定理:;;经典例题:一、带余除法1.若是形如的数中最小的正整数,求证:;分析:利用带余除法,设2.为质数,,证明:被整除;分析:利用带余除法处理,可以设,再来表示二.若3.设和为自然数,使得被整除,证明:分析:根据恒等式4.为给定正整数,对任意,都有,证明:;分析:注意到,对任意,有三、利用牛顿二项式定理;;5.设都是正整数,,且,证明:;分析:首先由,而,讨论的奇偶性6.已知,定义,证明:;分析:当时,四、配对思想7.设为奇数,证明:;分析:由于,这些数的分子都是,分母都小于,因此想到用配对法做此题;五.反证法8.设,,而是一个不小于的正整数,证明:存在整数,使得;整除作业一1.设为有理数,为最小正整数,使得是整数,如果与是整数,证明:。
整数整除性的一些数码特征(即常见结论)(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,则重复「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
如果差太大或心算不易看出是否17的倍数,同样重复之前的过程,直到能清楚判断为止。
整除性质及规律总结整除性质是指一个数能够被另一个数整除的特性。
在数学中,整除性质是一个非常重要的概念,它可以帮助我们解决一些数学问题,特别是在解决整数运算、因式分解等问题时起到重要的作用。
整除性质的基本概念是“整除”。
如果一个整数a能够被另一个整数b整除,那么我们就说a被b整除,记作a,b。
换句话说,如果存在一个整数c使得a=bc,那么我们就可以说a被b整除。
整除性质有以下几个重要的规律:1.任何整数都能被1整除。
对于任意整数a,都有a,12.任何整数都能整除它自己。
对于任意整数a,都有a,a。
3.如果整数a能被整数b整除,那么a也能被b的所有因数整除。
即如果a,b,且b,c,则a,c。
4.如果整数a能够整除整数b,且整数b能够整除整数a,那么a和b相等或它们都是0。
即如果a,b且b,a,那么a=b或a=b=0。
5.如果一个整数a能够整除整数b,那么a的绝对值一定小于或等于b的绝对值。
即如果a,b,则,a,≤,b。
这些整除性质和规律可以帮助我们解决许多数学问题。
以下是一些例子:1.素数判定:根据整除性质,如果一个数除了1和它本身外没有其他因数,那么这个数一定是素数。
因为只有1和它本身能够整除它。
例如,判断一个数a是否为素数,我们只需要从2到a的平方根遍历,看是否有能够整除a的数。
2.因式分解:根据整除性质,如果一个数a能够整除另一个数b,那么a就是b的因数。
因此,我们可以通过找出一个数的所有因数,然后对这些因数进行组合,得到这个数的因式分解式。
例如,将一个数b进行因式分解,我们可以从2开始遍历到b的平方根,找出所有能够整除b的数,然后将它们进行组合。
3.取模运算:取模运算是指将一个数除以另一个数,所得到的余数。
根据整除性质,如果一个整数a能够整除另一个整数b,那么b模a的结果一定为0。
因此,我们可以利用取模运算来判断一个数能否被另一个数整除。
例如,判断一个数b能否被3整除,我们只需要计算b模3的结果,如果结果为0,则说明b能够被3整除。
整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a <b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习十六1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习十六1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。
第一讲 整数的整除性和带余数除法一. 内容提要 班级______ 姓名______1. 整除的性质⑴ n 个连续正整数的积能被n !整除.(n 的阶乘:n !=1×2×3×…×n ).例如:a 为整数时,2a(a+1),6a(a+1)(a+2),24a(a+1)(a+2)(a+3),……⑵ 若a b 且a c ,则a (b ±c). ⑶ 若a,b 互质,且a c, b c ,则ab c ;反之则有:a,b 互质,ab c ,则a c, b c. 2. 带余数除法用一个整数a 去除整数b ,且a>0,则必有并且只有两个整数q 与r ,使b=aq+r ,0≤r<a .这就是带余数除去的一般表达式.当r=0时,记为a│b ,b 被a 整除;当r≠0时,记为ab ,b 不能被a 整除,或者说,b 除以a 有余数.利用余数将自然数分类,在解决实际问题中有广泛应用.我们说,任何一个自然数b 被正整数a 除时,余数只可能是0、1、2、…、a-1.这样就可以把自然数分为a 类.例如,一个自然数被4除,余数只能是0、1、2、3中的一个.因此,所有自然数按被4除时的余数分为4类,即4k ,4k+1,4k+2,4k+3.任何自然数都在这四类之中. 二. 热身练习1. 2006年“五一节”是星期一,同年“国庆节”是星期 .2. 有一个数能被5整除,但除以4余3,这个正整数最小是 .3. 一个整数去除300,262,205,所得余数相同,这个整数是 .4. 一个数除以3余2,除以4余1,那么这个数除以12,余数是 .5. 正整数2006200634+除以3,所得余数是________.6.已知x ,y ,z 均为整数,若11|(7x+2y-5z ),求证:11|(3x-7y+12z ).7.如果一个四位数abcd 能被9整除,试说明四位数bdca 也能被9整除.8.设一个五位数abcad,其中d-b=3,试问a,c为何值时,这个五位数被11整除。
