《从平面向量到空间向量》
- 格式:ppt
- 大小:807.00 KB
- 文档页数:24
《从平面向量到空间向量》教案一、教学目标(teaching objective):1.知识目标(knowledge objective):掌握空间向量基底的概念;了解空间向量的基本定理及其推论;了解空间向量基本定理的证明.2.能力目标(capability objective):理解空间任一向量可用空间三个不共面向量唯一线性表示,会在平行六面体、四面体为背景的几何体中选用空间三个不共面向量作基底,表示其它向量.会作空间任一向量的分解图.类比平面向量的基本定理学习空间向量基本定理,培养学生类比、联想、维数转换的思想方法和空间想象能力.3.情感目标(emotion objective):创设适当的问题情境,从生活中的常见现象引入课题,开始就引起学生极大的学习兴趣,让学生容易切入课题,培养学生用数学的意识,体现新课程改革的理念之一,加强数学与生活实践的联系.二、教学难点(teaching difficulties):空间向量的分解作图,用不同的基底表示空间任一向量.灵活运用空间向量基本定理证明空间直线的平行、共面问题.三、教学重点(teaching focus): 运用空间向量基本定理表示空间任一向量,并能根据表达式判断向量与基底的关系.四、教学手段(teaching method):在多媒体和实物模型的环境下,学生分组自主与合作学习相结合,老师引导、参与学生活动和讨论的民主式的教学.五、教学过程(teaching procession )1.引入(intruduce ):对比平面向量的基本定理,生活实际需要向三维空间发展(播放美伊战争画面,地面的坦克如何瞄准空中的飞机画面),推广到空间向量的基本定理.用向量来描述:若空间三个向量不共面,那么空间的任一向量都可以用这三个向量表示.我们研究一下怎么表示.(提示学生思考平面的任一向量怎么用平面向量的基底表示)学生:1e 、2e 是平面内两个不共线的向量,则该平面内的任一向量a 都可以表示为a =λ11e +λ22e ,其中λ1、λ2是一对唯一的实数.2.推广(extend ):请学生猜测推广到空间向量的基本定理如何?1A 学生:空间向量的基本定理:如果空间三个向量a 、b 、c 不共面,则空间的任一向量p 都可表示为x a +y b +z c .师:若猜想正确,则给出证明,若猜想不正确,先给出定理,再证明. 老师板演证明:设空间三个不共面的向量OA =a OB =b ,OC =c ,OP =p 是空间任一向量,过P作PD ∥OC 交平面OAB 于D ,则OP =OD +DP ,由空间两直线平行的充要条件知DP = z c ,由平面 向量的基本定理知向量OD 与OA 、OB 共面, 则OD = x a +y b ,所以,存在x ,y ,z 使得OP =x a +y b + z c .这样的实数x ,y ,z 是否唯一呢?用反证法证明:若另有不同于x ,y ,z 的实数x 1,y 1,z 1满足OP = x 1a +y 1b + z 1c ,则x a +y b + z c = x 1a +y 1b + z 1c ,即(x -x 1) a +(y -y 1) b +(z -z 1) c =0又a 、b 、c 不共面,则x -x 1=0,y -y 1=0,z -z 1=0,所以x ,y ,z 是唯一的实数.这样,就把平面向量的基本定理推广到空间向量的基本定理. 老师介绍相关概念:其中{a 、b 、c }叫做空间向量的一个基底,a 、b 、c 都叫做基向量. 师:对于空间向量的基底{a 、b 、c }的理解,要明确:①空间任意不共面的三个向量都可以作为向量的基底,基底不唯一; ②三个向量不共面,隐含它们都是非零向量;③基底是一个集合,一个向量组,一个向量不能构成基底,基向量是基底中的某一向量.④通常选择共点不共面的三个向量作为空间向量的基底.⑤若{a 、b 、c }是空间向量的一个基底,则由这三个基向量还能生成其它的基底吗?引导学生举例说明,结果不唯一,通过思考培养学生的发散思维.如:a+b、a+c、b+c;2a+3b、4c、b等构成向量的基底.能否由原来的基向量生成新的基底,取决于生成的新向量是否共面,即其中的一个向量能否用另两个向量线性表示,请同学随便说一组向量,大家判断这组向量能否构成向量的基底.