整数与整除的基本性质一
- 格式:doc
- 大小:298.50 KB
- 文档页数:4
数论与整数的基本性质与应用数论是数学的一个重要分支,研究整数的性质与应用。
整数是自然数、负整数和0的集合,数论主要考察整数的奇偶性、因数分解、模运算等基本性质。
本文将介绍数论中的基本概念和定理,并探讨其在密码学、组合数学、代数学等领域的应用。
1. 整数的基本性质与整除关系整数具有奇偶性的性质。
一个整数如果可以被2整除,则被称为偶数;否则,被称为奇数。
任意整数都可以用偶数和奇数来表示。
整除关系是数论中的一个重要概念。
对于两个非零整数a和b,如果存在整数c使得a=bc,我们称b整除a,记作b|a。
例如,4能够整除12,记作4|12。
2. 质数与素数分解质数是指大于1的整数,除了1和它自身外,没有其他的因数。
如果一个整数能够被大于1和小于它自身的整数整除,那么就称其为合数。
素数分解是数论中的一个重要定理。
它表明任意一个大于1的整数都可以唯一地表示为若干个质数的乘积。
例如,120可以表示为2 * 2 *2 *3 * 5。
3. 同余关系与模运算同余关系是数论中的一个重要概念,用来描述两个整数除以同一个正整数得到的余数相等的性质。
如果两个整数a和b除以正整数m所得的余数相等,即(a-b) mod m = 0,我们称a与b关于模m同余,记作a ≡ b (mod m)。
同余关系具有传递性、对称性和反对称性等基本性质。
模运算是一种对整数进行计算的方法,它将运算的结果限制在一个有限的范围内。
例如,25 mod 7 = 4,表示25除以7的余数是4。
4. 数论在密码学中的应用数论在密码学中具有重要的应用价值。
其中,最著名的是RSA加密算法,它是一种公钥密码体制。
RSA算法的关键在于选择两个大素数p和q,并计算它们的乘积n=p*q。
由于质因子分解是一个困难的数学问题,因此,找到p和q是容易的,但将n分解为p和q却是非常困难的。
5. 数论在组合数学中的应用组合数学是研究离散结构和离散对象的数学分支,数论在其中发挥着重要的作用。
整除的性质和特征整除是数论中的一个重要概念,它描述了一个整数能够被另一个整数整除,也就是除法运算的结果是整数。
整除有着许多重要的性质和特征,下面将详细介绍。
1.定义:整数a能够被整数b整除,即b是a的因数,记作b,a,当且仅当存在一个整数c,使得a=b·c。
其中,c称为a除以b的商,b称为a的约数,a称为b的倍数。
2.可加性:如果c是a的一个约数,那么c也是a的倍数。
换句话说,如果一个整数能够整除a,那么它也能够整除a的倍数。
3.可乘性:如果b,a且c,a,那么b·c也,a。
换句话说,如果一个整数能够整除a和b,那么它也能够整除a与b的乘积。
4.整除的传递性:如果b,a且c,b,那么c,a。
换句话说,如果一个整数能够整除a和b,那么它也能够整除a。
5.算术基本定理:任意一个大于1的整数,都可以表达为多个质数的积。
这意味着,如果一个整数可以整除另一个整数,那么它必然可以整除这个整数的所有质因数。
6. 两个非零整数的最大公约数和最小公倍数:两个非零整数a和b的最大公约数(记作gcd(a,b))是能够同时整除a和b的最大正整数。
两个非零整数a和b的最小公倍数(记作lcm(a,b))是能够同时被a和b整除的最小正整数。
于是有gcd(a,b)·lcm(a,b)=a·b。
7.唯一分解定理:任何一个整数都能够唯一地分解为几个质数的乘积。
这个定理也说明了一个数的因数有限,不会无限增多。
8. 整除与除法的关系:一个整数a能够被b整除,相当于a除以b 的余数为0。
对于任意的整数a和b,总能够找到唯一的两个整数商q和余数r,使得a=bq+r,其中r满足0≤r<,b。
9. 整除与模运算的关系:一个整数a能够被b整除,等价于a除以b的余数为0,即a mod b = 0。
在模运算中,a mod b表示a除以b的余数。
10. 除法的消去律:如果一个整数a能够被b整除,那么对于任意的整数c,ac也能够被bc整除。
整除规则(原理,性质)各种被整除的数的特征(放在这里以备以后查阅方便)(1)被2整除的数的特征:一个整数的末位是偶数(0、2、4、6、8)的数能被2整除。
(2)被3整除的数的特征:一个整数的数字和能被3整除,则这个数能被3整除。
(3)被4整除的数的特征:一个整数的末尾两位数能被4整除则这个数能被4整除。
可以这样快速判断:最后两位数,要是十位是单数,个位就是2或6,要是十位是双数,个位就是0、4、8。
(4)被5整除的数的特征:一个整数的末位是0或者5的数能被5整除。
