初中八年级数学教案-浙江教育出版社初中数学八年级下册 一元二次方程-优秀
- 格式:docx
- 大小:49.18 KB
- 文档页数:5
浙教版数学八年级下册2.3《一元二次方程的应用》教学设计1一. 教材分析《一元二次方程的应用》是浙教版数学八年级下册第2.3节的内容。
本节主要让学生掌握一元二次方程的应用,通过实际问题引导学生运用一元二次方程解决实际问题,培养学生的数学应用能力。
教材中提供了丰富的例题和练习题,帮助学生巩固知识,提高解题技能。
二. 学情分析学生在学习本节内容前,已经学习了一元二次方程的理论知识,对解一元二次方程有一定的掌握。
但部分学生对理论知识的运用能力较弱,解决实际问题的能力有待提高。
此外,学生的学习兴趣和学习积极性对课堂效果有较大影响。
三. 教学目标1.知识与技能:掌握一元二次方程的应用,能运用一元二次方程解决实际问题。
2.过程与方法:通过实际问题,培养学生运用一元二次方程解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:一元二次方程的应用。
2.难点:如何将实际问题转化为一元二次方程,并求解。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
以实际问题为载体,引导学生运用一元二次方程解决问题,培养学生的数学应用能力。
通过小组合作,提高学生的团队协作和沟通能力。
六. 教学准备1.教材、教案、课件。
2.练习题、测试题。
3.教学设备(投影、黑板、粉笔等)。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如商品打折、面积计算等,引发学生对一元二次方程应用的思考。
提问:如何用数学模型表示这些问题?如何求解?2.呈现(15分钟)呈现教材中的例题,引导学生分析实际问题,将其转化为一元二次方程。
讲解一元二次方程的解法,如因式分解、配方法等。
3.操练(15分钟)让学生独立完成教材中的练习题,教师巡回指导。
针对学生遇到的问题,进行讲解和解答。
4.巩固(10分钟)小组合作,完成测试题。
教师选取部分答案进行分析,讲解解题思路和技巧。
5.拓展(10分钟)引导学生思考:一元二次方程在实际生活中的应用有哪些?让学生举例说明,分享自己的见解。
浙教版数学八年级下册2.2《一元二次方程的解法》教案1一. 教材分析《一元二次方程的解法》是浙教版数学八年级下册第2.2节的内容。
本节主要让学生掌握一元二次方程的解法,包括因式分解法、公式法等。
通过本节的学习,学生能够熟练运用不同的方法解一元二次方程,并为后续学习更高难度的数学知识打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了整式的乘法、因式分解等基础知识。
但部分学生对于一元二次方程的解法可能还存在一定的困惑,特别是对于公式的运用和理解。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行解答和指导。
三. 教学目标1.让学生掌握一元二次方程的解法,包括因式分解法、公式法等。
2.培养学生运用不同的方法解决问题的能力。
3.提高学生对于数学知识的兴趣和自信心。
四. 教学重难点1.教学重点:一元二次方程的解法及其应用。
2.教学难点:公式法的理解和运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,运用案例讲解一元二次方程的解法,小组合作探讨问题,激发学生的学习兴趣,培养学生解决问题的能力。
六. 教学准备1.准备相关的一元二次方程案例。
2.准备PPT,展示一元二次方程的解法。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元二次方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示一元二次方程的解法,包括因式分解法和公式法。
引导学生了解两种解法的原理和步骤。
3.操练(10分钟)让学生分组练习,运用因式分解法和公式法解一元二次方程。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)挑选几道典型题目,让学生上黑板演示解题过程,讲解解题思路。
其他学生听讲,加深对解法的理解。
5.拓展(10分钟)引导学生思考:如何判断一元二次方程的解法?什么情况下适合使用因式分解法,什么情况下适合使用公式法?6.小结(5分钟)对本节课的内容进行总结,强调一元二次方程的解法和应用。
一元二次方程整节课以“一堂课讲述着一个故事,一堂课蕴含着一种思想(助人为乐的思想),一堂课透视着一个社会热点问题(三农问题),一堂课解决了一元二次方程的解法及应用,应用中的3类重点问题(面积问题、利润问题、增长率问题)”的思路进行设计.一、教学目标1、知识与技能目标以实际问题为背景线索,能独立回顾一元二次方程的相关知识(主要是一元二次方程的解法与列一元二次方程解应用题),并能进行初步的知识组织,通过相互交流建立一元二次方程的相关知识结构.2、过程与方法目标会根据实际问题建立一元二次方程模型并通过解方程解决问题,让学生感受数学源于生活,数学就在我们身边,体会方程模型是描述实际问题中数量关系的重要模型.3、情感态度与价值观目标让学生体会关心他人、帮助他人的乐趣,培养学生助人为乐的思想品质.二、教学重点和难点1、教学重点一元二次方程的解法及通过一元二次方程的实际应用活动加深对方程建模的体验2、教学难点列一元二次方程解应用题(面积问题、经济问题、增长率问题)的解决三、教学过程1.引言——故事的开端师:3月5日是学雷锋日,3月份是学雷锋月,老师给大家介绍一个人.他叫勤老伯,他勤劳,但缺少文化,想致富,却碰上了一堆的问题……他非常希望同学们能像雷锋一样帮助他,让他走上致富的道路,同学们,你们愿意吗?【设计意图:通过故事情境,引入新课,来吸引学生,激发学生学习数学的兴趣,提高学生自主学习的积极性.拉近师生间的距离,创建和谐课堂.】2.问题——故事的发展问题1 如图1,勤老伯有一块长方形土地,长比宽多12米,面积为640平分米,求这块长方形土地的边长.(1)你所设的未知数是_________.列出的方程为____________ ___ .(2)试用尽可能多的方法解出你所列的方程.小结1:由上述问题的解决过程能想到一元二次方程的哪些知识和方法? 预设:学生说出解一元二次方程的解法配方法、公式法等及列方程的步骤等. 问题2 为了便于灌溉,他在土地上修筑了两条一样宽的水渠(如图2所示),为了使余下部分面积还剩540平方米,水渠的宽度应为多少?