通过老师的引导,不仅让学生理解空间向量的基本定理,还要让学生学会把平面向量的知识迁移到空间向量来,用发展、联系的观点看以前在平面向量中成立的结论,空间向量比平面向量发展了什么,保留了什么,渗透辨证法的思想.特别地,当x=0,则p与b、c共面;若y=0,则p与a、c共面;若z=0,则p与a、b共面.当x=0,y=0时,p与c共线;当x=0,z=0时,p与b共线;当\y=0,z=0时,p与a共线.说明每一次维数增加了,高维数的定理不但发展了低维数的定理,并包含了低维数的结论,使得原来的定理仍适用,这种发展是继承的发展,是合理的发展.这不仅体现在平面向空间的迁移,也体现在数学中其它知识的迁移(如数系的发展).3.类比(analogy):对比平面向量中成立的结论推广到空间是什么相应的结论:14.例题(examples)例1.在平行六面体ABCD —A 1B 1C 1D 1中,AB = a ,AD =b ,1AA =c ,P 是CA 1的中点,M 是CD 1的中点,N 是C 1D 1的中点,点Q 在CA 1上,且CQ :QA 1=4:1,用基底{a 、b 、c }表示以下向量: (1)AP ,(2)AN ,(3)AQ线.解:(1)由P 是CA 1的中点,得AP =21(1AA +AC )=21(c +AD +AB )=21(a +b +c ) (2)AN =AM +MN =AM +211CC =21(c +a )+b +21c =b +c +21a法2:AN =1AA +N A 1=1AA +11D A +N D 1=c +b +21a(3)AQ =AC +CQ =AC +541CA =AC +54(1AA +CA )=51AC +541AA=51(b +a )+54c 例2.在例1中,设O 是AC 的中点,判断AQ 和OC 1所在直线的位置关系.解:由例1得:AQ =51(b +a )+54c ,1OC =OC +1CC =21AC +1AA=21(b +a )+c 则AQ 和1OC 与(b +a )和c 共面,又AQ ≠λ1OC ,则AQ 和OC 1所在直线不能平行,只能相交.追问:要使AQ 和OC 1所在直线平行,则O 应在AC 的什么位置?分析:要使AQ 和OC 1所在直线平行,则1OC =λAQ =λ[51(b +a )+54c ]又1OC =OC +1CC ,设OC =μAC =μ(b +a )则λ[51(b +a )+54c ]=μ(b +a )+c ,即51λb +51λa +54λc =μb +μa +c ,由a 、b 、c 不共面即空间向量基本定理的唯一性知:41,4515451=μ=λ⇒⎪⎪⎩⎪⎪⎨⎧=λλ=μ,所以,OC=41AC 学生可能不一定用刚学过的不熟悉的向量法去做,而是用平面几何的方法,根据平行线分线段成比例定理,也应加以肯定,让学生自己从中体会向量几何与平面几何风格的不同,更深地了解向量几何侧重定量研究,即将空间任一向量放在空间坐标系中,用向量的基底表示,再进行运算,思路简捷,不需要很强的演绎推理.请学生板演平面几何证法:A 1AQCCC 1ORAB C DO易证△AA 1Q ≌△CC 1R ,则CR=A 1Q=41CQ ,又CQ CR AC OC =, 所以AC OC =415.练习(exercises)已知向量a =1e -22e +33e ,b =21e +2e ,c =61e -22e +63e , 判断a +b 与c 能否共面或共线?c -3b 与b -2a 能否共面或共线?a +b =31e -2e +33e ,c =2(a +b ),则a +b 与c 共线即平行 c -3b =61e -22e +63e -61e -32e =63e -52eb -2a =21e +2e -21e +42e -63e =-63e +52ec -3b 与b -2a 共线但反向.思维发散训练:已知甲烷(CH 4)的分子结构:中心为碳原子,外围有四个氢原子,四个氢原子构成正四面体的顶点,确定了四个氢原子的位置,能找到碳原子的位置吗?能求出两个碳氢键之间的键角吗?6.反思(reconsider)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⇒⇒⇒定量研究异面直线线在面内、线不在面内面面平行线线平行、线面平行、点共线)向量平行(直线平行、向量基本定理面面平行线线平行、线面平行、平行公理点在线上、线共点)公理(2 如何对向量进行定量研究,对比平面向量的研究方法,预习下节内容. 7.作业(homework):。