(5)被6整除的数的特征:一个整数能被2和3整除,则这个数能被6整除。
(6)被7整除的数的特征:“割减法”。
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,这样,一次次下去,直到能清楚判断为止,如果差是7的倍数(包括0),则这个数能被7整除。
过程为:截尾、倍大、相减、验差。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
(7)被8整除的数的特征:一个整数的未尾三位数能被8整除,则这个数能被8整除。
(8)被9整除的数的特征:一个整数的数字和能被9整除,则这个数能被9整除。
(9)被10整除的数的特征:一个整数的末位是0,则这个数能被10整除。
(10)被11整除的数的特征:“奇偶位差法”。
一个整数的奇位数字之和与偶位数字之和的差是11的倍数(包括0),则这个数能被11整除。
(隔位和相减)例如,判断491678能不能被11整除的过程如下:奇位数字的和9+6+8=23,偶位数位的和4+1+7=12。
23-12=11。
因此491678能被11整除。
(11)被12整除的数的特征:一个整数能被3和4整除,则这个数能被12整除。
(12)被13整除的数的特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,这样,一次次下去,直到能清楚判断为止,如果是13的倍数(包括0),则这个数能被13整除。
数的整除知识点总结数的整除是数论中的一个基本概念,也是初等数学中的重要内容。
它与因数、倍数和约数等概念密切相关,对于解题和推理都有着重要的作用。
下面将对数的整除进行详细总结。
一、定义:如果整数a能够被整数b整除,即a/b是整数,那么称a是b的倍数,b是a的因数。
可以用数学表达式a=b*k来表示,其中k是整数。
二、性质:1.任何一个整数都是它自身的倍数,也是它自身的因数,即a是a的倍数,a是a的因数。
2.任何一个正整数都是1的倍数,即对于任何整数a,都有a是1的倍数。
3.任何一个整数都是它自身的因数,即对于任何整数a,都有a是a的因数。
4.如果a是b的倍数,b是c的倍数,那么a也是c的倍数,即若a是b的倍数且b是c的倍数,则a是c的倍数。
5.如果a是b的倍数,b是a的倍数,那么a和b是互为倍数,即a是b的倍数且b是a的倍数,则a和b互为倍数。
6.如果a是b的因数,b是c的因数,那么a也是c的因数,即若a是b的因数且b是c的因数,则a是c的因数。
三、判断一个数能否整除另一个数的方法:1.因式分解法:将被除数和除数都分解成质因数的乘积形式,然后进行比较。
如果被除数的质因数包含除数的质因数,并且对应质因数的指数均大于等于相应的质因数的指数,则被除数能够整除除数。
2.试商法:用除数去除被除数,如果商是整数且余数为0,则被除数能够整除除数,否则不能整除。
四、整除的性质:1.整除关系具有传递性,即如果a能够整除b,b能够整除c,则a 能够整除c。
2.整除关系具有反对称性,即如果a能够整除b,b能够整除a,则a 和b相等或互为相反数。
3.整除关系具有自反性,即任何一个数都能整除它本身。
4.整除关系具有非传递性,即如果a能够整除b,b能够整除c,但a 不能整除c。
例如:2能整除4,4能整除8,但2不能整除8五、整数的混合运算与整除的关系:1.若a整除b,b整除c,则a整除c。
2. 若a整除b,b整除c,则a整除bc。
整除的性质和特征整除问题是整数内容最基本的问题。
理解掌握整除的概念、性质及某些特殊数的整除特征,可以简单快捷地解决许多整除问题,增强孩子的数感。
一、整除的概念:如果整数a除以非0整数b,除得的商正好是整数而且余数是零,我们就说a能被b整除(或b能整除a),记作b/a,读作“b整除a”或“a能被b整除”。
a叫做b的倍数,b叫做a的约数(或因数)。
整除属于除尽的一种特殊情况。
二、整除的五条基赋性质:(1)如果a与b都能被c整除,则a+b与a-b也能被c整除;(2)如果a能被b整除,c是任意整数,则积ac也能被b整除;(3)如果a能被b整除,b能被c整除,则积a也能被c整除;(4)如果a能同时被b、c整除,且b与c互质,那么a一定能被积bc整除,反之也成立;(5)任意整数都能被1整除,即1是任意整数的约数;0能被任意非0整数整除,即0是任意非0整数的倍数。
三、一些特殊数的整除特征:根据整除的基赋性质,可以推导出某些特殊数的整除特征,为解决整除问题带来方便。