师:本题为面积问题,阅读题目后,你能找到哪些相关的量图1和等量关系?说说你的思路和方法.预设1:学生可以根据面积的特点,应用大长方形的面积减去两个小长方形的面积方法来解决.注意:两个小长方形公共部分减了2次,会出现失误.师:很好,说说你的分析过程让大家听听,好吗?生:大长方形的面积是3220⨯,设水渠的宽为x 米.两个小长方形的面积分别是32x 与20x ,因为两个小长方形公共部分2x 减了2次,所以要加上2x ,列出方程232203220540x x x ⨯--+=.师:很好,思考很全面细致.预设2:学生可以根据面积的特点,应用平移的思想方法来解决.如图2变化到图3. 师:很好,说说你的分析过程让大家听听,好吗?生:我们可以将水平方向的水渠向上移,竖直方向的水渠向左移,设水渠的宽为x 米.则余下部分土地为长(32)x -米、宽(20)x -米的长方形(如图3所示).列出方程(32)(20)540x x --=.师:这种方法很有新意,使题目中的等量关系更加直观易得.(教师板书解题过程)解:设水渠的宽为x 米.根据题意,得(32)(20)540x x --=解得12x =,250x =(不合题意,舍去).答:水渠的宽为2米.【设计意图:通过当地农业生产中的一个实际问题情境,引入教材中常规的面积问题,通过对此题的分析和建模来复习解决应用问题的思路和策略.培养了学生学数学、用数学的意识.】变式1 若设计了如图4所示的水渠,则水渠的宽度又为多少?(只列方程,不求解)预设:学生类比问题2,可用平移的思想方法来解决,设水渠宽为米,则可得图2 图3图4方(322)(20)540x x --=.变式2 若把水渠由直线改为斜线(如图5所示),那么水渠的宽度又为多少?(直接说出答案.)(学生合作交流,探讨问题解决的思路和方法)预设:学生由等底、等高的平行四边形面积相等,得图5平行四边形面积和图2竖直方向的矩形面积相等,故变式2的答案与问题2相同.师:有了水渠以后,勤老伯的蔬菜长得很好,一年下来,勤老伯收获了大量蔬菜,看着这些蔬菜,勤老伯是又喜又愁,怎么卖才能获得最大利润呢?怎样才能尽快销售出去呢?【设计意图:通过问题2的变式,来培养学生思维的灵活性和深刻性,同时也揭示了解决这类面积问题的思路和方法.以变式训练的形式对问题进行深入研究,使问题具有层次性和内在的联系,并揭示了解决同类问题的通解和通法,使问题更具一般性,这样的设计能使 学生较自然地参与到问题解决的过程中.】问题3 勤老伯在该土地上种植蔬菜,喜获丰收,经计算蔬菜成本2元/千克,若以3元/千克的价格出售,每天可售出200千克,为了促销,勤老伯决定降价销售.经调查发现,蔬菜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本需要24元.勤老伯要想每天盈利200元,应将每千克蔬菜的售价降低多少钱?师:本题为利润问题,解题关键是找到表示等量关系的语句,本题表示等量关系的语句是什么呢?预设:学生找到每天盈利200元.每天盈利=每千克蔬菜的利润×每天售出的蔬菜数量一固定成本.(教师板书解题过程)解:设应将每千克蔬菜的售价降低x 元.根据题意,得40(32)(200)242000.1x x --+-= 解,得 10.2x =,20.3x =.答:应将每千克蔬菜的售价降低0.2元或0.3元.师:为使蔬菜尽快销售出去,勤老伯应降价多少元?预设:通过生活实际情况,蔬菜不能放久,需要学生理解,售价降低越多,日销量越大,故为使蔬菜尽快销售出去,应降价0.3元.师:买卖蔬菜让勤老伯赚了不少钱,有了钱以后,勤老伯更加信心百倍,他想进一步改进技术,进一步扩大再生产.使蔬菜的利润越来越大,让自己越来越富有……【设计意图:通过故事情境,引入问题3,使学生学会分析市场经济问题的思路和解决问题的方法.以故事的形式,较自然地引入新问题,使前后问题密切联系,学生很自然地沿着故事深入,较自觉地对新问题展开思考,并解决问题.】问题4 勤老伯算了算2010年种植蔬菜共获利21600元,他记得自己2008年种植蔬菜时只获利15000元,若从2008年到2010年,每年获利的年增长率相同.(1)求每年获利的年增长率为多少?(2)若获利的年增长率继续保持不变,预计2011年勤老伯将获利多少?师:本题为增长率问题,请同学们自己解答.(投影学生作业,生生分析)解:(1)设每年获利的年增长率为x .根据题意,得 215000(1)21600x +=.解,得 10.2x =,2 2.2x =-(不合题意,舍去).所以每年获利的年增长率为20%,2011年获利21600(10.2)25920+=元.师:在同学们的帮助下,勤老伯的口袋一年比一年鼓了,那么在帮助勤老伯的同时,同学们的知识是否也充实了不少呢?下面我们就来检验一下.【设计意图:通过故事情境这一主线,继续引入新问题,通过对问题4的分析和解决,引导学生学会增长率问题的思考方法和思路.在学生的帮助下,勤老伯的收益大增,具有较强的教育意义和感染力.】师:下面是勤老伯生活致富的一些情境,老师选择几个片段,让我们一起去勤老伯家参观,感受一下.出示勤老伯家的房子的图片,从外面到房间里面的引入,…3.参观——故事的高潮练习1 客厅——方程思想如图6,有一张长方形桌子的桌面长100cm ,宽60 cm .有一块长方形台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同.求台布的长和宽(精确到1 cm ). 解:设各边垂下的长度为x cm .根据题意,得(1002)(602)210060x x ++=⨯⨯,化简,得28015000x x +-=,解得14015.7x =-+,140x =--.所以台布的长约为1002131x +=(cm ),宽约为60291x +=(cm ).练习2 旅游——分类讨论大众旅行社为吸引市民组团去某风景区旅游,推出了如下收费标准:如果人数不超过25人,人均旅游费用为1000元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.勤老伯的所在的社区组织去该风景区旅游,共支付给旅行社旅游费用27000元.请问这次与勤老伯一起去共有多少人去旅游?【设计意图:通过参观勤老伯的家的形式完成练习题,碰到的一些数学问题都是在参观中出现的,也使学生意识到数学无处不在,激发学习的内动力.通过针对性练习,巩固和提高学生的应用能力,掌握学生在应用问题解决中所存在的实际问题,通过对练习题的讲评,达到查漏补缺的目的.】4.小结——做事的结局师:通过本节课的学习,你有哪些收获?预设:生:这节课复习了解一元二次方程的解法.生:这节课还复习了3类问题:面积问题、利润问题、增长率问题.……师:同学们回答的非常好,看来这节课不仅勤老伯丰收了,同学们也“丰收”了,在帮如图6助别人的同时,也帮助了我们自己.【设计意图:通过对故事的小结,让学生回顾和归纳本节课所学的数学知识和数学方法.通过学生自己归纳和教师点拨的课堂小结,深化了学生的已学知识,提升了学生的思维品质.】5.布置作业,巩固提高板书设计四、本节课具有以下特点:(1)以勤老伯致富的故事为主线体现了课堂的故事性;(2)以解决3类问题为重点实现了课堂教学的有效性;(3)以参观勤老伯的家的形式激发了学生解决问题的积极性;(4)以社会热点问题(三农问题)为背景体现了教学题材的时代性;(5)以助人为乐为德育目标体现了数学教学的人文性.。