高考数学选修2,1知识点:从平面向量到空间向量1500字从平面向量到空间向量,是高中数学的一个重要知识点。
平面向量和空间向量是向量的两种不同形式,它们在数学上有着相似的性质和运算规律,但在几何上有一些区别。
首先,我们来了解一下平面向量。
平面向量是指在平面内有大小和方向的向量。
平面向量用有向线段表示,线段的方向表示向量的方向,线段的长度表示向量的大小。
设向量AB的起点为A,终点为B,记作向量AB,表示为→AB。
平面向量有两种表示方法:坐标表示和分量表示。
1. 坐标表示:假设平面向量AB的起点坐标为A(x1, y1),终点坐标为B(x2, y2),则向量AB的坐标表示为(x2 - x1, y2 - y1)。
2. 分量表示:平面向量的分量表示是通过向量的水平分量和竖直分量表示向量。
假设平面向量AB的长度为|r|,与X轴的夹角为θ,则水平分量为|r|cosθ,竖直分量为|r|sinθ。
接下来,我们来了解一下空间向量。
空间向量是指在三维空间中有大小和方向的向量。
空间向量同样用有向线段表示,线段的方向表示向量的方向,线段的长度表示向量的大小。
设向量AB的起点为A,终点为B,记作向量AB,表示为→AB。
空间向量也有两种表示方法,即坐标表示和分量表示。
1. 坐标表示:假设空间向量AB的起点坐标为A(x1, y1, z1),终点坐标为B(x2, y2, z2),则向量AB的坐标表示为(x2 - x1, y2 - y1, z2 - z1)。
2. 分量表示:空间向量的分量表示同样是通过向量在坐标轴上的投影来表示向量。
假设空间向量AB的长度为|r|,与X轴、Y轴、Z轴的夹角分别为α、β、γ,则向量的X 轴分量为|r|cosα,Y轴分量为|r|cosβ,Z轴分量为|r|cosγ。
在从平面向量到空间向量的过程中,需要注意以下几点:1. 坐标表示的差异:平面向量的坐标表示有两个分量,而空间向量的坐标表示有三个分量。
2. 分量表示的差异:平面向量的分量表示只有水平分量和竖直分量,而空间向量的分量表示有X轴、Y轴、Z轴三个分量。
§1 从平面向量到空间向量基础过关1.下列命题中的假命题是( ) A.任意两个向量都是共面向量B.空间向量的加法运算满足交换律及结合律C.只有零向量的模等于0D.共线的单位向量都相等解析 容易判断D 是假命题,共线的单位向量是相等向量或相反向量. 答案 D2.在四棱柱ABCD -A ′B ′C ′D ′中,能与向量AA ′→相等的向量有( )A.0个B.3个C.6个D.9个解析 BB ′→=CC ′→=DD ′→=AA ′→.答案 B3.设A.b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( ) A.a =-b B.a ∥bC.a =2bD.a ∥b 且|a |=|b |解析 a |a |表示与a 同向的单位向量,b|b |表示与b 同向的单位向量,只要a 与b 同向,就有a |a |=b|b |,观察选择项易知C 满足题意. 答案 C4.如图,在三棱柱ABC -A 1B 1C 1中,CA →与C 1A 1→是________向量,CB →与B 1C 1→是________向量.解析 因为CA 綉C 1A 1,CB 綉C 1B 1,所以CA →=C 1A 1→,CB →=-B 1C 1→. 答案 相等 相反5.在正方体ABCD -A 1B 1C 1D 1的所有棱、面对角线、体对角线所对应的向量中,是平面A 1B 1CD 的法向量的是________.解析 易证AD 1⊥平面A 1B 1CD ,C 1B ⊥平面A 1B 1CD . 答案 AD 1→、C 1B →、D 1A →、BC 1→6.如图所示,四棱锥D 1-ABCD 中,AD =DD 1,底面ABCD 是正方形,DD 1⊥平面ABCD ,E 是AD 1的中点,求〈AC →,DE →〉. 