(1)如果一个数是整十数、整百数、整千数、……的因数,可以通过被除数末尾几位数字确定这个数的整除特征。
①若一个整数的个位数字是2的倍数(0、2、4、6或8)或5的倍数(0、5),则这个数能被2或5整除;②若一个整数的十位和个位数字组成的两位数是4或25的倍数,则这个数能被4或25整除;③若一个整数的百位、十位和个位数字组成的三位数是8或125的倍数,则这个数能被8或125整除。
【推理过程】:2、5都是10的因数,根据整除的基赋性质(2),可知所有整十数都能被10、2、5整除。
任意一个整数都可以看作一个整十数和它的个位数的和,如果一个数的个位数字也能被2或5整除,根据整除的基赋性质(1),则这个数能被2或5整除。
又因为4、25都是100的因数,8、125都是1000的因数,根据整除的基赋性质(2),可知任意整百数都能被4、25整除,任意整千数都能被8、125整除。
第一讲 整除与整数的性质【知识点金】一.整数的基本性质1.整数集关于加、减、乘运算的封闭性,即整数的和、差、积仍为整数(两个整数的商不一定是整数)。
2.奇数和偶数的简单性质能被2整除的整数称为偶数,可表示为2n ()n Z ∈形式;不能被2整除的整数称之为奇数,可表示为21n -()n Z ∈形式。
对于奇数和偶数有以下性质:(1)任意多个偶数的和、差、积仍为偶数; (2)奇数个奇数的和、差仍为奇数; (3)偶数个奇数的和、差为偶数; (4)奇数与偶数的和为奇数,其积为偶数;(5)若有限个整数之积为奇数,则其中每个整数都是奇数;有限个整数之积为偶数,则这些整数中至少有一个是偶数;3.整数集的离散性两个连续整数之间不再有其他整数,两个连续整数的完全平方数之间不存在 完全平方数。
任一个整数有限集中必有最大数和最小数。
二.整除的定义和基本性质1.定义:设a 、b 是整数(0)b ≠,若存在整数q ,0q ≠,使a bq =,则称b 整除a ,或a 能被b 整除,记为b a ,这时b 叫做a 的因数或约数,a 叫做b 的倍数。
2.整除的基本性质(1)若b a ,则()b a -,b a -,()()b a --,b a ; (2)若a b ,b c ,则a c ;(3)若,,,a b c m Z ∈,且a b ,a c ,则()a b c ±,a mb ,a mc ,()a m b c ±。
事实上可推广到一般情形:若,,i i a b x Z ∈(1,2,,)i n =,且i a b ,则1ni i i a b x =∑;(4)设,a b Z ∈,且a b ,则对于任何m Z ∈,都有am bm ;反之,若am bm ,则a b 。
(5)若a b <,且b a ,则0a =; (6)若a 、b 互素,且a bc ,则a c ;(7)若p 是素数,且1ni i p a =∏,则至少有一个i a ,使得i p a (1)i n ≤≤;(8)若12,,,n a a a 两两互素,且i a A ,1,2,,i n =,则1ni i a A =∏;例1.求证:如果P 和2P +都是大于3的素数,那么6是1P +的因数。
初等数论的性质与定理总结初等数论是数论中的一个基础分支,研究整数的性质和整数运算规律。
本文将总结初等数论中的一些重要性质与定理。
一、整数的整除性质1. 整数的除法基本性质:对于任意整数a、b和非零整数c,存在唯一的整数q使得a = bq + c。
2. 整除关系的传递性:如果a能整除b,且b能整除c,则a能整除c。
3. 整除关系的辗转相除法:对于任意整数a和非零整数b,存在唯一的整数q和r使得a = bq + r(其中0 ≤ r < |b|)。
二、质数与合数1. 质数的定义:质数是指大于1且只能被1和自身整除的整数。
例如,2、3、5、7等都是质数。
2. 质因数分解定理:每个大于1的整数都可以唯一地表示为若干个质数的乘积。
3. 最大公约数与最小公倍数的性质:对于任意整数a和b,记a和b 的最大公约数为gcd(a, b),最小公倍数为lcm(a, b),则有以下性质: - gcd(a, b) = gcd(b, a)- gcd(a, 0) = |a|- lcm(a, b) = |ab| / gcd(a, b)三、模运算与同余1. 模运算的基本性质:对于任意整数a、b和正整数n,有以下性质:- (a + b) mod n = (a mod n + b mod n) mod n- (a - b) mod n = (a mod n - b mod n) mod n- (a * b) mod n = (a mod n * b mod n) mod n2. 同余关系的性质:对于任意整数a、b和正整数n,如果a与b模n同余(记作a ≡ b (mod n)),则有以下性质:- a + c ≡ b + c (mod n)- ac ≡ bc (mod n)- 如果a ≡ b (mod n),则a^k ≡ b^k (mod n)对于任意正整数k四、费马小定理与欧拉定理1. 费马小定理:如果p是质数,a是任意正整数且p不整除a,则有a^(p-1) ≡ 1 (mod p)。