浙教版数学八年级下册《2.1 一元二次方程》教学设计1一. 教材分析《2.1 一元二次方程》是浙教版数学八年级下册的重点内容。
本节课主要让学生掌握一元二次方程的定义、解法以及应用。
教材通过引入实际问题,引导学生认识一元二次方程,并运用数学知识解决实际问题。
教材内容安排合理,由浅入深,有利于学生掌握一元二次方程的相关知识。
二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、函数等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对二次方程的理解和应用能力仍有所欠缺,需要教师在教学过程中给予关注和指导。
三. 教学目标1.理解一元二次方程的定义及其一般形式;2.学会解一元二次方程的常用方法(如因式分解、配方法、求根公式等);3.能够运用一元二次方程解决实际问题;4.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.一元二次方程的定义及其一般形式;2.一元二次方程的解法及应用;3.实际问题中的一元二次方程求解。
五. 教学方法1.情境导入:通过引入实际问题,激发学生的学习兴趣,引导学生认识一元二次方程;2.自主探究:让学生在课堂上独立思考,自主学习一元二次方程的定义、解法等知识;3.合作交流:鼓励学生之间相互讨论、分享学习心得,提高学生的合作能力;4.实践应用:通过解决实际问题,培养学生的应用能力;5.总结提升:引导学生对所学知识进行总结,提高学生的归纳能力。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示一元二次方程的相关知识;2.实际问题:准备一些与生活相关的实际问题,引导学生运用一元二次方程解决;3.练习题:挑选一些具有代表性的练习题,巩固学生对一元二次方程的掌握。
七. 教学过程1.导入(5分钟)利用课件展示实际问题,引导学生认识一元二次方程,激发学生的学习兴趣。
2.呈现(10分钟)讲解一元二次方程的定义、一般形式及解法,让学生初步了解一元二次方程的基本知识。
3.操练(10分钟)让学生独立解决实际问题,运用一元二次方程进行求解,巩固所学知识。
课题2.3一元二次方程的应用(1)课时教学目标1、经历一元二次方程的实际应用,体验一元二次方程的应用价值.2、会列一元二次方程解应用题.教学设想本节教学的重点是列一元二次方程解应用题.例2的数量关系比较复杂,学生不容易理解,是本节教学的难点.教学程序与策略一、引例:要做一个高是8cm,底面的长比宽多5cm,体积是5283cm的长方体木箱,问底面的长和宽各是多少?二、回顾:1、以前我们已经经历了几次列方程解应用题?①列一元一次方程解应用题;②列二元一次方程组解应用题;③列分式方程解应用题.在思想方法和解题步骤上有许多共同之处.2、提问:列方程解应用题的基本步骤怎样?①审(审题);②找(找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系);③设(设元,包括设直接未知数或间接未知数);④表(用所设的未知数字母的代数式表示其他的相关量);⑤列(列方程);⑥解(解方程);⑦检验(注意根的准确性及是否符合实际意义).对照步骤,引导学生完成解题过程板书:(主题)一元二次方程的应用三、新课1.多媒体显示课本例 1(1)着重指清“每盆每增加1株,平均单株盈利就减少0.5元”的含义.(2)思考:直接设每盆植x株好吗?为什么?启发:设什么为x才好?(3)指导学生用x表示其他相关量.(4)问: 你怎样列方程呢?指导学生解方程,并进行检验.请每位同学自己检验两根.发现什么?2.完成课内练习1:学生完成练习后出示正确答案核对(略)3.讲解例2;显示例2(屏幕显示),注意:叙述年平均增长率时,要有明确规范的说法,如:“从何年到何年的年平均增长率”,“从何月到何月的月平均教学程序与策略增长率”,不要随用其他的说法,否则学生解题时容易产生歧义.请大家以学习小组为单位讨论如下问题,然后以组为单位回答:(1)增长率与什么有关系?(增长率与时间相关.必须弄清楚从何年何月何日到何年何月何日的增长率.)(2)年平均增长率怎么算?纠正学生的各种错误回答并小结;经过两年的年平均变化率x 与原量a 和现量b 之间的关系是:2(1)a xb (等量关系).(3)x 的正负性有什么意义?(当x>0时表增长,当x<0时表示下降.)4.完成课内练习2;四、课堂小结:这节我们学到了什么?1、学会了列一元二次方程解应用题. 2、列一元二次方程解应用题的步骤.3、经过两年的年平均变化率与原量a 和b 之间的关系是:2(1)a xb (等量关系).对例1,使用间接设元更能表示其他的相关量. 五、作业布置:(1)完成课本“作业题”.(2)作业本。
浙教版数学八年级下册2.1《一元二次方程》教案1一. 教材分析《一元二次方程》是中学数学的重要内容,也是初中数学的难点之一。
浙教版八年级下册第2.1节的内容,主要包括一元二次方程的定义、解法、判别式等知识点。
通过本节课的学习,使学生掌握一元二次方程的基本概念,学会解一元二次方程,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式、函数等基础知识,具备一定的逻辑思维和运算能力。
但一元二次方程相对复杂,学生对其概念、解法、判别式等知识点的理解还需加强。
此外,学生解决实际问题的能力有待提高。
三. 教学目标1.知识与技能:使学生掌握一元二次方程的基本概念,学会解一元二次方程,理解一元二次方程的判别式。
2.过程与方法:培养学生运用一元二次方程解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:一元二次方程的定义、解法、判别式。
2.难点:一元二次方程的实际应用。
五. 教学方法采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探究、合作学习,提高学生解决问题的能力。