解 取CD 1的中点F ,连接EF ,DF ,则EF→=12AC →, ∴〈AC→,DE →〉=〈EF →,DE →〉, ∵AD =DD 1=CD , 且D 1D ⊥AD ,D 1D ⊥CD , ∴DE =DF =EF =22DD 1, ∴△EFD 为正三角形,∠FED =π3, ∴〈AC→,DE →〉=〈EF →,DE →〉=2π3. 7.如图所示,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,D 是AB 的中点. (1)求〈AC →,BC 1→〉;(2)试以D 为起点作直线AC 1的方向向量. 解 (1)在△ABC 中,AC =3,BC =4,AB =5, 则AC 2+BC 2=AB 2,∴AC ⊥BC , 又AC ⊥CC 1,BC ∩CC 1=C ,且BC ,CC 1平面BB 1C 1C ,∴AC ⊥平面BB 1C 1C ,又BC 1平面BB 1C 1C ,∴AC ⊥BC 1,∴〈AC →,BC 1→〉=90°. (2)设BC 1交B 1C 于点O ,连OD ,则OD 綉12AC 1, ∴DO →就是AC 1的一个方向向量,如图所示.能力提升8.已知向量A.b 是两个非零向量,a 0、b 0是与A.b 同方向的单位向量,那么下列各式中正确的是( ) A.a 0=b 0 B.a 0=b 0或a 0=-b 0 C.a 0=1D.|a 0|=|b 0|解析 两单位向量的模都是1,但方向不一定相同或相反. 答案 D9.在四边形ABCD 中,AB →=DC →,且|AB →|=|BC →|,那么四边形ABCD 为( ) A.平行四边形 B.菱形 C.长方形D.正方形解析 若AB →=DC →,则四边形ABCD 为平行四边形.又|AB →|=|BC →|,则四边形ABCD为菱形,故选B. 答案 B10.下列命题中正确的有________个.①分别取自两条异面直线的两个向量不能转化为相等向量;②空间中,首尾相接的若干个向量构成一个封闭图形,则它们的和为0;③因为向量由长度和方向两个属性构成,一般地说,向量不能比较大小. 解析 ①③正确,②它们的和应该为零向量. 答案 211.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则下列结论正确的是________.①AB→=AC →+BC →; ②AB→=-AC →-BC →; ③AC→与BC →同向; ④AC→与CB →同向. 解析 由|AB→|=|AC →|+|BC →|=|AC →|+|CB →|,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB →同向.答案 ④12.在平行六面体ABCD -A 1B 1C 1D 1中,试写出AA 1→的相反向量,与AB →相等的向量及与AC→模相等的向量. 解 由于ABCD -A 1B 1C 1D 1是平行六面体. 故AA 1→的相反向量有A 1A →,B 1B →,C 1C →,D 1D →. 与AB →相等的向量有DC →,A 1B 1→,D 1C 1→. 与AC →模相等的向量有CA →,A 1C 1→,C 1A 1→.13.(选做题)如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,∠BCA =90°,AP =AC ,点D ,E 分别在棱PB ,PC 上,且BC ∥平面ADE .(1)求证:DE ⊥平面PAC ;(2)当二面角A-DE-P为直二面角时,求A-BCED与P-AED的体积比. (1)证明∵BC∥平面ADE,BC平面PBC,平面PBC∩平面ADE=DE,∴BC∥ED,∵PA⊥底面ABC,BC底面ABC,∴PA⊥BC,又∠BCA=90°,∴AC⊥BC,∵PA与AC是平面PAC 内的两条相交直线,∴BC⊥平面PAC,又BC∥ED,∴DE⊥平面PAC.(2)解由(1)知,DE⊥平面PAC,∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A-DE-P的平面角,∴∠AEP=90°,即AE⊥PC,∵AP=AC,∴E是PC的中点,∴ED是△PBC的中位线,AE⊥PC,又PC∩DE=E,PC.DE平面PCD,∴AE⊥平面PCD,∴V A-BCEDV A-PDE=13S四边形BCED·AE13S△PED·AE=S四边形BCEDS△PED=31.。