数的整除性质与应用数的整除性质是数学中的重要概念之一,它描述了一个数能够整除另一个数的性质。
在日常生活和数学应用中,我们经常用到数的整除性质来解决问题。
本文将对数的整除性质进行详细介绍,并探讨它在实际应用中的作用。
一、整数的除法定义与整除性质在数学中,我们将一个整数a除以另一个非零的整数b,如果能够得到一个整数q,使得a = bq,我们就称a能够被b整除,或者说b能够整除a,记作b|a。
整除性质主要包括以下几个方面:1. 传递性: 如果a能够被b整除,b能够被c整除,那么a也能够被c整除。
2. 常数倍数性质: 如果a能够被b整除,那么对于任意非零常数k,ka也能够被kb整除。
3. 相等性: 一个数能够被自身整除,即对于任意非零整数a,a能够被a整除。
4. 整除的基本性质: 如果a能够被b整除,那么a的所有倍数也能够被b整除。
二、整除的应用数的整除性质在实际应用中起着重要的作用,以下是一些常见的应用场景:1. 分数化简在分数的运算中,我们经常需要对分数进行化简。
利用整除性质可以帮助我们快速找到最大公约数,从而将分数化简为最简形式。
例如,对于分数12/18,我们可以通过求12和18的最大公约数来进行化简。
由于18能够整除12,所以12/18可化简为2/3。
2. 整数的因数与倍数在数的因数和倍数问题中,整除性质是一个重要的工具。
我们可以利用整除性质判断一个数是否是另一个数的因数,或者判断两个数是否互为倍数。
例如,判断一个数是否是另一个数的因数时,我们只需要通过整除性质将这两个数相除,如果余数为0,则该数是另一个数的因数。
3. 素数与合数素数是指只有1和自身两个因数的数,而合数是指除了1和自身之外还有其他因数的数。
利用整除性质,我们可以判断一个数是否为素数。
例如,判断一个数n是否为素数时,我们只需要将n与2到√n之间的所有整数相除,如果都无法整除,则n为素数。
因为如果n能够被大于√n的数整除,那么一定能够被小于√n的数整除。
小学数学点知识归纳数的整除性质与判断方法数的整除是数学中的一个重要概念,它是指一个数能够被另一个数整除,即能够整除的数称为因数,而被整除的数称为倍数。
在小学数学中,学生需要掌握数的整除性质与判断方法,以便能够正确地解决与整除相关的问题。
本文将对小学数学中数的整除性质与判断方法进行归纳,帮助学生更好地理解和掌握这一概念。
一、整除性质1. 整除定义:如果一个数a能被另一个数b整除,即a÷b的结果是一个整数,那么我们说a能被b整除,记作b|a。
反之,如果a不能被b整除,则记作b∤a。
2. 整除传递性:如果a能被b整除,并且b能被c整除,那么a能被c整除。
例如,如果2能够整除6,6能够整除12,那么2也能够整除12。
3. 整除对称性:如果a能被b整除,那么b也能被a整除。
例如,如果4能够整除8,那么8也能够整除4。
4. 0的整除性:任何一个非零数与0做除法时都不能整除0,但0除以任何一个非零数都等于0。
5. 1的整除性:任何一个整数都能被1整除。
二、判断整除的方法1. 除法法:判断整数a能否整除整数b,可以直接进行除法运算,即计算a÷b的结果。
如果结果是一个整数,那么a能被b整除;反之,如果结果不是整数,则a不能被b整除。
2. 因数法:如果一个数是另一个数的因数,那么它能整除这个数。
可以通过列举出一个数的所有因数,然后判断这些因数是否能整除给定的数。
3. 整除性质法:利用数的整除性质来判断整除关系。
例如,能被2整除的数必定是偶数,能被3整除的数的各位数字之和能被3整除,能被5整除的数的个位数字只能是0或5等。
三、应用示例下面通过一些具体的示例来说明数的整除性质与判断方法的应用。
1. 判断一个数是否能被2整除:如果一个数的个位数字是0、2、4、6或8,则它能被2整除;反之,如果个位数字是1、3、5、7或9,则不能被2整除。
2. 判断一个数是否能被3整除:将这个数的各位数字相加,如果所得和能被3整除,则这个数也能被3整除;反之,如果所得和不能被3整除,则这个数不能被3整除。
第一讲 整数与整除的基本性质(一)
一、整数
基本知识:
关于自然数:1、有最小的自然数1;2、自然数的个数是无限的,不存在最大的自然数;3、两个自然数的和与积仍是自然数;4、两个自然数的差与商不一定是自然数。
关于整数:1整数的个数是无限的,既没有最小的整数,也没有最大的整数;2、两个整数的和、差、积仍是整数,两个整数的商不一定是整数。
十进制整数的表示方法
正整数可以用0,1,2,3,4,5,6,7,8,9十个数字中的一个或若干个组成一个排列表示,如67表示7106+⨯,四位数1254可以写成41051021012
3+⨯+⨯+⨯,同样地用字母表示的两位数ab b a +⨯=10,三位数f e d def +⨯+⨯=10102, n 位整数表示为121a a a a n n n --,(其中a i 是0,1,2,3,4,5,6,7,8,9中的某个数字,i= n , n – 1,…,2,1,其中a n 0≠)并且.1010
1211121a a a a a a a n n n n n n n ++⋅+⋅=-----
经典例题:
例1、用0、1、2、...、9这10个数字组成两个三位数和一个四位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能地小,那么这两个三位数及这个四位数的和是( ) )A 1995 )B 1683 )C 1579 )D 1401
解:为使和最小,四位数的千位应该是1,百位上的数为0,两个三位数上的百位应分别为2和3;若三个数十位上的数分别是4、5、6,则个位上的数分别是7、8、9,但7+8+9=18是个偶数,这与其和为奇数矛盾,故应调整为三个十位上的数应安排为4、5、7,个位分别为6、8、9,6+8+9为奇数,1046+258+379=1683,选 )B
例2、一个两位数,用它的个位、十位上的两个数之和的3倍减去2-,仍得原数,这个两位数是( )
)A 26 )B 28 )C 36 )D 38
解:设这个两位数为ab ,由题意,得b a b a +=++102)(3,
227+=∴b a 即 )1(27+=b a 由于)1(2+b 为偶数,∴a 必须为偶数,排
除)),D C 又由于)1(+b 是7的倍数,故选)A
(此题也可以直接来解)1(+b 是7的倍数,故有6=b 返回有2=a )
例3、一个两位数,加上2以后和的各数字之和只有原数字和的一半,这个两位数是
_____________。
(91年“缙云杯”初中数学邀请赛) 解:设这个两位数为ab ,由于原数加上2后和的各数字之和比原数各数之和小,所以加上2后发生了进位,由题意,得)(2
110)2(1b a b a +=-+++,14=+∴b a ,又由于2+b 后有进位,98==∴b b 或同时对应的a 分别为6与5,∴这两个数为68或59。
例4、一个四位数与它的四个数字之和等于1991,这个四位数是_____________。
(91年南昌市初中数学竞赛题)
解: 四个数位上的数字之和最多不会超过36,∴这个四位数的千位和百位数字分别是1和9,故设这个四位数为n m ++101900,∴199191101900=++++++n m n m ,整理得81211=+n m ,又90,90≤≤≤≤n m 且为整数,.2,7==∴n m ∴这个四位数为1972。
例5、若三位数与组成该三位数的各位数字之和的比值为M (如三位数234,则4
32234++=M ),求M 的最大值和最小值。
解:设这个三位数c b a abc ++=10100,c b a c b c b a c b a M +++-=++++=
999010010100, 显然09990≥+++c
b a
c b ,当其值为0时,即0==c b 时,M 最大,其值为1000100=-=M ,当c
b a
c b +++9990最大时,M 最小,即1,9===a c b 时,M 最小为19
199191790100=- 二、能被一个数整除的数的特征
基础知识:1、能被2或5整除的数,它的末位数字能被2或5整除
2、能被4或25整除的数,它的最后两位数能被4或25整除。
3、能被8或125整除的数,它的最后三位数能被8或125整除。
4、能被3或9整除的数,它的各数位上的数字之和能被3或9整除。
5、能被11整除的数,它的奇数位上数字之和与偶数位上数字之和的差是11的倍数。
6、0能被任何非零整数整数,1±能整除任何整数。
要判断某数能否被一个合数整除,只须将这个合数分解成两个互质的约数的乘积,若这个整数能分别被这两个约数整除,则这个数能被这个合数整除。
经典例题:
例6、能被11整除的最小九位数是多少?