六. 教学准备1.教学素材:教材、PPT、黑板、粉笔。
2.教学工具:投影仪、计算机。
七. 教学过程1.导入(5分钟)利用PPT展示一组实际问题,引导学生思考如何用数学模型来解决这些问题。
进而引出一元二次方程的概念。
2.呈现(15分钟)讲解一元二次方程的定义、解法、判别式等基本知识。
通过PPT展示,让学生清晰地了解一元二次方程的各个部分。
3.操练(15分钟)让学生分组讨论,尝试解一些简单的一元二次方程。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取一些典型的一元二次方程,让学生独立解答。
教师及时反馈,指出解题过程中的错误,巩固所学知识。
5.拓展(10分钟)让学生运用一元二次方程解决实际问题。
教师提供一些案例,引导学生思考、讨论。
6.小结(5分钟)对本节课的主要知识点进行总结,强调一元二次方程在实际生活中的应用。
浙教版数学八年级下册《2.1 一元二次方程》教学设计2一. 教材分析《2.1 一元二次方程》是浙教版数学八年级下册的教学内容。
本节课的主要内容是一元二次方程的定义、性质和解法。
一元二次方程是初中数学中的重要内容,也是进一步学习高中数学的基础。
通过本节课的学习,学生能够掌握一元二次方程的基本概念和解题方法,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经学习了代数的基本知识,包括有理数的运算、方程的解法等。
他们对代数知识有一定的掌握,但对于一元二次方程这一概念和性质可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出一元二次方程,并通过例题和练习让学生掌握一元二次方程的解法。
三. 教学目标1.了解一元二次方程的定义和性质,能够正确判断一个方程是否为一元二次方程。
2.掌握一元二次方程的解法,能够解一般的一元二次方程。
3.能够运用一元二次方程解决实际问题。
四. 教学重难点1.一元二次方程的定义和性质。
2.一元二次方程的解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索;通过案例分析和练习,让学生掌握一元二次方程的解法;通过小组合作学习,培养学生的团队合作能力和交流表达能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过提出一个实际问题,引导学生思考和探索一元二次方程的定义和性质。
例如,假设一个长方形的面积为4平方米,长为2米,求宽是多少米?学生可以通过列方程来解决这个问题,从而引出一元二次方程的概念。
2.呈现(15分钟)通过课件和教学素材,呈现一元二次方程的定义和性质。
解释一元二次方程的形式,以及判别式的意义。
同时,给出一些例子,让学生理解和掌握一元二次方程的解法。
3.操练(15分钟)让学生通过练习题来巩固一元二次方程的解法。
可以选择一些基础题和进阶题,让学生在不同难度上进行练习。
浙教版数学八年级下册2.1《一元二次方程》教案一. 教材分析《一元二次方程》是初中数学的重要内容,也是八年级下册的重点和难点。
本节课通过引入一元二次方程,让学生了解一元二次方程的定义、解法及其应用,培养学生解决实际问题的能力。
教材从生活实例出发,引导学生认识一元二次方程,并通过探究、合作、交流的方式,让学生掌握一元二次方程的解法,为后续学习函数、不等式等知识打下基础。
二. 学情分析学生在七年级已经学习了方程和不等式的基本知识,对解方程有一定的了解。
但一元二次方程相对复杂,需要学生具有较强的逻辑思维能力和抽象概括能力。
此外,学生对于数学问题的探究和合作能力也有待提高。
三. 教学目标1.了解一元二次方程的定义、解法及其应用。
2.掌握一元二次方程的解法,提高解决实际问题的能力。
3.培养学生的合作、探究、交流能力,提高学生的逻辑思维和抽象概括能力。
四. 教学重难点1.重难点:一元二次方程的定义、解法及其应用。
2.重点:一元二次方程的解法。
3.难点:一元二次方程的应用。
五. 教学方法1.采用问题驱动法,引导学生探究一元二次方程的定义和解法。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.利用案例分析法,让学生从实际问题中认识一元二次方程的应用。
4.采用板书演示法,直观展示一元二次方程的解法过程。
六. 教学准备1.准备相关的生活实例和案例,用于导入和巩固环节。
2.准备一元二次方程的习题,用于操练和家庭作业环节。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过生活实例引入一元二次方程,让学生感受一元二次方程在实际生活中的应用。
例如,讲解一个关于面积和高度的问题,引导学生发现方程x^2 - 6x + 9 = 0。
2.呈现(15分钟)讲解一元二次方程的定义,明确方程的一般形式:ax^2 + bx + c = 0。
解释方程中的a、b、c分别代表什么含义,并引导学生理解一元二次方程的解法。
浙教版数学八年级下册《2.1 一元二次方程》教案2一. 教材分析《2.1 一元二次方程》是浙教版数学八年级下册的教学内容。
本节内容主要让学生掌握一元二次方程的定义、解法以及应用。
通过本节的学习,为学生后续学习函数、不等式等知识打下基础。
教材从实际问题出发,引导学生认识一元二次方程,并通过探究、合作的方式,让学生掌握一元二次方程的解法。
二. 学情分析学生在学习本节内容前,已掌握了实数、代数式、方程等基础知识。
但一元二次方程较为抽象,对学生思维能力要求较高。
因此,在教学过程中,要关注学生的学习需求,引导学生通过自主学习、合作交流,克服学习困难,提高解决问题的能力。
三. 教学目标1.理解一元二次方程的定义,掌握一元二次方程的一般形式。
2.学会解一元二次方程,提高解决问题的能力。
3.培养学生的合作交流、自主学习能力,提高学生的思维能力。
四. 教学重难点1.一元二次方程的定义及其一般形式。
2.一元二次方程的解法。
五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现一元二次方程。
2.运用合作交流法,让学生在探讨中掌握一元二次方程的解法。
3.采用自主学习法,培养学生的独立思考能力。
六. 教学准备1.准备相关实际问题,用于引导学生认识一元二次方程。
2.准备一元二次方程的例题和练习题。