整数的奇偶性和整除性所为整数的奇偶性就是利用整数的奇数、偶数的特征和性质解决问题和分析问题。
关于奇数和偶数有如下性质:1. 奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。
2. 两个数之和是奇(偶)数,则这两个数的奇偶性相反(同)。
3. 若干个整数之和为奇数,则这些数中必有奇数,且奇数的个数为奇数个;若干个整数之和为偶数,则这些整数中若有奇数,奇数的个数必为偶数个。
4. 奇数⨯奇数=奇数;奇数⨯偶数=偶数;偶数⨯偶数=偶数。
5. 若干个整数之积为奇数,则这些数必为奇数;若干个整数之积为偶数,则这些数中至少有一个为偶数。
6. 若a 是整数,则a 与a 有相同的奇偶性。
7. 若b a 、是整数,则b a +与b a -奇偶性相同。
例1:设n 为奇数,n a a a ,,,21 是n ,,2,1 的任意一个排列,证明:)()3)(2)(1(321n a a a a n ---- 必为偶数。
整数的整除性是初等数论的基本内容,虽然它的性质较为简单,但它的解题往往需要一定的技巧。
因此在各类数学竞赛中占有一定的比例。
定义: 设b a 、是整数,且0≠b ,如果存在整数q 使得bq a =,则称b 整除a ,或称a 被b 整除。
记作a b |。
否则,称b 不整除a ,记作b ˧a 。
显然,1能整除任意数;0能被任意数整除。
性质1:设c b a ,,是整数,1)a a |;2)若b a |,c b |,则c a |;3)若b a |,c a |,则对任意的整数n m ,,有cn bm a +|。
性质2:若在等式∑∑===n j j n i ib a 11中,除某一项外,其余各项都能被c 整除,则这一项也能被c 整除。
性质3:1)若1),(=b a ,且bc a |,则c a |;2)若1),(=b a 且c b c a |,|,则c ab |;3)设p 是素数,若ab p |,则a p |或b p |。
例2:试求方程y x y x 22232=+的正整数解。
竞赛培训专题6---整数的整除性1整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。
若d不能整除a,则记作d a,如2|6,4 6。
(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。
证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而11|11(3x-2y+3z), 且11|(7x+2y-5z),∴ 11|4(3x-7y+12z) 又 (11,4)=1 ∴11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。
解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。
若8|,则8|,由除法可得b=2。
若9|,则9|(a+6+7+9+2),得a=3。
(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。
②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。
这个性质可以推广到任意个整数连续之积。
例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。
证明∵为连续二整数的积,必可被2整除. ∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a(bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a<b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1). ∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2. 当a=2时,代入②中得2b+2c-1=bc,即1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习1选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z 等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习答案1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若aa、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001.。