解:若某数可被11整除,则其奇数位数字之和与偶数位数字之和的差位11的倍数,要这样的数最小,首先取1,十位取1,其余数位取0,即所求数为100000010。
例7、一个四位数能被9整除,去掉末位数字后所得的三位数恰是4的倍数,求这样的四位数中最大的一个。
解:要求这样的四位数中最大的一个,因而设这个四位数为cd 99,要使c 99为4的倍数,且要最大,故6=c 。
cd 99 要能被9整除,d d c +=+∴6能被9整除,故3=d 例8、两个三位,abc def 的和def abc +能被37整除,证明:六位数abcdef 也能被37整除。
(第八届“祖冲之杯”数学邀请赛试题) 证明:)(|37def abc + ,m bcd abc 37=+∴ )(为整数m
又def abc abcdef +⨯=1000
而3739999⨯⨯=,
例9、已知一个七位自然数42762xy 是99的倍数(其中y x ,是0到9中的某个数字),试求124950++y x 的值,简写出求解过程。
(第八届“希望杯”全国数学邀请赛初一试题) 题难:分析42762xy 是99的倍数,而99119⨯=,故42762xy 分别是9和11的倍数 由被9,11数整除的数的特点而解此题。
解:42762|99xy ,且42752|9xy ∴42762|11xy
y x y x +++=++++++∴31872426是9的倍数,
即m y x 93=++(m 为自然数) 90,90≤≤≤≤y x ,
2133≤++≤∴y x 。
93=++∴y x ,或183=++y x
6=+∴y x 或15=+y x
42762|11xy ,)]22()746[(|11++-+++∴y x
即 )13(|11y x -+ 故y x -+2是11的倍数
又99≤-≤-y x ,即1127≤-+≤-y x
92=--=-∴y x y x 或 y x y x -+∴与同奇偶,
⎩
⎨⎧==∴42y x 或 ⎩
⎨⎧==312y x (不合题意,舍去) 备选题:
A 类: 1、 设六位数b a 1527是4的倍数,且它被11除的余数是5,求a+b 的值. (六位数b a 1527是4的倍数,有|4b 7,故2=b 或6;又 它被11除的余数是5 易得1)、当6=b ,|1115271a ,812175+=---++a a 是11的倍数,故3=a
2)、当2=b ,11|15267a ,172165+=---++a a 是11的倍数,无解。
)
2、 如果个六位数y 19x 19能被33整除,这样的六位数共有多少个?
(易得)1991(|11y x ---++,及)(|11y x - y x =
)1991(|3y x +++++,及)2(|3++y x 易得解
2==y x 或5==y x 或8==y x 故有3组,分别为192192、195195、198198。
3、 求一个四位数,它等于抹去它的首位数字后剩下的三位数的3倍减去42。
(423-⨯=bcd abcd 整理得2110100500-++=d c b a 得1=d 代入得1,5,2===a b c )
4、d c b a ,,,是数0到9的数字,1989=+++a ab abc abcd ,______,=a
.___________________,,__________===d c b (
“缙云杯”初中数学邀请赛试题) 5、一个五位数x x 974能被3整除,它的最末两位数字组成的数x 7能被6整除,求这个五位数。
B 类:
1、 如果十位数59911995xy 能被99整除,其中y x 、是未知数,则
________________,==y x 。
(第七届“五羊杯”初中数学竞赛初一试题)。