3.准备多媒体教学设备,用于展示和解说一元二次方程。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如物体运动、面积计算等问题,引导学生发现这些问题都可以归结为一种特殊的方程——一元二次方程。
2.呈现(10分钟)介绍一元二次方程的定义及其一般形式,让学生理解一元二次方程的概念。
3.操练(10分钟)让学生分组讨论,探索一元二次方程的解法。
教师引导学生运用合作交流法,共同解决问题。
4.巩固(10分钟)让学生自主解决一些一元二次方程的实际问题,巩固所学知识。
5.拓展(10分钟)引导学生思考:一元二次方程有哪些应用?让学生发挥想象力,联系实际生活中的问题,提高解决问题的能力。
2.1 一元二次方程教学内容一元二次方程的概念及一元二次方程的一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程的概念解决一些简单题目.1.通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.难点:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、情景导入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.如果假设门的高为x尺,那么这个门的宽为_______尺,长为_______尺.根据题意,得________.整理、化简,得__________.二、探索新知学生活动:请口答下面问题.(1)上面方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它的最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)只含一个未知数x;(2)它的最高次数是2;(3)有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax 2+bx +c =0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.例1 把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.(1)9x 2=5-4x ; (2)(2-x )(3x +4)=3.例2 已知一元二次方程220x bx c ++=的两个根分别为x 1=52和x 2=3-,求这个方程. 三、巩固练习判断下列方程是否为一元二次方程? (1)3x +2=5y -3; (2) x 2=4; (3)3x 2-5x=0; (4) x 2-4=(x +2)2 ; (5)ax 2+bx +c =0. 四、应用拓展求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,不论m 取何值,该方程都是一元二次方程. 分析:要证明不论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可. 证明:m 2-8m +17=(m -4)2+1. ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0,∴不论m 取何值,该方程都是一元二次方程.练习:1.方程(2a —4)x 2—2bx +a =0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m 为何值时,方程(m +1)x|4m |-4+27mx +5=0是关于x 的一元二次方程.五、归纳小结(学生总结,教师点评) 本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax 2+bx +c =0(a ≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其运用.2.2 一元二次方程的解法教学目标会利用因式分解法、开平方法、配方法、公式法解一元二次方程;能利用一元二次方程根的判别式判断一元二次方程根的情况.重难点重点:四种一元二次方程的解法和一元二次方程根的判别式的意义. 难点:用因式分解法和配方法解一元二次方程.教学过程 一、探究新知上节课我们学习了一元二次方程的有关概念,同学们还记得吗?谁能说一说? 教师:我们知道“能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)”,那么我们怎么求一元二次方程的解呢?学生思考,教师引入新课. 二、例题导学 1.因式分解法 例1 解下列方程:(1)x 2-3x =0. (2)25x 2=16.解:(1)将原方程的左边分解因式,得x (x -3)=0,则x=0,或x -3=0,解得x 1=0,x 2=3. (2)移项,得25x 2-16=0.将方程的左边分解因式,得(5x -4)(5x +4)=0,则5x -4=0, 或5x +4=0,解得x 1=54,x 2=54-. 像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.这种方法把解一个一元二次方程转化为解两个一元一次方程.例2 解下列一元二次方程: (1)(x -5)(3x -2)=10. (2)(3x -4)2=(4x -3)2.学生独立完成,教师巡视、指导. 2.开平方法一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可得x 1,x 2.这种解一元二次方程的方法叫做开平方法.例3 用开平方法解下列方程: (1)3x 2-48=0. (2)(2x -3)2=7.解:(1)移项,得3x 2=48.方程的两边同除以3,得x 2=16.解得x 1=4,x 2=-4. (2)由原方程,得2x -3=7,或2x -3=-7,解得x 1=273+,x 2=273-. 3.配方法将一元二次方程的左边配成一个完全平方式,右边为一个非负数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.例4 用配方法解下列一元二次方程: (1) x 2+6x =1. (2)x 2+5x -6=0.解:(1)方程的两边同加上9,得x 2+6x +9=1+9,即(x +3)2=10.则x +3=10,或x +3=-10,解得x 1=-3+10,x 2=-3-10.(2)移项,得x 2+5x =6.方程的两边同加上2)25(,得x 2+5x +2)25(=6+2)25(,即449)25(2=+x . 则2725=+x ,或2725-=+x ,解得x 1=1,x 2=-6. 4.公式法(1)ax 2-7x +3 =0. (2)ax 2+bx +3=0.(3)如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知a x 2+bx +c =0(a ≠0),试推导它的两个根x 1=2b a-,x 2=2b a-(这个方程一定有解吗?什么情况下有解?)解:移项,得ax 2+bx =-c . 二次项系数化为1,得x 2+b a x =-c a. 配方,得x 2+ba x +(2b a )2=-c a +(2b a)2,即(x +2b a )2=2244b aca -.∵4a 2>0,当b 2-4ac ≥0时,2244b ac a -≥0,∴(x +2b a )2=(2a)2,直接开平方,得x +2b a =±2a ,即x =2b a-±,∴x 1=2b a -,x 2=2b a--.由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x (公式所出现的运算,恰好包括了所学过的六种运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性)(2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫做公式法.例5 用公式法解下列一元二次方程: (1)2x 2-5x +3=0; (2)4x 2+1=-4x ; (3)34x 2-2x -12=0. 解:(1)对方程2x 2-5x +3=0,a =2,b =-5,c =3,b 2-4ac =(-5)2-4×2×3=1,∴x =415221)5(±=⨯±--,∴x 1=23415=+,x 2=1415=-. (2)移项,得4x 2+4x +1=0,则a =4,b =4,c =1,b 2-4ac =42-4×4×1=0,∴214204-=⨯±-=x ,∴2121-==x x . (3)方程的两边同乘4,得3x 2-8x -2=0.则a =3,b =-8,c =-2,b 2-4ac =(-8)2-4×3×(-2)=88,∴322432888±=⨯±=x ,∴32241+=x ,32242-=x . 从一元二次方程ax 2+bx +c =0(a ≠0)的求根公式的推导过程中不难看出,方程的根的情况由代数式b 2-4ac 的值来决定.因此b 2-4ac 叫做一元二次方程的根的判别式,它的值与一元二次方程的根的关系是:b 2-4ac >0则方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根; b 2-4ac =0则方程ax 2+bx +c =0(a ≠0)有两个相等的实数根; b 2-4ac <0则方程ax 2+bx +c =0(a ≠0)没有实数根.2.3 一元二次方程的应用教学目标1.让学生在经历运用一元二次方程解决实际问题的过程中体会一元二次方程的应用价值.2.在运用一元二次方程解决实际问题的过程中,提高学生分析问题、解决问题的能力. 重难点重点:建立一元二次方程模型解决实际问题. 难点:将实际问题转化成一元二次方程模型. 教学过程一、复习引入1、回顾:不解一元二次方程,你如何判断根的情况?2、复习列方程解应用题的一般步骤:(1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知数以及它们之间的关系;(2)设未知数:用字母(如x )表示题中的未知数,通常是求什么量,就设这个量为x ; (3)列方程:根据题中已知量和未知量之间的关系列出方程;(4)解方程:求出所给方程的解;(5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际问题有意义;(6)作答:根据题意,选择合理的答案.二、讲解例题例1 某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.当每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利为10元,则每盆应植多少株?分析:本题涉及的主要数量有每盆的花苗株数,平均单株盈利,每盆花苗的盈利,主要数量关系有:平均单株盈利×株数=每盆盈利;平均单株盈利=3-0.5×每盆增加的株数.解:设每盆花苗增加x株,则每盆花苗有(3+x)株,平均单株盈利为(3-0.5x)元.由题意,得(x+3)(3-0.5x)=10.化简、整理,得x2-3x+2=0.解这个方程,得x1=1,x2=2.经检验,x1=1,x2=2都是方程的解,且符合题意.答:要使每盆的盈利为10元,则每盆应植入4株或5株.教师:想一想,列一元二次方程解应用题的基本步骤与列一元一次方程解应用题相同吗?列一元二次方程解应用题时,你认为有哪些地方更需引起注意?学生:列一元二次方程解应用题的基本步骤与列一元一次方程解应用题相同.列一元二次方程解应用题时,应该注意求出来的根是否满足题意.教师引导做教材P40例2和教材P41例3.三、课堂小结:列一元二次方程解决实际问题的步骤,审、设、找、列、解、检、答,注意一定要检验求出的根是否满足题意.2.4 一元二次方程根与系数的关系教学目标1、了解一元二次方程根与系数的关系,并能进行简单的运用.2、能通过对根与系数关系的探索,提高代数推理的能力与意识.教学重难点1.了解一元二次方程根与系数的关系,并能进行简单的运用.2.能通过对根与系数关系的探索,提高代数推理的能力与意识.教学设计探索发现观察下表,你能发现下列一元二次方程根与系数有什么关系吗?你能解释刚才的发现吗?一元二次方程ax 2+bx +c =0(a ≠0),如果b 2-4ac ≥0,它的两个根分别是x 1,x 2. 总结发现一元二次方程ax 2+bx +c =0(a ≠0),如果b 2-4ac ≥0,它的两个根分别是x 1,x 2. 那么12b x x a +=-,12c x x a⋅=. 例题精讲例1设x 1,x 2是一元二次方程25-7-30x x =的两个根,求x 12+x 22和1211x x +的值.例2 已知一个一元二次方程的二次项系数是3,它的两个根分别是13,1.写出这个方程. 尝试与交流小明在一本课外读物中读到如下一段文字:“一元二次方程x 2-x 0的两个根分别是2+和2”, 你能写出这个方程中被墨迹污染的一次项系数和常数项吗? 达标练习教材P46课内练习第1,2题. 课堂小结1.一元二次方程根与系数的关系:如果x 1,x 2是一元二次方程ax 2+bx +c =0的两个根,那么x 1+x 2=ab -;x 1x 2=ac .2.运用一元二次方程根与系数的关系时,先要把方程化成一般形式.3.运用一元二次方程根与系数的关系时,要特别注意,方程有实根的条件,即当且仅当b 2-4ac ≥0时,才能运用一元二次方程根与系数的关系.课后作业适当补充针对性练习.。
浙教版八年级数学教案模板下册《一元二次方程》教学设计一、学生知识状况分析学生已经学习了一元二次方程及其解法,对于方程的解及解方程并不陌生,实际问题的应用,有些抽象,虽然学生在七、八年级已经进行了有关的训练,但还是有一定的难度。
本节内容针对的学生是才进入九年级的学生,他们已经具备了一定的抽象思维和建模能力,也具备一定的生活经验和初步的解一元二次方程的经验。
二、教学任务分析本节课的主要是发展学生抽象思维,强化学生的应用意识,使学生能通过抽象思维将一个应用题抽象成一元二次方程使问题得以解决,这也是方程教学的重要任务。
但学生抽象意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。
因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及抽象思维的初步形成。
显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。
为此,本节课的教学目标是:知识目标:通过分析问题中的数量关系,抽象出方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
能力目标:1、经历分析,抽象和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;2、能够抽象出一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;情感态度价值观:在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。
三、学法指导本课是学生学习完一元二次方程的解法后的应用课,虽然学生在七八年级已经进行了一定的训练,但本课对学生而言还是有一定的难度。
本课采用启发式、问题串讨论式、合作学习相结合的方式,引导学生从已有的知识和生活经验出发,以教材提供的素材为基础,引导学生对对问题中的数量进行分析从而抽象出方程解决问题;学生之间的合作交流、互助学习,能更好地调动学生的学习积极性,更符合学生的认知规律。
浙教版数学八年级下册《2.3 一元二次方程的应用》教学设计4一. 教材分析《2.3 一元二次方程的应用》是浙教版数学八年级下册中的一节内容。
本节课主要通过实际问题引导学生运用一元二次方程解决问题,培养学生的数学应用能力。
教材中提供了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的解法和求根公式。
但部分学生在实际应用中,还不能很好地将理论知识与实际问题相结合。
因此,在教学过程中,需要关注学生的学习兴趣,激发学生的求知欲,引导学生主动探究,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:会使用一元二次方程解决一些简单的实际问题,培养学生的应用意识。
2.过程与方法:通过解决实际问题,培养学生独立思考、合作交流的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,体会数学在生活中的重要性。
四. 教学重难点1.重点:运用一元二次方程解决实际问题。
2.难点:如何将实际问题转化为数学模型,找出合适的等量关系。
五. 教学方法1.情境教学法:通过创设生活情境,引导学生主动探究。
2.启发式教学法:引导学生思考,激发学生的求知欲。
3.合作学习法:鼓励学生互相讨论,共同解决问题。
六. 教学准备1.课件:制作课件,展示相关例题和练习题。
2.教案:提前准备教案,确保教学过程的顺利进行。
3.练习题:准备一些与本节课相关的练习题,巩固学生所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如抛物线与坐标轴的交点问题,引出一元二次方程的应用。
2.呈现(15分钟)展示教材中的例题,引导学生分析问题,找出合适的等量关系。
如:已知一个二次函数的图象与x轴的两个交点坐标为(1,0)、(2,0),求该二次函数的解析式。
3.操练(10分钟)让学生独立解决教材中的练习题,教师巡回指导。
如:已知一个二次函数的图象与x轴的一个交点坐标为(3,0),且该函数的顶点坐标为(1,-4),求该二次函数的解析式。
浙教版八年级下2.1一元二次方程教案教学目标1、理解一元二次方程的概念,会判断一个方程是否为一元二次方程2、理解一元二次方程的解的概念,会判断未知数的值是否为一元二次方程的解3、了解一元二次方程的一般形式,会辨认一元二次方程的二次项系数、一次项系数和常数项.重点:一元二次方程的概念,包括它的一般形式.难点:例1第(4)题包含了代数式的变形和等式变形两个方面,计算容易产生差错,是本节教学的难点.教学过程一、课前热身判断下列式子是否是一元一次方程:回忆一元一次方程的概念:1、只有一个未知数2、未知数的指数是一次3、方程的两边都是整式二、情境引入1、列出下列问题中关于未知数x的方程:(1)把面积为4平方米的一张纸分割成如图所示的正方形和长方形两个部分,求正方形的边长。
设正方形的边长为x,可列出方程______________;2、某放射性元素经2天后,质量衰变为原来的1/2, 这种放射性元素平均每天减少率为多少?设平均每天减少率为x,可列出方程:________________.学生自主探索,并互相交流,自己列出方程。
观察上面所列方程,说出这些方程与一元一次方程的共同和不同之处.学生各抒己见,发表自己的发现:共同点:①它的左右两边都是整式,②只含一个未知数;不同点:未知数的最高次数是2。
二、得出新知,运用强化1、得出一元二次方程的定义:含有一个未知数,并且所含未知数的项的次数都为2的方程。
板书课题及一元二次方程的定义并指出:能使一元二次方程两边相等的未知数的值叫一元二次方程的解(或根)。
2、练习判断下列方程是否是一元二次方程:(1)10x2=9(2) 2(x-1)=3x; (3) 2x2-1=0通过练习让学生掌握一元二次方程的特征。
3、判断未知数的值x=-1,x=0,x=2是不是方程x2-2=x的根。
通过此题的求解向学生说明:一元二次方程的解(或根)的概念及解的个数。
4、一元二次方程概念的延伸提问:你能自己写一个一元二次方程吗? 引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式ax2+bx+c=0(a≠0)1)提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠0就成了一元一次方程了)。
浙教版数学八年级下册2.1《一元二次方程》教案2一. 教材分析《一元二次方程》是初中数学的重要内容,也是八年级下册的教学重点。
通过学习一元二次方程,学生可以掌握方程的解法,提高解决实际问题的能力。
浙教版教材通过丰富的例题和习题,引导学生逐步掌握一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了整式的加减、乘除运算,以及方程的基本概念。
但他们对一元二次方程的认识还较为模糊,解法也较陌生。
因此,在教学过程中,教师需要关注学生的认知基础,通过引导和启发,让学生逐步理解和掌握一元二次方程的解法。
三. 教学目标1.知识与技能:让学生掌握一元二次方程的定义、解法及其应用。
2.过程与方法:培养学生解决实际问题的能力,提高逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养合作、探究的精神。
四. 教学重难点1.重点:一元二次方程的定义、解法及应用。
2.难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。
五. 教学方法1.启发式教学:教师通过提问、引导,激发学生的思考,让学生主动探索一元二次方程的解法。
2.案例教学:结合典型例题,分析一元二次方程的解法,提高学生的解题能力。
3.小组讨论:引导学生分组讨论,培养学生的合作精神和沟通能力。
六. 教学准备1.教学PPT:制作包含重点知识、例题、练习的教学PPT。
2.教案:提前准备教案,明确教学目标、重难点、教学方法等。
3.习题:准备适量的一元二次方程习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)教师通过提问方式复习相关知识,如:什么是方程?什么是二次方程?引导学生回顾已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示一元二次方程的定义、解法及应用,让学生初步了解一元二次方程的基本概念。
3.操练(10分钟)教师给出典型例题,引导学生运用一元二次方程的解法进行解答。
在解答过程中,教师注意引导学生思考、讨论,以便发现解题规律。
浙教版数学八年级下册2.1《一元二次方程》教学设计一. 教材分析《一元二次方程》是浙教版数学八年级下册第二章第一节的内容。
本节内容主要介绍一元二次方程的定义、解法及应用。
通过本节的学习,学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。
二. 学情分析学生在学习本节内容前,已经学习了有理数、代数式、方程等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对代数式的运算和方程的解法还不够熟练,需要在本节内容中进一步加强训练。
三. 教学目标1.知识与技能:理解一元二次方程的概念,掌握一元二次方程的解法,能够运用一元二次方程解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生发现一元二次方程的解法,培养学生的逻辑思维能力和问题解决能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生对数学学科的自信心,培养学生合作学习、积极探究的精神。
四. 教学重难点1.重点:一元二次方程的概念,一元二次方程的解法。
2.难点:一元二次方程的解法,运用一元二次方程解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入一元二次方程,激发学生的学习兴趣。
2.引导发现法:引导学生通过观察、分析、归纳等方法,发现一元二次方程的解法。
3.实践操作法:让学生通过动手操作,加深对一元二次方程的理解。
4.合作学习法:鼓励学生之间相互讨论、交流,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示一元二次方程的定义、解法及应用。
2.教学素材:准备一些实际问题,作为学生练习的素材。
3.黑板:准备黑板,用于板书一元二次方程的解法步骤。
七. 教学过程1.导入(5分钟)利用生活实例引入一元二次方程,激发学生的学习兴趣。
例如,讲解一个关于面积和体积的问题,引导学生发现一元二次方程的应用。
2.呈现(10分钟)展示一元二次方程的定义和性质,让学生明确一元二次方程的概念。
浙教版八年级数学下册《一元二次方程的应用》教学设计一、教学目标1.认识一元二次方程的定义。
2.掌握用代数方法解一元二次方程的方法。
3.了解一元二次方程在生活中的应用。
二、教学重点1.一元二次方程的定义。
2.用代数方法解一元二次方程的方法。
3.一元二次方程在生活中的应用。
三、教学难点1.利用实际问题写出一元二次方程。
2.解决实际问题需要解的一元二次方程。
四、教学方法1.讲授法。
2.练习法。
3.探究法。
五、教学准备1.教学课件、黑板笔、草稿纸。
2.练习题、实际问题。
3.教学视频。
六、教学过程1.导入新知识(10分钟)老师呈现一个公式($x^2+8x+16$),然后问学生熟悉这个公式吗?如果熟悉,请谈谈这个公式的名字和用途。
学生回答后,老师发现大多数学生对这个公式并不积极了解,这时老师可以给学生谈论一些这个公式在生活中的应用。
比如:这个公式是用来求抛物线顶点的坐标的,还可用来求解摆锤运动的轨迹等等。
2.讲解新知识(20分钟)1) 一元二次方程的定义和标准形式在让学生认识到一元二次方程的应用之后,也就可以引出一元二次方程的定义和标准形式。
这里可以让学生一起讨论一元二次方程到底是什么,然后老师会讲解一下一元二次方程的标准形式。
2) 用代数方法解一元二次方程的方法其次,老师要教授一元二次方程的解法。
这里可以利用白板上的实例,让学生用课本上提供的方法解答问题。
3) 一元二次方程在生活中的应用最后,老师会再次强调一元二次方程在生活中的应用,然后提供一些实例,让学生尝试自己推导出相关一元二次方程的解法。
3.练习和小结(15分钟)在学生掌握了一元二次方程的定义和相关解法之后,老师可以在黑板上列出一系列的练习题,让学生在实践中提高对这个知识点的掌握能力。
这里,老师可以让学生选择一个实际问题进行解答,再用课本上提供的一元二次方程的解法来验证回答是否正确。
4.巩固与拓展(15分钟)为了让学生们更好的理解一元二次方程,老师可以介绍一些实际问题,并请学生自己尝试推导出其中隐含的一元二次方程。